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Simplicity, symmetry, and syntely:
Stimulus measures of binary pattern structure
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A simple parameter free algorithm based solely on the sequential run and alternation structure of
binary, sequences is elaborated: T~e algorithm is designed to measure the sequence's syntely: the degree
to whlc? past conseque,nces ~lthlD a sequence converge on the continuation of that sequence's terminal
ru~. This sy~telY algorithm IS shown to predict subjects' expectancies in a sequential prediction task
usmg short bmary sequences. Other algorithms measuring the symmetry and simplicity (If short binary
patterns are demonstrated, and their measures shown to be correlated with each other but not
correlated with syntely. Goodness and strength of expectancy are unrelated. The syntely algorithm is
~own to be successful in predicting the error profiles of subjects learning short recurrent patterns of
bmary se~uences. The s~ntely algorithm is based on the straightforward principle of induction by
enumeratIOn: the composite of past events controls the expectancy of future events. The success of this
algorithm, even though it may embody the principle of induction only imperfectly, provides good
evidence that this principle is a useful normative guide for understanding the human processing of
contingencies in binary sequences, making complicated schemes of rules and hypotheses unnecessary.

An intelligent observer is quite able to use many
different aspects of the information available in a
stimulus. To begin the analysis of such information at a
synoptic level, a simple dichotomy may usefully be
created to distinguish two kinds of information by
identifying information with structure and illustrating
two sorts of structure, intrinsic and extrinsic (Garner,
1974). Extrinsic structure occurs when the stimulus
denotes or signifies something other than itself, like the
meaning contained in the word "dog," or the arithmetic
progression inherent in the sequence of numbers
(I 3 5 79 ...). This sort of structure is beyond the
scope of this paper. Instead, the subjective use of
intrinsic structure as given by perceptible spatiotemporal
regularities of the stimulus, like the optical and spatial
frequency properties of "dog" or the single alternation
structure of (0 X 0 X 0 X ...), will be analyzed at a
very general level.

Information theory offers at its core the strikingly
simplifying notion that information or structure can be
discussed completely generally as it is embodied in the
form of a binary time series like (X 0 X X 0 X ...). The
actual elements used in the series are completely
irrelevant unless they designate some external structure.
Since this is a real consideration with most, if not all,
available elements, special precautions must be used in
any practical case. Usually the simplest procedure to
eliminate the effects of extrinsic structure on the results
obtained with one sequence like the example above is to
make sure that the same results are also obtained with its
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complementary sequence, in this case
(0 X 0 0 X 0 . ' .). The results are then dependent on
the intrinsic structure of the sequence, and the elements
themselves can be considered to be intrinsically neutral.

MEMORY AND PROBABILITY LEARNING

There already exists a large and established body of
work on one aspect of the intrinsic structure of binary
time series. This is the literature on partial reinforcement
conditioning and probability learning (Jenkins &
Stanley, 1950). More recent results in this tradition are
summarized by Jones (1971). One of the clearest results
of probability learning experiments with humans on
binary patterns was the finding that the mean results
across subjects and blocks of trials indicated that event
predictions occurred in the same proportion as events in
the sequence: probability matching occurred. Although
this result presented some difficulty for an explanation
based on a simple minded decision theory that predicted
subjects should predict the more frequent alternative
consistently on every trial, it quickly became apparent
that subjects were responding to patterns of events, and
the stimulus for responding on each trial was a
composite of whatever experiences they had on previous
trials (Hake & Hyman, 1953; Nies, 1962).

An explanation of probability matching in terms of
the ability of subjects to use subsequences of a series as
cues to the future behavior of the series presupposed
that they were able to remember at least short repeating
sequences of binary events. That humans have this
ability has been shown in many experiments for
sequences of single alternation (Anderson, 1960), double
alternation (Schoonard & Restle, 1961), and short
sequences like (X X 0) (Goodnow & Pettigrew, 1956) or
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(00 X 0 X) (Galanter & Smith, 1958), or many other
sequences (Garner & Gottwald, 1967; Restle, 1967;
Royer & Gamer, 1966) at varying rates, starting points,
and modalities of presentation (Gamer & Gottwald,
1968; Handel & Buffardi, 1968; Preusser, Garner, &
Gottwald, 1970), and with a variety of tasks to test
memory (Alexander & Carey, 1968; Glanzer & Clark,
1962). In an experiment on probability learning using a
complicated Markov sequence, Feldman and Hanna
(1966) were able to show that event predictions
matched the conditional probabilities following event
states up to a length of five events at least.

In spite of this very clear evidence that subjects are
quite capable of remembering event sequences of all
sorts of patterns, attempts at making use of this
information in order to understand the patterns of
expectancy in probability learning experiments have
used only a tiny proportion of it: memory for runs of
identical events. The clearest expression of a model to
describe subjects' expectancy based on memory for runs
was given by Restle (1961). This model had only limited
success (Restle, 1966). Modified versions of Restle's runs
model have fared little better (Gambino & Myers, 1967).
It seems necessary to take into account the basic fact
that subjects are able to remember and respond to
patterns other than runs (Butler, Myers, & Myers, 1969;
Jones, 1971) if an adequate description of choice
behavior in a binary prediction situation is to be
achieved.

