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Ss provided judgments of pairwise stimulus similarities for 21 12-turn random
forms in two experimental tasks: a scaling task, involving a variant of the
method of graded dichotomies, and a sorting task, which simply required Ss to
categorize the forms. The grouped data from both tasks, when analyzed using

nonmetric multidimensional

scaling techniques,

yielded five-dimensional

configurations with euclidean distances. The correspondence of these two

spaces,

assessed using canonical correlations, was extremely good. The

psychological dimensions derived from both tasks were related to two sets of
physical measures on the forms: the factor space suggested by Brown and Owen
and a set of more basic physical measures. Physical cues of greatest importance
involved size, dispersion, angularity, and rotation measures. The value of the
tasks and the utility of the Brown and Owen measures were discussed.

Attempts to explore the
psychophysics of form perception
have been hampered by the lack of an
adequate physical characterization of
form. A recent move toward providing
such a characterization was made by
Brown and Owen (1967), who were
concerned with finding a physical
space appropriate for describing
random forms generated by Method 1
of Attneave and Arnoult (1956). Two
hundred shapes were constructed at
each of five complexity (sidedness)
levels: 4, 8, 12, 16, and 20 sides. A
survey of prior experimental work
turned up 130 measures which had
previously been employed to specify
physical aspects of form. Preliminary
screening to eliminate perfect or
extremely high correlations reduced
the number of measures to 80.

Values on these 80 measures were
obtained for each of the 1,000 random
shapes. A principal components
analysis was performed on the
correlations computed between
measures over shapes for each
complexity level. Both orthogonal and
oblique rotations were performed on
the 12 components retained in each
analysis, and component scores were
computed for each shape. Twelve

*The work reported here was carried out
while the author was a USPHS trainee in
measurement psychology at the University
of Illinois at Urbana-Champaign. The author
wishes to acknowledge the encouragement,
assistance, and support of his thesis advisor,
Dr. Ledyard R. Tucker. Other members of
the thesis committee were Drs. Hake,
Osgood, Batchelder, N. Wiggins, Burkholder,
and Hohn, and their guidance was greatly
appreciated.

$The author wishes to thank D. R. Brown
of Purdue University for providing line
drawings and measures on the 200 12-turn
shapes constructed by Brown and Owen
(1967).

154

Copyright 1972, Psychonomic Society, Inc., Austin, Texas

components accounted for 87%, 81%,
78%, 75%, and 74% of the variance for
4-, 8-, 12-, 16-, and 20-turn shapes,
respectively. As complexity increased,
so did the number of components
necessary to account for a given
proportion of the variance. The five
major components appeared to be the
same at all complexity levels. The first
component was called ‘dispersion”
and reflected the degree to which the
area of the shape was distributed away
from its center of gravity. The second
component was interpreted as
“jaggedness.” Area skewness along the
y- and x-axes constituted Components
3 and 4, while Component 5 reflected
the “directionality” or rotation of the
shape.

Brown and Owen proposed their
physical characterization of the
random forms as a basis for further
work on the psychophysical
investigation of form perception and
suggested an iterative process to
determine the psychologically relevant
aspects of random forms. In the
present investigation, a set of stimulus
forms was selected from the 200
12-turn shapes of Brown and Owen.
Each form was characterized by its
value on all 12 Brown and Owen
dimensions, although the forms were
selected as markers for the five major
Brown and Owen dimensions. In
addition, 17 more traditional physical
measurements were made on each
form. Thus, two physical
characterizations of the forms
involving 29 measures were available.

The techniques of multidimensional
scaling were used to extract the
psychological dimensions of visual
form from Ss’ judgments about the
similarity of pairs of forms. Two
methods of gathering data were used:
a scaling task, which required Ss to

make judgments about all pairwise
combinations of the forms, and a
sorting task, which simply required Ss
to sort the individual forms into
categories. Data from both tasks were
processed using the MDSCAL and
TORSCA programs. MDSCAL
embhodies an approach to scaling’
developed by Shepard (1962a, b) and
extended and refined by Kruskal
(1964a,b). TORSCA was developed
by Young (1968) from an earlier
conception of Torgerson and Meuser
(1962). The TORSCA program
involves a preliminary factor analysis
of the data to find the initial
configuration to be processed by the
nonmetric algorithm.

Correlational techniques were then
used to assess the extent to which the
physical dimensions of the stimuli
corresponded to the psychological
dimensions obtained from scaling and
to explore the degree of agreement
obtained by scaling the data from the
two tasks.

METHOD
Subjects )
Forty-nine persons served as Ss for
this experiment: 46 were University of
Ilinois undergraduates, 1 was a
graduate student, and 2 were wives of
graduate students. Twenty-seven of
the students satisfied course
requirements by participating; the
other 22 Ss were paid for their
services.