INDUCTION AND EXPECTANCY

Expectancy in a binary prediction paradigm may
profitably be viewed as the result of inductive inference.
The principle of induction may be stated simply in a
form that is very similar to Newton's first law of motion.
An induction is made by assuming that the present state
of nature will continue into the future, and any
consequences of events in the past will follow the same
events in the future. Induction is to be distinguished
from cross induction (Reichenbach, 1968) or analogy
where the consequences of one set of events are
predicted from another set of similar or different events.
An example of a cross induction would be to predict the
continuation of (0 X X 0 0 0 X X X X ... ?) on the
basis of the learned arithmetic sequence (1 2 3 4 ... ?).
The distinction between induction and cross induction is
related to the distinction between intrinsic and extrinsic
structure. Inductions are based on the intrinsic structure
of events, whereas cross inductions are based on their
extrinsic structure. Since this paper is only concerned
with intrinsic structure, it makes use only of the
principle of induction. This basic principle that underlies
all scientific achievement finds a ready application in the
analysis of subjects' expectancy when predicting binary
series.

Consider a short sequence of eight equally likely
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binary events like (0 X X X 0 0 X 0) as it is read from
left to right. What inference may be drawn from this
sequence about what will happen next
(0 X X X 0 0 X 0 ... ?)? Using the basic principle of
induction, events the same as the right-hand or terminal
portion of the sequence may be sought in the left-hand
or preceding portion of the sequence, their following
events or consequences noted, and the inference drawn
that these same consequences will next occur. This is
induction by enumeration (Reichenbach, 1968). The
frequencies of events following the terminal state in the
past are evaluated and expected to occur with the same
frequencies in the future.

This principle of induction is so simple and clear, it
would seem to be nicely suited to determining the
strength of expectancies by numerical calculation.
However, it should be clear from the outset that this
calculation cannot be performed on the basis of ideal
equations. The necessary matching of the terminal state
to all previous states within a sequence of finite and, in
fact, relatively short length guarantees that no general
mathematical solution is possible and an algorithm, a
step by step calculation, is necessary. Also, an algorithm
that tries to put into practice the theoretical principle of
induction has to take into account practical details in
order to deal with the performance of real people that
theory may easily discount, like the accuracy of memory
for past events. These are practical problems that must
eventually be subjected to experimental investigation
themselves, but in the beginning they can only be
handled through careful experimental control and by
drawing certain assumptions. The assumptions necessary
for applying the principle of induction to short binary
sequences will be considered next, after a definition of
the terms used to describe the structure of binary
patterns.

DEfINITIONS

In order to describe the intrinsic structure of binary
patterns and the operation of algorithms designed to
measure this structure, a number of terms will be used
repeatedly in the ensuing discussion. Some of these
words have been used in several different ways before in
the sequential processing literature. It would seem
advisable to provide definitions of these particular terms
as they are used in this paper.

Alternation
An alternation occurs when an element is followed by

the complementary element to its right in the binary
sequence (for example, either XO or OX).

Run
A run occurs when an element is followed by the

identical element to its right in the binary sequence (for
example, either XX or 00).
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SYNTELY: THE STRENGTH OF
STIMULUS CONTINUATION

\\hidl past cllnscqueth:t's L'onvcrge on tht: continuation
llf the tt:rminal run, t:xpressed as a number ranging from
o tll I. This neologism, syntely, has been coined to
providt: a word whose meaning relates to the stimulus in
a similar way lhat the strength of expectancy relates to
the organism. Thus, syntely. like symmetry, describes
something about the stimulus. The similarity of this
analytic syslt:m to a symmetry algorithm is then
exposed. and their relation to the simplicity of the
pattern explored. Experimental evidence corroborating
Ihis analysis is given.

An algorithm is like a game: It is easy to show
someone how to play, but a formal description of the
rules is often unwieldy and cumbersome. Here are the
rules for calculating the syntely of any short binary
pattern.

I. Record the length of the terminal run. For
example. in (a) (X 0 X X X 0 0 0), the terminal run,
underlined, is three elements long. In
(b) (0 X 0 X 0 X 0 20 the terminal run, underlined, is
only one element long.

2. Compare all of the rightmost or terminal segment
of the original sequence with the subsequences
immediately to the left by shifting a duplicate sequence
underneath and to the left by the number of elements in
the terminal run:

3. The subsequences may now be matched vertically
beginning with the rightmost element in the lower row.
Since expectancy is assumed to depend on the pattern of
runs and alternations in the sequence (not on the
elements of the sequence themselves), match the
rightmost, first element in the duplicate automatically
and then look only to see if the pattern to the left in the
duplicate is the same as in the to-be-matched
subsequences in the original. This is true of both
examples, since in a the second element from the right in
the lower row duplicate forms part of a run with the
rightmost element, as do the two elements directly
above them, and in b the same two pairs form
alternations. If matches are found, as in these examples,
the vertical comparison continues to the left; otherwise,
it stops. In the examples Sequence b matches itself
perfectly after the first shift to the left (all seven vertical
comparisons match). Sequence a matches only the first
four elements from the right.

4. The number of different elements matched in this
fashion are, then, the number of matched subsequences
in the sequence that have the same consequent and
match the terminal segment. The consequent, either a

(b) OXOXOXOX
OXOXOXOX

(a) XOXXXOOO

XOXXXOOO

ASSUMPTIONS OF THE
SYNTELY ALGORITHM

The cognitively salient features of a binary sequence
are the runs and alternations (Butler, Myers, & Myers,
1969; Jones, 1971; Royer & Garner, 1966). It is
assumed that the induction is based on the pattern of
runs and alternations, so that the prediction. is one of
continuing a run or an alternation, and the states in the
past that are evaluated are subsequences of runs and
alternations.

It is assumed that terminal runs are unitized in a
gestalt sense on the basis of identity and proximity. It is
assumed that as a unit no inductions about the future
can be drawn from itself, unless nothing else is available.
Thus, the continuation of (XOXOXXXX) is based on
(XOXO ....) and not on (. ... XXXX).

Using this simple principle of induction, the pattern
of a sequence provides the intrinsic structure from which
the alternatives governing expectancy are chosen. The
expected continuation of a pattern may thus be derived
from a straightforward analysis of the pattern itself. It is
important to observe, however, that this analysis does
not take into account any asymmetry in the frequency
of the elements, since it deals only with the pattern of
runs and alternations. Since it is clear that relative
frequencies of events have a strong effect on expectancy,
it remains for ftlture analysis to show how relative
frequencies and conditional relative frequencies interact.

The remainder of this paper provides a detailed
system· for the analysis of the intrinsic structure of
binary patterns as this structure affects expectancy. This
analytic system is given in the form of a syntely
algorithm, where syntely (from the Greek sun, same or
together, plus telos, completion or end) is the degree to

Matching Subsequences
Subsequences within a pattern can be said to match if

they form the identical sequence of runs and
alternations. Thus, within (XXOXOOXO) there arc a
very large number of subsequences of various lengths
that are matched at least once within the pattern. As an
illustration, the longest subsequences that match within
this pattern are XXOX and OOXO, each composed of
four elements in length. But each of these subsequences
may be further broken down into two subsequences of
Length 3 that match, three subsequences of Length 2
that match, and the degenerate case containing no runs
or alternations of four subsequences of Length I that
match.

Terminal Run
A string of adjacent identical elements at the

rightmost extreme of the binary sequence preceded by
the complementary element constitutes the terminal run
of the sequence (for example, the string of four Xs in
XOXOXXXX).
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EXPERIMENT I

XXOXXOOO
mm - alt

mm - alt
Syntely =0/4 =.0

Method
Since the syntely algorithm as proposed so far does not yet

take asymmetric event frequencies into account, it was decided
to use sequences of equally frequent alternatives to test the
adequacy of the present conception. Since the syntely algorithm

Using this straightforward algorithm, the syntely of
any binary pattern, no matter what its length, may be
found. A simple experiment was conducted to determine
whether subjects' expectancies are described by this
algorithm.

OXXXXOOO
m mm - alt

mmmm - run
Syntely = 4/7 = .57

OXXXOOXO
mm-alt
m-alt

mm-run
m-alt

m-run
mm-run
m-alt

Syntely = 5/10 = .5

OXOXOXOX
mmmmmmm-alt
mmmmmm-alt
mmmmm-alt
mmmm--alt
mmm-alt
m m -alt
m-alt

Syntely =0/28 =.0

XXXXOOOO
mmmm - alt

Syntely =0/4 =.0

Finally, consider a pattern in which the unity of the
terminal run must be broken because matches with
subsequences of equal run length are not available
(X X 0 X X 0 0 0). On the first shift, a match with
Run Length 2 is accepted. In general, since the algorithm
proceeds from right to left in its matching operations,
matches are accepted shorter than the terminal run only
if the match is equal or greater than any match found to
the right. With this example, the stepwise matching
operation of the syntely algorithm produces the
following result:

The previous examples illustrated the operation of the
basic algorithm. Next consider the following sequences.
These patterns illustrate the gestalt unitization of the
terminal run. Since the terminal run is to be considered
as a unit, it has no matching subsequences within itself.
Similarly, in these examples, since the match of th.e
terminal run is immediately available, the gestalt umt
remains intact in its matching operations and is not
subdivided. The stepwise matching shifts of the
algorithm produce the follOWing results:

(a) XOXXX-OOO
XOXXXOOO

m m m m - alternation

(a) X 0 X X X 000
XOXXXOOO

(mm - run)

(b) OXOXOXOX
OXOXOXOX

m m m m m m - alternation

In Example a there are only two matching elements,
which is less than the length of the terminal run of the
sequence (Length 3) and less than the number of
matching elements in the previous line (four). Therefo.re,
the matches on this line are deleted (indicated by placmg
them in brackets). The duplicate is then shifted left by
one element, the procedure continued, and so on until
the left end of the sequence is reached by the right end
of the duplicate.

6. After the matching process is completed, the
number of recorded subsequences preceding a run are
cumulated and divided by the total number of recorded
matching subsequences to provide the numeric value of
the syntely of the pattern. The entire algorithm may
easily be computerized.