Stimuli

Twenty-one 12-turn random forms,
selected from the set generated by
Brown and Owen (1967), were used in
this study. These forms were gelected
as markers on the five most prominent
Brown and Owen (B & O) dimensions,
and component scores for each form
on all 12 B & O dimensions were
obtained. In addition, 17 basic
physical measures were taken on each
form. Brown and Owen’s components
had been derived from a large number
of such basic measures. These 17
measures are defined as follows:

(1) P—the length of the perimeter as
measured in millimeters; the sum of all
the side lengths.

(2) A—the area enclosed by the
perimeter of the form as measured in
square millimeters.

(3) P2 /A—the ratio of the square of
the perimeter to the area. Attneave
(1957) proposed this as a measure of
dispersion or noncompactness.

(4) VE/HE—the ratio of vertical to
horizontal extent of the form. This
measure was used by Brown and
Andrews (1968) as a measure of
rotation.

(5) VIA—the variance of the interior
angles of the form. The angles were
measured in degrees,
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Table 1
Varimax Rotated Matrix of Factors of the Basic Physical Measures
Basic Factors
Physical
Measures 1 2 3 4 5
P 827 156 .010 —161 410
A —.146 —.190 032 —.200 739
P2/A 741 .227 049 048 —.205
VE/HE —.005 094 1.037 —.147 .063
VIA 937 —.072 002 —.010 —.160
MDIA 828 -—.105 .010 —128 —.045
VDIA .486 —.383 —.051 —.130 .022
MSA —.946 282 012 —.069 140
VSA —.062 877 135 —.208 .000
MDSA .029 921 064 .058 —.012
VDSA —.110 759 0256 118 —.167
ROTS .001 —.317 .261 —.674 —.163
HE .000 —.134 —.819 149 269
VE 025 020 .795 —.146 431
LGE —111 .009 082 458 615
SBRT —.081 —.004 —.240 591 —.067
ROTO —.077 —.156 018 9356 —.106

(6) MDIA—the mean of the
differences between successive interior
angles, measured in degrees.

(7) VDIA—the variance of the
differences between successive interior
angles.

(8) MSA—the mean of the angles in
the form, when angles are measured so
that the value obtained is less than
180 deg. Thus, for this measure (as
well as the next three), either the
interior or the corresponding exterior
angle was measured, depending upon
which was smaller.

(9) VSA—the variance of the angles
measured as values less than 180 deg.

(10) MDSA—the mean of the
differences between successive angles
when angles are measured as in (8).

(11) VDSA—the variance of the
differences between successive angles
when angles are measured as in (8).

(12) ROTS—rotation measured in
degrees by the deviation of the line of
greatest extent from the vertical in
either a clockwise or counterclockwise
direction,

(13) ROTO—rotation measured in
degrees by the deviation of the line of
greatest extent from the vertical in a
clockwise direction. This measure is
similar to what Stenson (1966) called
orientation.

(14) HE—the horizontal extent of
the form as measured in millimeters.

(15) VE—the vertical extent of the
form in millimeters.

(16) LGE—the length, in
millimeters, of the line connecting the
two most distant points on the
perimeter of the form.

(17) SBRT—a subjective measure of
rotation. The orientation of the form
was judged by E in terms of LGE and
measured from the vertical in degrees.

Since there were substantial
correlations among some of the basic
physical measures, a factor analysis
was performed to clarify those

relationships. A principal components
analysis of the measure by measure
correlation matrix was done, followed
by a Varimax rotation. The first five
components all had eigenvalues greater

. than one, and there was a clear break

in the plot of the eigenvalues between
the fifth and sixth root. These five
components accounted for 82.2% of
the variance. The loadings of the
various measures on these components
are presented in Table 1. Component 1
is marked by dispersion measures (P,
P?/A) and by some angle measures
(VIA, MDIA, MSA). Component 2 is
angularity as measured by VSA,
MDSA, and VDSA. Component 3
involves the ratio of vertical to
horizontal extent. Component 4 is
rotation and Component 5 is size (A,
LGE). Components 1, 2, and 4 from
this analysis resemble B & O Factors 1,
2,and 5.

Scaling Task

A set of 231 stimulus cards
containing all possible pairings of the
21 forms (including the 21 identity
pairs) were presented to Ss. Each S
partitioned the set of 231 cards into
eight ordered categories on the basis of
the relative similarity of the pair of
forms on each card. The scaling task
was a variation of the method of
graded dichotomies (see Richards,
1971). The numbers 0-7 were assigned
to the piles containing cards whose
members were judged most similar
through least similar, respectively.

Sorting Task

In the sorting task, Ss were asked to
place the 21 individual forms into
classes or categories. The Ss were free
to impose any rule, criterion, or basis
for categorization that seemed natural
or reasonable to them. There were to
be at least two, but not more than
eight, categories with any number of
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forms in each. Upon completing his
sort, S was asked to state his basis for
categorization.