Some Complete Examples
The stepwise matching shifts of the algorithm produce

the following results in some real examples, where each
line indicates a stepwise shift of the terminal segment
one element to the left, the fiS indicate subsequences
matching the terminal segment pattern, and run and alt
to the right of a dash indicate that a run or an
alternation, respectively, was a consequent of the
matched subsequences:

(b) 0 X 0 X 0 X 0 - X
OXOXOXOX

m m m m m m m - alternation

5. The duplicate sequence is then shifted left by one
element and the same procedure of matching is followed
again. However, if the number of matched elements is
less than the length of the terminal run and less than the
number of matched elements on any previous line, it is
not recorded. In the two examples this shift results in:

run or an alternation, is determined by whether the
element to the right of the matched subsequences in the
upper row continues a run or an alternation with those
matched subsequences. In the two examples these
consequents are both alternations, as indicated below
with matched subsequences underlined and matches
indicated by ms:
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Table 1
Subjects' Judgments and Stimulus Measures for

Complexity, Symmetry, and Syntely

35 Patterns
Complexity Symllletry S~ Hldy

----

of 8 Binary Hcode \1 J \1
Elements (:':.5 ) (:':.5 )

XOXOXOXO* 121 6.00 695 .38 .50 .50
OXXOXOXO 525 18.27 426 .25 .19 .37
XXOOXOXO* 535 18.27 329 .22 .19 .29
OXOXXOXO* 350 19.69 738 .38 .12 .25
XOOXXOXO 535 18.27 408 .25 .23 .27
OOXXXOXO 595 16.00 310 .25 .00 .14
XXOXOOXO 520 19.69 364 .22 .25 .21
XOXXOOXO* 315 18.27 425 .19 .06 .08
OXXXOOXO* 550 17.00 351 11 .06 .00
XXXOOOXO* 365 16.00 281 .28 .31 .05
OXOXOXXO* 400 18.27 429 .25 .12 .30
XOOXOXXO* 575 19.69 389 .19 .25 .17
OOXXOXXO 505 17.00 390 .25 .3\ .04
XOXOOXXO 520 18.27 365 .25 .06 .04
OXXOOXXO* 405 7.00 720 .38 .25 .25
XXOOOXXO* 430 17.00 409 .28 .31 .23
OOXOXXXO* 545 16.00 225 .22 .19 .14
OXOOXXXO 575 17.00 320 .22 .31 .05
XOOOXXXO 350 16.00 385 .25 .13 .25
OOOXXXXO* 300 6.81 376 .34 .31 .30
XXOXOXOO 540 18.27 379 .25 .50 .50
XOXXOXOO 555 19.69 336 .22 .44 .50
OXXXOXOO 575 16.00 231 .22 .06 .07
XXXOOXOO* 430 17.00 274 .31 .19 .25
XOXOXXOO* 480 18.27 350 .22 .50 .50
OXXOXXOO* 510 17.00 420 .25 .44 .50
XXOOXXOO 250 7.00 595 .25 .50 .50
OXOXXXOO* 535 16.00 285 .25 .19 .10
XOOXXXOO 545 17.00 343 .28 .i9 .06
OOXXXXOO 255 6.81 730 .44 .06 .10
XXXOXOOO 420 16.00 380 .25 .44 .50
XXOXXOOO* 540 17.00 279 .31 .37 .50
XOXXXOOO* 395 16.00 300 .28 .50 .50
OXXXXOOO* 320 6.81 380 .34 .13 .07
XXXXOOOO 147 6.81 740 .38 .44 .50

Results
The proportion of responses that were runs

(continuations of the terminal run) were tabulated for
each sequence. and the two complementary sets were
compared. The correlation coefficient for the
proportions of run responses between the two
complementary sets of 35 sequences was .89, p < .001 .
indicating a reliable effect relatively uncontaminated by
the nature of the elemcnts of the scquences, but
dependent instead on thc patterns of the sequences.
Tl~ese proportions were averaged for the complementary
pairs and wrrelated with the measured syntely of the
sequences, yielding a coefficient of .86, p < .00 I. The
scattergram for this comparison is shown in Figure I .
Each point is based on an N of 70.

It should be clear from the scattergram and the
correlation coeftlcient that the syntely algorithm
provides an excellent fit to the expectancy predictions
of the subjects in this experiment. The fit is this good in
spite of the fact that the algorithm is parameter free, and
no minor adjustments can be made to accommodate the
data. No other models based on in trinsic structure exist
that make explicit predictions for comparison with these
results other than a probability matching model, which
would predict a run proportion response of .5 for each
sequence, and Restle's (1961) model, which is
inapplicable to J 1 of the 35 patterns which have no run
lengths equal or longer than the terminal run and
predicts run proportions of .0, .67, or 1.0 for the rest of
the sequences. Although it is inappropriate for almost
one-third of the sequences, Restle's model does take into
account a portion of the intrinsic structure of the
patterns, namely, run lengths, and so it does have some

Figure 1. The proportion of subjects predicting a "run" for
each of the 35 sequences of eight binary elements as a function
of the syntely of those sequences, where syntely is a stimulus
measure of pattern continuation.
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*The first sel'en elements from the left were lIsed as stimuli
in Experiment II.

is designed to measure all of the intrinsic structure available in a
pattern that influences expectancy, it was decided to present the
patterns in such a way as to reduce as much as possible any
disturbing influences of faulty memory. Therefore, each pattern
was presented all at once rather than sequentially. All 70
possible sequences of four Xs and four Os were used. These were
segregated into two sets of 35 sequences, so that in either set all
sequences were different and each had a complementary
sequence in the other set. For each of these sets of 35 sequences,
35 different orders of the sequences were printed in a vertical
column on computer sheets so that each sequence appeared once
at each position of the vertical column. An ordered set of these
sequences is shown in Table I.

These 70 lists were presented to 70 subjects of an
introductory psychology class at Southern Connecticut State
College. The subjects were not informed about the purpose of
the experiment. They were told simply to read each sequence of
eight elements from left to right and, for each of the 35
sequences on their page, to write the element (either an X or an
0) that they thought should come next in the sequence if the
sequence was continued. They were then told not to worry or
spend a lot of time on the sequences, but just to read them and
put down whatever they felt should happen next.



predictive power. For the 24 sequences where it is
appropriate, the correlation coefficient of Restle's model
with subjects' predictions is .54, whereas the syntely
correlation with subjects' results is .81. Somehow
subjects are responding to the intrinsic structure of the
sequences by matching their predictions with the
frequency of the alternative consequences as provided in
a syntely analysis based on the inductive principle.

A plausible process by which a subject chooses a
prediction from the set of alternatives in the sequence
pattern is given by stimulus sampling theory: The
matched subsequence consequents are available in a pool
for each subject from which they are sampled. The
predictions of a large group of subjects thus reflects the
availability of the alternatives.

However, it is just as plausible to suppose that at some
level, somehow, subjects are individually calculating the
syntely of each pattern and making their response on the
basis of this calculation and some idiosyncratic decision
rule. If this were the case, extensive observations on a
single subject might eventually shed light on the nature
of this process.

But within the present frame of our ignorance, it is
unnecessary to take either of these explanatory steps. It
is sufficient to show that a functional relationship exists
between the intrinsic structure of the patterns as derived
by the syntely analysis and the predictions of a group of
untrained subjects, and that is what this experiment has
done.

Other approaches not based on a direct measure of
the stimulus structure, using instead the response
patterns of subjects to the stimulus, are possible. One
such method has been proposed by Lordahl (1968,
1970) to account for sequential predictions by the
weighted sum of several hypotheses. A very good fit to
the data may be achieved through the selection of
hypotheses and weighting parameters. The parsimony of
this approach depends inversely on the number of
parameters needed. Lordahl found it necessary to use 40
different parameters, corresponding to particular
hypotheses related to perceived pattern structures in the
binary stimulus sequences.

Simplicity and Expectancy
A still different strategy for understanding expectancy

with binary patterns might argue that subjects predict
the next element that makes the resulting sequence in
some sense simpler or less complex. Several models of
the simplicity of binary patterns have been proposed.
These models can be partitioned into two classes, those
based on response measures and those based on stimulus
measures (Vitz, 1968). Among response measures, the
mean verbal length of the description of the sequences
by human subjects has been used (Glanzer & Clark,
1962), as has the response uncertainty of the preferred
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start point of the pattern (Royer & Garner, 1966). These
analyses will not be treated in detail since the primary
concern of this paper lies with stimulus measures of
pattern structure. A stimulus measure of pattern
complexity has been proposed by Vitz (1968) based on
an information measure of the run structure of the
patterns, and this measure will b~ used to test the
argument first.

None of the models has been applied to sequential
prediction data, and no specific numeric assessment of
subjects' predictions has been drawn from them.
However, all three models correlate highly with each
other and with the number of runs in a sequence. In
fact, Vitz's measure Hrun-span is simply log2 of the total
number of runs in a pattern. It follows that they should
predict that, in order to make the resulting pattern as
simple as possible, subjects should mainly continue the
terminal run of a sequence. In fact, only for 14 of the 3S
patterns tested did the majority of subjects continue the
terminal run, a number not different from chance. This
also eliminates the possibility that subjects were
continuing the sequences in such a way as to make the
resulting sequences as complex as possible in terms of
the number of runs in the sequence.

A related model of the complexity of binary and
trinary sequences based on stimulus measures has been
offered by Vitz and Todd (1969). They have provided
numeric values for the complexity of binary patterns of
Length 8. These are reproduced in Table I under the
column headed Hcode ' A detailed description of how to
evaluate Hcode can be tound in the original paper. Unly
a description of the principles involved will be given
here. Essentially, Vitz and Todd constructed an
information theoretic measure of pattern complexity
based on the number and length of coded elements.
These elements are found in a hierarchic series of
encoding levels, and they are based on the detection in
the sequences of runs of individual symbols and runs of
coded subpatterns at each coding level. As a result, there
is a very high correlation between their information
measure and a simple count of runs (Simon, 1972). In
fact, the correlation between Hcode and the number of
runs in a sequence varies from .79 to .92 for different
sets of sequences (Simon, 1972, p. 377). Accordingly, a
similar result may be expected for the Hcode measure as
was found for the run measure already tested. However,
Hcode correlates higher with direct measures of
complexity than does the run length of the pattern for
all sets of sequences, so Hcode may be a better measure
of complexity and produce different results. In order to
test the possibility that the previous measure of
complexity, the number of runs in the sequence, was
inadequate and that subjects really were continuing the
sequences with the element that made the resulting
sequence in some sense simpler, another simple
experiment was carried out.
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EXPERIMENT II