RESULTS
Analysis of the Scaling Data:
The Average Perceptual Space

Mean judgments of interstimulus
similarity, averaged over the 49 Ss,
were computed for each of the 231
stimulus pairs. These averaged
judgments were then input to
nonmetric multidimensional scaling
routines. Kruskal’s MDSCAL III was
used for most of the scaling, then
MDSCAL V and TORSCA were later
used to verify and extend these results.
MDSCAL III was used to explore
configurations varying in
dimensionality from 10 to 1, using
both the euclidean (R = 2.0) and the
city block (R = 1.0) metrics.
MDSCAL V allows a maximum
dimensionality of only 6, so that
program and TORSCA were used to
explore dimensionalities from 6 to 1.
More than 25 runs were done with
various starting configurations to
assure that global, rather than local,
minima resulted from the analyses.
For the R = 2.0 configurations, most
of the runs converged upon the same
final stress values, and these were the
minimum values obtained in any runs.
The R = 1.0 solutions, however, were
problematic. Here, the different runs
did not generally terminate in the
same minimum stress values at any
given dimensionality. Stress values for
R = 1.0 runs usually exceeded those
from R = 2.0 runs. But with 4, 5, and
6 dimensions, if the corresponding R =
2.0 solution was entered as the starting
configuration for the R = 1.0 analysis,
stress values were obtained equal to
those from the euclidean metric. No
other starting configurations were
found which yielded these low stress
values for R = 1.0 metrics. Thus,
although the R = 2.0 solutions seem to
represent global minima reachable
from many starting configurations, the
best R = 1.0 solutions were obtained
from only one starting configuration.
Further, there is no assurance that
even these are true minima.

The best stress values for each
dimensionality for both the city block
and euclidean metrics are shown in
Table 2. In general, these stress values
represent minima achieved on
different runs; that is, the starting
configuration giving the lowest stress
in N dimensions is not necessarily the
one that yielded the lowest stress in
N—1 dimensions. Table 2 contains
stress values from both the MDSCAL
and TORSCA analyses and the
TORSCA goodness of fit (FIT) index
developed by Young (1968). All stress
values reported from MDSCAL
represent runs which were terminated
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because minimum stress was achieved.
TORSCA runs were terminated either
for that reason or because continued
iteration failed to noticeably improve
stress levels. Thus, for R = 1.0, in the
six-dimensional solution, 100
iterations yielded a stress of .066 and
FIT = .9989, while 150 iterations gave
a stress of .065 and FIT = .99895. So
the 150-iteration solution was
accepted as final, despite the fact that
the program had failed to terminate
the run,

Configurations ranging from four to
seven dimensions seemed plausible in
terms of stress levels and the
distribution of stress over the various
dimensionalities. Stenson and Knoll
(1969) have provided sets of stress
values obtained by scaling random
input data. These stress values
represent the null hypothesis that a set
of similarity data is random. Table 2
includes a lower bound for the
acceptance region implied by this null
hypothesis. These numbers are based
on values extracted from Stenson and
Knoll’s Fig. 1 (p. 123) and on their
congervative decision rule. Using this
criterion, six or more dimensions can
be justified for this data. Another
criterion for deciding when a sufficient
number of dimensions has been
included is provided by Young (1968).
He has found that FIT values from the
TORSCA program must be in excess
of .999 before a sufficient fit has been
achieved. For the R = 2.0 metric, this
FIT value is first achieved with five
dimensions. More than six dimensions
would be required with an R = 1.0
metric. Thus, several kinds of
considerations imply the need for at
least five dimensions to account for
this data.

Even though the R = 1.0 MDSCAL
solutions in 4, 5, and 6 dimensions
gave stress values close or equal to
their euclidean counterparts, the
corresponding configurations were not
as interpretable as the euclidean
solutions. The same basic physical
measures were related to the city
block and the euclidean
configurations, but the patterns of
relationship were clearer and made
more sense in the euclidean case. The
patterns of relation in the city block
space suggest that a rotation of axes
might improve the fit of the basic
physical measures, but, of course, such
rotation is impossible in R = 1.0 space.
Rotation does not leave city block
distances invariant.

The six- and seven-dimensional
euclidean solutions involved
dimensions which could not be
interpreted in terms of the measures
included in this study. The empirically
best solution was the five-dimensional
euclidean configuration. A Varimax
rotation of this configuration was
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Table 2

Best Stress Values for Scaling Data as

a Function of Metric and Dimensionality

Dimensionality
R=1.0 1 2 3 4 5 6
MDSCAL-Stress .392 .234 154 098 071 .058
TORSCA-Stress .3856 .220 157 114 .081 .070
-Fit .961 988 .994 997 998 .999
R=20
MDSCAL-Stress 374 .217 .138 .098 071 063
TORSCA-Stress .389 211 139 100 .072 .056
~Fit 961 .989 9556 998 .999 .999
Stenson and Knoll
Lower Bound .46 .27 17 15 .09 .07
Table 3

Correlations of the Psychological Dimensions of the Average Perceptual
Space With the Brown and Owen Measures

Psychological Dimensions

Brown
and Unrotated Varimax Rotated
Owen -

Measures P1 P2 P3 P4 PS5 Vi vz V3 V4 vs
1 —73 —12 —10 .57 —.04 .23 —84 .15 —00 .41
i1 .14 —03 —20 .04 —.29 11 12 —18 —32 .10
11 02 —14 .08 —24 .33 —-13 .13 .34 .21 —17
v 37 —12 .23 .04 —11 —24 .15 —18 —28 —24
\4 -—15 .36 —04 —47 —34 52 .21 —24 .21 .19
Vi1 —33 .22 .34 —.10 —.03 18 —26 —09 .34 —.24
vil —42 —26 .12 —14 —.47 54 —29 .03 —22 —28
Vil —20 -—51 —b58 —03 —.29 43 —01 .35 —49 .28
IX —38 —.43 —04 .04 —55 49 —31 .04 —49 —12
X 12 41 00 .17 .26 —28 .03 —19 .31 .23
X1 .08 41 .01 .19 —18 —01 —03 —46 .03 .15
X1t .38 —44 .17 —.1B .05 —22 .23 .21 .29 —.34

Table 4
Correlations of the Psychological Dimensions of the Average
Pexceptual Space With the Basic Physical Measures
Psychological Dimensions
Basic Unrotated Varimax Rotated

Physical
Measures P1 P2 P3 P4 P5 vi V2 V3 V4 VB
P 29 .27 .22 .31 79 —81 .01 .08 .48 .18
A -—57 —48 —13 .73 .12 —05 —84 .39 —24 .45
P2 /A 59 b1 .23 —29 .58 -59 .60 —13 .57 —.16
VE/HE 08 —26 —.27 15 .04 —08 .02 .18 —25 .23
VIA 24 B2 .62 .09 .46 —58 .00 —29 57 —24
MDIA .21 53 .54 .27 53 —66 —10 —28 .56 —.07
VDIA —32 .12 .4 11 16 —.04 —40 .00 .33 —17
MSA —25 —b56 —62 —18 —.38 58 .06 39 —50 .20
VSA —08 —29 —056 —.31 .26 01 .17 .46 .10 —15
MDSA 16 —16 .01 —34 .36 —15 .30 .38 .20 —.18
VDSA 02 .02 —04 —43 .04 A7 .28 14 17 —.19
ROTS —09 .08 —30 .22 —.07 07 —10 —07 —.08 .37
ROTO 26 .02 .34 —08 —.36 .00 .12 —38 —26 —.39
HE 00 17 .19 11 —.01 —08 —11 —20 .09 —.0b6
VE .16 —28 ~—-.27 42 .07 —.27 —.08 .10 —37 .37
LGE -—12 —43 .06 .09 .02 —01 —19 .29 —22 —.08
SBRT —14 10 .37 —.23 .00 10 —06 —03 .25 —.37

performed. Thus, two models of the

average perceptual space were
obtained: the configuration produced
by MDSCAL (P configuration) and the
Varimax rotation thereof (V
configuration). The TORSCA
configuration in five-dimensional
euclidean space did not differ
substantially from the MDSCAL
solution either in its relation to the
physical measures or in stress.

Relations of the Scaling Solutions
to Physical Measures

Simple product moment correlation
coefficients relating the 12 B & O
measures to the P configuration are
displayed in Table 3. P1 correlated
highly with B & O I—the
compactness-dispersion dimension. P2
and P3 are both related to B & O VIII
but differ in their pattern of relations
to the other B & O measures. P4 also
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Table 5
Multiple Regression Analysis Predicting Psychological Dimensions of the Average
Perceptual Space from the B and O Dimensions

Standardized Regression Coefficients

P1 P2 P3 P4 P5
Band O1 —.7"769 —.19356 .0445 6495 —.0329
Band O Il .2942 —.0314 —.2015 —.0203 -—.2690
Band O II1 —.0889 —1830 .0835 —.1293 .3598
Band O IV 0422 —.1138 .2424 2124 -—.2379
BandOV —.1460 .3463 0272 —.4289 —.3845
Multiple Corxelation Coefficient
8035 4335 .3129 7828 5969
Standard Error of Estimate
.3551 .4107 .4369 .3430 .4545
involves dispersion (B & OI)and hasa cases. Sixty-four percent of the

marginal correlation with B & O V
(rotation). P5 relates strongly to B &
O IX and moderately to B & O VII.