Method
Nineteen different sequences of four Xs and three Os were

selected randomly for one list, and their complementary set of
19 sequences of three Xs and four Os formed the other list.
These 19 patterns are shown with asterisks in Table 1. For each
list 16 random orders were created and printed, each in a vertical
column of a computer output sheet. Each of 32 uninformed
subjects of an introductory psychology class at Southern
Connecticut State College was given one of these 32 lists and,
with the same instructions as given in Experiment I, was asked to
write on the sheet the element he thought should come next in
the sequences.

Results
The correlation of the proportion of run responses

between the two sets of 19 sequences, for a sequence
and its complement, was .84, p < .001, indicating again
a reliable response to the pattern of each sequence. The
correlation of the mean of these two sets of proportions
with the syntely of each sequence as determined by the
application of the algorithm was .83, p < .001. In spite
of the inequality in the frequency of the alternative
elements in a sequence (4 : 3), the syntely algorithm still
provided a good fit to the data. Moreover, looking only
at whether the proportion of subjects responding run
was greater or less than .5 when the syntely measure was
greater or less than .5 for each sequence, the sign was the
same for 18 of the 19 patterns. In the remaining
sequence the syntely measure had a value of .5 exactly.

Using these results, the Hcode values provided by Vitz
and Todd (1969) for binary patterns of Length 8 can be
used to see if subjects are continuing each sequence with
the element that makes the resulting sequence somehow
simpler. If this is the case, then the majority of subjects
should select the simpler of the two possible sequences
as measured by Hcode ' In fact, this was true for only 9
of the 19 sequences. This result makes it implausible as
well that subjects select the element that makes the
resulting sequence more complex.

These results raise the general question of whether
there is any relation between the syntely measure or
subjects' predictions and the simplicity of the binary
patterns. It is clear that subjects do not select the next
element in order to make the resulting sequence simpler
or more complex. But perhaps there exists nevertheless a
relation between the simplicity of the sequence and the
degree of agreement among subjects about what should
come next. Before trying to answer this question, the
relation between syntely and symmetry will be
established.

Symmetry and Syntely
In an analysis of the results of the famous Zenith

radio experiments on telepathy, Goodfellow (1938)
showed convincingly that the bilateral symmetry of the
five-element-Iong binary patterns had a strong influence

on the frequency of their choice by listeners of the radio
program. The listeners shunned the symmetric sequences
as possible answers to the telepathic message. Using a
very similar analysis which they chose to call
subsymmetry, Alexander and Carey (1968) showed that
the cognitive simplicity of 35 binary patterns of
Length 7 was almost perfectly accounted for by the
relative numbers of subsymmetries in the different
patterns.

The syntely measure proposed in this paper bears
some striking similarities to this measure of symmetry.
Syntely is in fact based technically on a kind of
symmetry, translational symmetry. The finding of
matches to the terminal segment by moving that
segment laterally detlnes lateral subsymmetries.
Symmetry in the more common sense of the word is
bilateral symmetry, defined about the median axis of the
sequence. This is the sense of symmetry used in this
paper.

A simple algorithm provides a numeric measure of the
symmetry of binary patterns that is very similar to
Goodfellow's measure and correlates perfectly with
Alexander and Carey's subsymmetry. The similarity with
the syntely algorithm lies basically in the use of an
autocorrelational technique to find matching
subsequences; but the matching for symmetry is done
about the median axis instead of from the rightmost
end, the pattern is matched against its reflected self
rather than against a duplicate sequence, and the
matching is performed on the elements themselves rather
than on the pattern of runs and alternations, as in the
syntely algorithm. Autocorrelation mechanisms have
been proposed by a number of theorists as ideal ways of
describing certain processes in perception (Dodwell ,
1971) and in memory (Anderson, 1973). The symmetry
and syntely algorithms proposed in this paper extend the
use of autocorrelation to a new area of perception and
to the grand domain of future expectancy.

Symmetry Algorithm
The steps for carrying out the symmetry algorithm

begin with taking the binary pattern and aligning its
reflected self below it as in the following example:

XXOOXOXO
OXOXOOXX

Compare the reflection of this pattern vertically,
indicating a match with an m and a mismatch with a
dash. Matching here' is defined by a physical match of
the elements, not a match of the runs and alternations,
as in the syntely algorithm. Continue the comparison by
shifting the top pattern one-half space to the left and the
reflected pattern one·half space to the right. By shifting
each one-half space the results are aligned vertically:
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Table 2
Correlation Coefficients Among Subjects' Judgments and
Stimulus Measures of Complexity, Symmetry, and Syntely:

r(p < .05) = .30

mmm

m

And then begin again and reverse the shifts of each
pattern:

Judged Complexity
Hcode Complexity
Judged Symmetry
Measured Symmetry
Judged Syntely (±.5)