Only two of the five dimensions of
the V space have strong correlations
with the B & O measures. VI is
indexed by B & O V (rotation) and
VII, and also is moderately correlated
with B & O IX. V2 has an extremely
high correlation with B & O 1
(dispersion) and low correlations with
all the other B & O measures. V3
relates marginally to B & O XI, as does
V4 to both B & O VII and IX.

In terms of the basic physical
measures, the P dimensions are all
readily interpretable. As may he seen
in Table4, Pl is a size-dispersion
dimension, being related to A and
P?/A. P3 is an angularity dimension
indexed by VIA, MDIA, and MSA. P2
combines size dispersion with
angularity and seems to represent a
conglomerate of P1 and P3. P4 is
clearly area, and P5 is compactness
dispersion (indexed by P and P?/A).
Perceptually separable aspects of size
and dispersion are evident in the three
dimensions P1, P4, and P5.

In the Varimax rotation of the
average perceptual space, the
interpretations of specific dimensions
are altered, but the same physical
variables are important. V1 combines a
large dispersion influence with
angularity. V4 is similar to V1,
involving angularity, but with less
influence of dispersion. V2 is size
dispersion, having a very high
correlation with area. The P
configuration is clearly preferable to
the V configuration in the way it
relates to both sets of physical
measures. All five P dimensions are
interpretable in both cases.

To examine the predictive utility of
the five major Brown and Owen
dimensions, a multiple regression
analysis was performed with these
physical measures as predictors and
each unrotated psychological
dimension of the average perceptual
space in turn as the criterion. The
results appear in Table 5. Significant
multiple Rs were found in only two

variance in P1 is predictable from a
linear combination of the five major
B & O measures. B & O I, compactness
dispersion, contributes most strongly
to the prediction. Sixty-one percent of
the variance in P4 is predicted by a
regression equation, with B & O I and
V (rotation) having the most
influence. In addition, 36% of the
variance in P5 is accounted for by
these physical measures, with B & O
IIT (y-axis asymmetry) and V being
most important.

When the full set of 12 B& O
measures was used to predict the
various P dimensions, the expected
improvement in prediction resulted.
The multiple correlation coefficients,
as shown in Table 6, are large, as
would be expected given 12 essentially
orthogonal predictors. What is
interesting is the pattern of the
standardized regression coefficients
and thus the relative importance of the
B & O measures. P1 is influenced
equally by both B& OIand VIL. P2 is
predicted quite well from a regression
equation containing seven
standardized regression weights of
about the same order of magnitude
and a larger weight for B & O XII. P3
involves B & O VIII, VII, and I1I. P4 is

most strongly influenced by B& O 1
and VII, with lesser contributions
from III and XII. The equation for
predicting P5 has the greatest weight
associated with B & O 1II. Thus, B & O
measures other than the five primary
ones are necessary for predicting the
dimensions of the average perceptual
space.

Analysis of the Sorting Data

The Ss had no difficulty performing
the sorting task, and no S took longer
than 5 min to complete the actual
sorting. The number of categories used
varied from 2 to 8, with the mode of 5
categories being used by 15 Ss. The
mean number of categories, taken over
the 49 Ss, was 4.84 with a standard
deviation of 1.55. Ss were given no
instructions about what size the
categories should be. Thirteen Ss
achieved nearly uniform distributions
of number of forms over categories.
Two of these 13 formed 3 categories
with 7 forms each. The other 36 Ss
had much greater discrepancies
between the largest and smallest
categories. Over all 49 Ss, the mean
number of stimuli in the largest
category was 6.88, and in the smallest
category, it was 3.02.

On Scaling the Sorting Data

A 21 by 21 (stimulus by stimulus)
matrix was constructed with entries
indicating how many Ss had placed
Stimuli i and j in the same category.
The resultant matrix was symmetric
with entries between 0 and 49,
inclusive, and having 49 in every cell
on the main diagonal. Miller (1969)
has suggested that the entries of a
matrix such as this can be considered
as judgments of interstimulus
similarity given by the collection of Ss.
The more frequently two forms are
judged to belong in the same category,
the more similar they are assumed to
be.

Table 6
Mulitiple Regression Analysis Predicting Psychological Dimensions of the Average
Perceptual Space from the B and O Dimensions