Symmetry
Hcode
Com- J :>1

plexity

.74 -.70-.68
-.58 -.71

.71

Syntely

J M
(±.5) (±.5)

-.30 -.31
-.17 -.12

.12 .29

.06 .II
.77

;---mm--mm
m--m---m
-mmmm-
m-m-m

-m
mm
m

Since the comparisons are completely symmetrical, they
can be reflected on themselves and the median axis
removed:

--mm -
--m
m-

mm

m

-mm
m-
-mm

m-

m

Finally, the matched, and thus symmetric, elements are
counted on each line in from the right until the fIrst
dash is encountered, at which point the algorithm shifts
to the next line. The sum of these matches (the
underlined ms in the above example) is divided by the
total number of comparisons for the pattern, and the
quotient is then the numeric measure of the symmetry
of the pattern. In this example, the number of
symmetric elements is 7 (the underlined ms) and the
total number of comparisons is 32. The symmetry of
this pattern is then 7/32 =.22. This algorithm may easily
be extended to any binary pattern of any length to
determine its bilateral symmetry, as a proportion ranging
from 0 to I.

Given this measure of the intrinsic structure of binary
patterns, how does it relate to the judged complexity of

Note-J = judged, M = measured

the sequences? Is there a stronger relation with the
judged symmetry of these patterns? Does it bear any
relation to the syntely of the patterns? If there does
exist a relation between symmetry and syntely, it may
be that, like the relation between simplicity and syntely,
it is not straightforward.

EXPERIMENT III

Method
Twenty-four Yale undergraduates fulfilling an introductory

psychology course requirement were tested individually as
members of three experimental groups of eight. They were each
presented with 70 cards 2% x 3% in. in size, each of which had
one of the 70 possible patterns of four Xs and four Os centered
on it, and were asked to go through the cards one at a time, each
group doing only one of the three followinl!: thinl!:S: (1) React the
pattern aloud from left to right and judge its complexity by
giving a number from 1 to 50 that reflected how complex the
pattern seemed, the higher the number the greater the
complexity. (2) Read the pattern aloud from left to right and
judge its symmetry by giving a number from 1 to 50 that
renected the symmetry ot the pattern, the greater the symmetry
the greater the number. (3) Read the pattern aloud from left to
right and then say the element, either an X or an 0, they felt
should come next if the sequence continued (judge syntely).

Results
The responses of all three groups were fIrst sorted

arbitrarily into two complementary sets of 35 sequences
so that in each set all the sequences were different and
each had a complementary sequence in the other set.
Then, for each sequence, the eight complexity
judgments were summed, the eight symmetry judgments
were summed, and the proportion of "run" responses
was subtracted from .5 and given an absolute value. The
correlations between the two complementary sets of 35
sequences for the judged complexity, symmetry, and the
deviation of the syntely judgments from .5 were .88,
.96, and .79, respectively, indicating again a high
reliability of the subjects' responses to the structure of
the patterns.

These response measures were then collapsed across
complementary sequences and are presented in Table I,
along with three stimulus measures of complexity,
symmetry, and syntely. What is of interest are the
interrelations among this set of response and stimulus
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Figure 2. Error profiles for a simple and a complex pattern.
The fiUed circles indicate the proportion of the total errors for
the pattern at each location, from Garner and Gottwald (1967).
The open circles indicate the proportion given by syntely
analysis normalized for the pattern.

syntely at each point of a repetitive string of the basic
sequence. The empirical result of such an application of
the syntely algorithm is that there exists a point
somcwhcre in the string after which the syntely measure
is greater than .5 when there is a run in the string, and
less than .5 when there is an alternation in the string.
TIle syntely algorithm may be said to be correctly
predicting the string from that point on. The number of
elements needed in the string to reach this point can be .
taken as a simple estimate of the number of trials to
criterion. The absolute deviation of the syntely measure
from .5 may be taken as an estimate of the likelihood of
an error at this point. If these absolute deviations are
normalized for the first full cycle of the sequence that is
correctly predicted by the syntely algorithm, at each
location of the pattern, the resulting profile may be
compared directly with the subjects' actual error
profIles. In this way, the syntely algorithm may be used
to predict the relative number of errors at each location
and the estimated trials to criterion for any pattern
without any conversion parameters.

The first application of the syntely algorithm is to the
error data provided by Garner and Gottwald (1967).
They asked their subjects to predict each element of a
recurrent binary sequence as it was presented visually at
the rate of one element every 4 sec. They used only two
sequences, an easy one (X X X 0 0) and a difficult

measures. In Table 2 are shown the correlations among
this set.

The most striking result is that the significant
co.rrelations split simply into two groups, either dealing
wIt~ p~ttern simplicity or else with pattern
c~ntmuatlOn. The measures in each group correlate
hIghly with each other but not with the measures in the
other group. It seems that pattern simplicity or
symmetry is not related to the strength of judged
pattern expectancy or syntely.

The syntely meaSUre correlates well only with the
judged syntely, when both are taken as deviations from
.5. The symmetry meaSUre correlates well with both
jUdged complexity and judged symmetry as well as
Hcode , all measures of pattern simplicity. The only
further interest lies in the slight but still significant
correlations of the judged syntely and the syntely
measure with judged complexity, but not with the other
measures. This represents a relatively slight dissociation
between the relative contributions of sequential
regularity and symmetry to the simplicity of patterns,
insofar as syntely measures sequential regularity and not
symmetry.