Standardized Regression Coefficients

Band O
Dimensions Pl P2 P3 P4 PS5
I —.48 —.21 —.06 1.18 .08
)i .20 .05 —.11 —.40 ~—13
I —.25 —.24 42 —57 45
v .16 14 .23 44 ~—.21
v 10 .24 —.26 Q7 -—.36
Vi .01 .18 14 .00 —.02
vl —.49 —.25 50 —.94 —.15
VIl —.02 -—.28 —.65 .10 —37
X —-.21 —.23 —12 —.06 —27
X .08 .28 —.02 -—.23 .33
X1 10 17 02 47 —.27
X1 .33 —39 —10 57 12
Multiple Correlation Coefficient
91 9 .78 .94 .89
Standard Error of Estimate
.339 .251 -395 .266 356
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This co-occurrence matrix was input
to the scaling programs in order to
obtain a spatial model for the sorting
data. More than 20 MDSCAL runs
were performed to explore the R = 1.0
and R = 2.0 solutions which result
from different starting configurations.
The TORSCA program was also used
with the sorting data. The MDSCAL R
= 2.0 runs from different starting
configurations generally yielded the
same minimum stress values at each of
the several dimensionalities. However,
the various MDSCAL R = 1.0 runs
failed to converge on the same
minima. Generally, the R = 1.0 stress
values were higher than the
corresponding R = 2.0 stress values.
But, when the euclidean solutions in
five and six dimensions were used as
starting configurations for the city
block analyses, slightly lower stress
values resulted for the corresponding
R = 1.0 solutions.

Table 7 contains the best stress
values for the sorting data over the
various dimensionalities and metrics.
The TORSCA stress and FIT values are
also included, as well as Stenson and
Knoll’s lower bound. With this data,
the TORSCA program failed to attain
stress values as low as those found by
MDSCAL. The kinds of considerations
discussed earlier for the scaling data
indicated that five or more dimensions
were also necessary to account for the
sorting data. A five-dimensional
solution was sufficient if R = 2.0, but
an R 1.0 solution might involve
either five or six dimensions.

The five-dimensional euclidean
configuration is a model of perceptual
judgments similar to that obtained
from the average scaling data, except
that it arises from a different task.
This configuration was rotated to a
Varimax solution. The initial and

Table 8

Table 7
Best Stress Values for Sorting Data as a Function of Metric and Dimensionality

Dimensionality
R=1.0 1 2 3 4 5 6
MDSCAL-Stress .283 154 114 071 .040 .025
TORSCA-Stress .317 182 132 .096 079 .060
-Fit .974 .892 .996 998 .998 .999
R=20
MDSCAL-Stress .283 154 097 .064 044 .029
TORSCA-Stress .315 180 116 081 .060 044
-Fit 975 992 .997 998 999 .999
Stenson and Knoll
Lower Bound .46 .27 a7 .15 .09 .07

rotated models from the sorting task
were then related to the physical
characteristics of the stimuli and to
the average perceptual spaces resulting
from the scaling task.

Relation to the
Basic Physical Measures

Table 8 contains the correlations
between the dimensions of the two
models of the sorting task
performance and the basic physical
measures. These psychological
dimensions will be called P dimensions
and V dimensions, as with the models
from the scaling task. P1 is size
dispersion, having high correlations
with A and P?/A. P3 is angularity
(VIA, MDIA, MSA, P? /A). P2 relates
strongly to area (A). P4 has its
strongest correlation with P?/A
dispersion, and P5 combines dispersion
and angularity. In the rotated
configuration, V2 and V4 combine
dispersion and angularity, with V2
having its highest correlation with
P?/A and V4 being most correlated
with MDIA. V1 is size dispersion, V3
is area, and V5 is most related to
VDIA. The dimensions of these sorting
spaces resemble those previously

Correlations of the Psychological Dimensions of the Sorting

Space With the

Basic Physical Measures

Psychological Dimensions

Basic

Physical Unrotated Varimax Rotated

Measures P1L P2 P3 P4 PS5 Vi V2 V3 V4 Vb
P .05 —02 .49 —38 .72 —37 —54 —14 .61 —25
A —79 —67 —28 .37 —03 48 .46 67 57 .12
P /A .57 .33 .56 —.65 .55 —70 —173 —48 .09 —.19
VE/HE —12 —19 —10 —08 .03 —05 .08 .20 .10 —01
VIA .23 .07 .18 —16 .47 —23 —64 —42 .48 17
MDIA A1 .11 .81 .02 .86 —.08 —62 —46 .70 .01
VDIA —09 —42 .33 —09 —13 —04 —13 .15 .24 .85
MSA —22 —03 —74 .07 —.50 19 86 .43 —b54 —15
VSA —02 .14 .07 —28 —.14 —06 —21 .11 —21 .03
MDSA 14 18 .17 —39 .03 —24 —33 —03 —15 —.02
VDSA .00 .29 .15 —07 —.21 12 —22 —05 —26 .08
ROTS .02 —40 —07 —03 .04 —-17 .17 12 .18 .18
ROTO 11 .26 —05 .22 —.08 15 .06 —22 —18 —09
HE .00 .06 —05 .21 .13 09 .10 —12 .11 —15
VE —22 —27 —24 .06 .21 .00 .25 .24 .30 —.20
LGE —.29 —33 —29 .19 —14 19 .36 .32 .10 .07
SBRT .04 .05 .20 .01 —13 .06 —14 —07 —06 .23
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found in the average perceptual spaces
from the scaling data. A comparison of
Tables 4 and 8 reveals a high degree of
similarity in the way the initial and
rotated configurations from the two
tasks relate to the basic physical
measures.