It is clear that both Hcode and the symmetry measure
evaluate some psychologically relevant aspects of the
patterns for their simplicity. Whether they evaluate the
same, different, or overlapping aspects of the patterns is
not clear. The high positive correlation between Hcode
and the symmetry measure gives reason to believe that
they measure the same aspect, but it may be useful in
the future to search for patterns that prove to be simple
but not sy mmetric and vice versa, in order to determine
whether Hcode and the symmetry measure are sensitive
to different aspects of the patterns. There is little
evidence in the present data that these patterns can be
found. However, it would seem likely that for much
longer sequences the correlation between symmetry and
simplicity should break down, while Hcode may still be
useful.

Errors in the Tracking of Recurrent
Binary Sequences

The syntely algorithm has another application that
may be used to test its descriptive power. Consider the
situation in which a subject predicts each next element
of an unknown binary sequence as it is presented
recurrently one element at a time. The subject will err in
his predictions at those points where his expectancy
does not match the pattern, and those errOrs will
continue until the subject remembers the pattern fully.
The errors at each point may be accumulated and
normalized (divided by the total number of errors for
the whole pattern) to provide an error profile for each
pattern. The number of elements presented up to the
last error constitutes the number of trials to criterion.

A similar proftle may be derived from the syntely
algorithm in a straightforward way by measuring the
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Figure 3. Error profIles for two binary patterns. The fIlled
circles indicate the proportion of the total errors for each
pattern at each location found by Restle (1967). The open
circles indicate the normalized proportion at each location given
by a syntely analysis.

sequence (X X 0 X 0) and began each pattern at each of
the five different starting points for different subjects.
The actual locations of errors were recorded for each
pattern. The mean proportion of the total errors for
each pattern, pooled over all starting points, are shown
at each location in Figure 2. The normalized error
profile as given by the syntely algorithm is shown in
Figure 2 for comparison. The fit of the two profIles is
excellent for the simple pattern, and the error transitions
are followed faithfully in the complex pattern. Garner
and Gottwald recorded a number of other response
measures as well, among them the mean location in the
sequence of the element or trial following the last error.
These mean numbers of trials to criterion were 16.3 for
the simple pattern and 25.8 for the complex pattern.
The corresponding lengths of string used by the syntely
algorithm before perfect prediction were 17 and 25,
respectively.

Another set of error profIles is provided by Restle
(1967). Subjects again predicted recurrent cycles of two
unknown sequences, a hard one (0 0 X X 0 X X 0 X)
and an easy one (00 X X 00 X 0 X). The sequences
were presented visually at the rate of about one element
every 2 sec. The actual normalized error profIles along
with the normalized profIles given by the syntely
algorithm are shown in Figure 3. Again a very good fit to
the profIle transition is apparent. The mean location of
the trial following the last error is not provided for the
real subjects, but the length of string needed for the

The accumulated success of the syntely measure in
predicting the subjects' responses in a sequential
prediction task and their error profIles when they
predict recurrent sequences, its relation to a proven
measure of the symmetry and thus the simplicity of
short binary sequences, and its potential usefulness for
dissociating separate sequential and symmetric aspects of
the intrinsic structure of binary patterns provides good
evidence that the syntely algorithm, and the inductive
principle upon which it is based, measures
psychologically relevant aspects of intrinsic stimulus
structure.

It must be emphasized that the algorithm, intended to
measure the syntely of binary sequences, is, as it is
presented in this paper, only a first step, a first
approximation to the practical application of the
principle of induction to the problems of understanding
human exp~ctancy. The key to understanding human
expectancy, at least with binary patterns, lies in
measuring the intrinsic structure of the patterns. The
principle of induction provides the essential rule for
producing this measure: match the present events to the
past and weigh the past consequences of those events
that match. This matching operation effectively defines
the process of autocorrelation, a process which has been
proposed by many as a basic biologic activity either
directly (Kabrisky, 1964) or indirectly as part of a
holographic system (van Heerden, 1968). It is very
satisfying indeed to extend the applicability of this
potentially powerful analogy from the two main
psychological domains where its usefulness has been
demonstrated, the past and the present, memory and
perception, to the third major domain ot psychology,
the future, expectancy. The process of autocorrelation
is, however, subservient to the general principle of
induction and may turn out not to be the best means of
implementing this principle in the long run.

As it has been applIed in its present form, the
principle of induction has been shown to be an
altogether adequate basis for describing the inferences
subjects make after reading short binary sequences, even
when the intrinsic structure of those sequences has not
been constrained in any artificial or extrinsic way. This
is an important consideration and represents a step
toward greater generality beyond the current inferential
models outlined and summarized so beautifully by
Simon (1972), which depend on the existence of
regularities within the binary sequence based on rules.
The success of the syntely algorithm shows that subjects
can be responsive to the regularities of a pattern without
resorting to the formulation of rules, but simply as the

CONCLUSION

syntely algorithm was 26 elements for the easy pattern
and 28 elements for the hard pattern.
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