Correspondence with the
Average Perceptual Space

Table 9 contains the simple
correlations between the two initial
(unrotated) psychological spaces. To
facilitate the discussion of these
relations, the various dimensions will
be designated as belonging to the
scaling (Sc) or sorting (So) space. A
high correlation (.87) exists between
the P1 dimensions of the two spaces,
and in both cases, this was said to be a
size-dispersion dimension. P2 (Sc) and
P2 (So) correlate .68, and both involve
area or size. P3 (So) correlates with
both P2 (Sc) and P3 (Sc), and all are
strongly related to the angle measures.
The P4 dimensions from both
configurations involve area and
dispersion, and they correlate .66. PS
(So) and P5 (Sc) were both interpreted
as dispersion dimensions with some

influence of angularity, and they
correlate .93.
A final examination of the

correspondence between these two
kinds of spatial models was conducted
in terms of the canonical correlations
between the two P configurations.
Table 9 also contains the results of this
canonical analysis. Three very high
canonical correlations were found
(.98, .96, .91). The standardized
weights used in obtaining the
canonical correlations are also shown
in Table 9. There is obviously a high
degree of correspondence beiween
these two psychological spaces. Thus,
in two kinds of tasks, highly similar
spatial models were obtained from
judgments of this group of Ss with
respect to the 21 forms.

R = 1.0 Solutions
for the Sorting Data
Stress values for the sorting data
suggest that a five- or six-dimensional
city block configuration might be
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Table 9

Correlations Between P Dimensions in R = 2.0 Space from Scaling and Sorting Tasks

Scaling Dimensions

P1 P2 P3 P4 PS5
Pl 87 43 -—. 28 —19 .18
P2 41 .68 —.20 —.05 15
Soring p3 30 81 58 29 16
P4 —19 —. 42 —.31 .66 —.23
P5 .21 .26 .25 16 .93
Canonical Analysis Relating Scaling and Sorting Configurations
Canoniecal
Variable Correlation p<
1 978 .0001
2 860 .0001
3 .06 .0001
4 834 0002
5 .465 .0519
Standardized Weights Associated With the Canonical Variables
Canonical Variable
1 2 3 4 5
PSC1 .238 812 363 .391 —.648
PSC2 465 439 —.410 —. 214 .688
Soaling PSC3 .259 —.093 —727 032 —.664
PSC4 .051 -—.070 —.247 941 257
PSC5 .678 —.628 421 —.084 091
PSO1 .088 634 721 411 —.5567
PSO2 .199 303 —.061 —.331 1.027
g::““‘ PSO3 .254 377 —.885 455 —.258
PSO4 —.206 —.041 .230 1.0256 .220
PSO5 .681 — 774 414 161 .048
appropriate. Table 10 shows how the testing in an attempt to explore
dimensions of these R = 1.0 solutions consistent individual differences in

relate to the basic physical measures.
The five-dimensional solution contains
a size-dispersion dimension (P1), an
angularity dimension (P2), and a
dispersion-angularity dimension (P5).
P4 doesn’t correlate with any of the
physical measures, and P3 relates only
marginally to VDIA. The
six-dimensional solution has
dimensions corresponding to the three
interpretable ones from the
five-dimensional solution. In addition,
it contains a redundant size-dispersion
dimension (P2), an area dimension
(P4), and one uninterpretable
dimension (P6).

These two R = 1.0 solutions were
obtained from the corresponding R =
2.0 solutions. While a city block
metric does reduce stress a little, these
solutions are no more interpretable
than the R = 2.0 solutions.
Furthermore, the spatial orientation of
the R = 1.0 solutions is unique; thus,
they cannot be rotated into greater
correspondence with the basic physical

measures. In light of these
considerations, the euclidean
configurations were accepted as the
best ones for this data.
DISCUSSION
Tasks

All 49 of these Ss were involved in
4 h of perceptual experimentation and

performance across several tasks. The
present paper is concerned only with
comparing group performance on two
tasks. If two sets of Ss had been used,
an additional source of variance would
have been introduced which could
have created problems in attempting
to compare the methods. The present
study compares the aggregate
perceptual spaces produced by using
the same Ss and the same stimuli in
two different types of task. There may
have been specific transfer from the
scaling to the subsequent sorting task.
The Ss may have evolved a set of

features for making judgments in the
scaling task and then found it
convenient to sort the forms on the
bagis of those features. Further work
with the sorting task in the absence of
prior scaling is therefore indicated.

The correspondence between the
average perceptual space from the
scaling data and the spatial model
derived from the sorting data was,
however, surprisingly good. The
sorting data and the method of
analysis employed here are potentially
useful for exploring the kinds of
common dimensions one obtains by
scaling averaged judgments. The
sorting and scaling tasks can provide
the same kinds of outcomes if one is
not concerned with S differences. The
scaling task required about 2 h for
each 8 to accomplish, and a severely
restricted set of stimuli had to be used.
The sorting task took only 6 min with
the same number of stimuli. Large
numbers of stimuli and Ss can be used
in the sorting task quite economically.
Since the set of stimuli used
determines the number and kind of
dimensions that are found, a task
which permits the use of a large
number of stimuli is preferable. If one
is only interested in an average
perceptual space or in a collection of
potential cues, then the sorting task
seems the reasonable one to use.

The refined data provided by the
scaling task are appropriate for
differentiating between Ss and S types.
Averaging this data over the set of Ss
discards a good deal of information. A
previous paper (Richards, 1972)
examined individual differences in the
scaling data reported here. Comparing
the tables presented in this report with
those in the previous one reveals that a
more limited set of physical measures
is important in the average
perceptual space than in the spaces
representing various S types (idealized
individuals). Only those physical
measures which were related to the
psychological spaces of several

Table 10
Correlations of the R = 1.0 Psychological Dimensions from the
Sorting Data With the Basic Physical Measures

Psychological Dimensions

Basic Six-Dimensional Solution Five-Dimensional Solution
Physical

Measures P1 P2 P3 P4 PS5 P6 P1 P2 P3 P4 PS5
P .25 .33 .31 .36 .70 —04 .28 .38 .06 .36 .70
A —76 —50 —16 .52 .16 .21 —79 —33 —24 .28 .15
P?/A 70 56 .42 —01 .43 —.30 16 49 20 a8 42
ViA .26 .41 59 —13 .54 .20 .24 .54 42 —18 .58
MDIA 21 44 50 —06 .72 .46 16 .60 .19 —19 .76
VDIA —16 —09 .50 —03 .07 .00 —18 .08 .49 .03 .15
MSA —23 —44 —56 .07 —52 —27 —20 —60 —33 .13 —58
MDSA A8 11 12 —11 .14 —.40 .26 06 31 17 .10
VDSA —06 .02 .01 —41 .01 —17 .02 —20 .18 —15 —O05
VE —07 —46 —22 .34 .13 .08 —07 —28 —36 .16 .02

Note—All measures for which no correlation exceeded |.40| were excluded from this table.
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idealized individuals were influential in
the average perceptual space. In terms
of cue |utilization, the average
perceptual space was quite distinct
from each of the idealized individuals
and could not be said to truly
represent any of them.

Psychologically Relevant
Measures

In line with the findings of previous
investigators (Silver, Landis, &
Messick, 1965; Brown & Andrews,
1968; Behrman & Brown, 1968;
Stenson, 1968), measures reflecting
the dispersion and angularity of the
forms were important correlates of the
psychological dimensions isolated in
this study. Separate dimensions
showed different patterns of relation
to P, A, and P? /A, and thus separable
aspects of size and dispersion cues.
The important indices of angularity
(VIA, MDIA, and MSA) also varied in
their relations to different dimensions
of the average perceptual space.
Rotation as indexed by B & O V was
also important, although none of the
four basic rotation measures (VE/HE,
ROTO, SBRT, ROTS) were.

The Brown and Owen Measures

In the present study, it was
necessary to use the basic physical
measures to interpret both the
psychological dimensions and the
B & O measures. While some strong
relations of B & O measures to
psychological dimensions were found,
the meaning of those correlations had
to be examined using the basic
physical measures. The B&O
dimensions will be wuseful for
interpretation only when they are
more fully understood. Brown and
Owen have offered interpretations for
only the first five of their dimensions,
but some of the others appear to be
quite important in their relation to
perceptual judgments.

The Brown and Owen measure
space is potentially valuable because
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(1)it is based on a large sample of
forms and form measures, and (2)it
provides a set of summary dimensions
which are orthogonal in the
population. As a set of “predictors,”
the B & O dimensions, being
orthogonal, are more useful than the
basic physical measures which display
many redundancies. The B & O
measures also provide useful standards
for comparing relative cue utilization
across samples of Ss and stimuli. They
comprise an efficient characterization
of a given set of forms in terms of a
mathematically simple and tractable
model.

However, the B & O measures are
presently limited in utility because
they are restricted to the stimulus sets
investigated by Brown and Owen. An
investigator with a form or set of
forms of interest to him cannot obtain
the values of that form on the B & O
measures without essentially repeating
the entire procedure followed by
Brown and Owen. Unless one is
content to use only those forms in
Brown’s collection, direct ways of
obtaining the B & O measures must be
developed. If such direct measures are
not forthcoming, selected basic
physical measures will continue to be
preferred by those who study form
perception. Of course, the choice of an
optimal set of basic physical measures
might be dictated by the relation of
that set to the B & O measures.
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