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The elusive tradeoff: Speed vs accuracy
in visual discrimination tasks*

Theoretical models for choice reaction time and discrimination under time
pressure must account for Ss' ability to trade accuracy for increased speed. The
fast guess model views these tradeoffs as different mixtures of "all-or-none"
strategies, while incremental models assume they reflect different degrees of
thoroughness in processing the stimulus. Three experiments sought tradeoffs for
difficult visual discriminations, using explicit payoffs to control and manipulate
pressures for speed and accuracy. Although guessing was pervasive, the simple
fast guess model could be rejected; Experiments II and III obtained tradeoffs
even when fast guesses were purged from Ss' data. Tradeoff functions fit by
several formulations revealed: (1) slower rates of increase in accuracy for more
similar stimuli, and (2) substantial "dead times" (80-100 msec slower than
detection times) before discrimination responses could exceed chance accuracy.
Errors were sometimes faster and sometimes slower than correct responses
(depending on S's speed-accuracy trade); the latter effect may reflect a ceiling on
S's achievable accuracy. A final discussion examines implications of the results
for models of discrimination under time pressure; it suggests modifications in
present models, focusing on the random walk model, and describes an alternative
"deadline" model.

A choice reaction time (RT) task
requires the S to make a
discrimination response under
pressures for both speed and accuracy.
Most choice RT experiments use
highly distinctive stimuli,
discriminated under strong time
pressure. Traditional discrimination
experiments emphasize performance
accuracy; they typically use highly
similar stimuli and little or no time
pressure.

Once significant time pressure is
introduced into a discrimination task,
an S's accuracy seems to depend on
the speed of his choice response. If
changes in the task requirements affect
either performance measure, both
mean RTs and error rates change in an
inverse or tradeoff relation (Smith,
1968). The apparent ability of Ss to
trade accuracy for increased speed
poses not only an interesting problem
for performance theories, but also an
important methodological problem.
Performance comparisons between
tasks or stimuli are made difficult or
impossible to interpret when S's mean
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RTs and his error rates both differ,
particularly if his faster performances
are the less accurate. Even when
error-rate and RT differences do agree
in direction, meaningful quantitative
comparisons have to rely on some
theoretical model that describes the
tradeoff function.

Models that propose to account for
speed-accuracy tradeoffsmust specify.
(1) how S's ability to discriminate the
stimuli deteriorates as he shortens his
RTs, and (2) how the task constraints
determine the particular performance
trade that he will adopt. Current
models divide naturally into two
categories, based on their assumptions
about the time course of S's
discriminative judgment. Most assume
an incremental growth over time in S's
ability to discriminate the stimuli
(Stone, 1960; La Berge, 1962;
Edwards, 1965; Audley & Pike, 1965;
Laming, 1968; Vickers, 1970). They
represent S's classification of the
stimulus as the outcome of a sampling
process that operates on brief
observations of the stimulus input.
Each additional observation increases
S's RT by some fixed amount (perhaps
very small), but it also increases the
probability that his response will be
correct. For these incremental models,
tradeoffs reflect partial processing of
the stimulus information-variation in
the amount of stimulus input Selects
to process before responding.

The fast guess model (Ollman,
1966; Yellott, 1967) postulates only
two internal states, and assumes that
the discrimination occurs in an
all-or-none step function. On any trial,
S is considered to choose between two

response strategies; he can make a fast
guess (with accuracy at chance level)
when he detects that the stimulus has
appeared or he can decide to process
the stimulus information fully and
make a slower (but accurate)
discrimination response. Mixtures of
these all-or-none strategies will map
out a continuous speed-accuracy
tradeoff in S's mean performance, as
he varies the proportion of trials on
which he guesses.

Although assumptions about S's
stimulus discrimination and his
a vaila b Ie response strategies are
generally well specified by tradeoff
models, most make no attempt to
represent the task constraints-the
pressures for speed and
accuracy-which presumably
determine his actual performance. All
models at least implicitly assume that
these task constraints (usually
communicated through instructions)
affect the importance S attributes to
obtaining a faster performance relative
to a more accurate one. One way to
quantify these constraints is to
introduce explicit costs, associated
both with S's errors and with increases
in his RT (Edwards, 1961). Explicit
costs and payoffs reduce the
ambiguity in verbal instructions. In the
form of large monetary incentives,
they also make it reasonable to assume
that S will follow his "instructions"
literally, by attempting to maximize
his net payoff. Swensson and Edwards
(1971) showed that the incremental
and fast guess models can yield highly
divergent predictions if S tries to
maximize his net income with certain
types of explicit costs and payoffs.

Some notation will help to illustrate
these divergent predictions. For any
specified pair of equiprobable stimuli,
let D be the payoff difference between
a correct response and an error (equal
for both stimuli), and let kRT be S's
time cost (proportional to his RT) on
each trial. Incremental models assume
that any systematic changes in S's
choice RT must reflect a change in the
length of time he observed the stimulus
before responding (i.e., the number of
observations of the stimulus input that
he sampled). In terms of these models,
a time cost of kRT charges S a fixed
cost for each sampled observation. For
a particular incremental model, the
statistical decision or random walk
model with optional stopping,
Edwards (1965) showed that changes
in D (for any fixed k) prescribe
performance at different unique points
on S's tradeoff function, if his
expected payoff is to be maximized.
Because this result derives primarily
from the model's assumption of an
incremental growth in S's expected
accuracywith each increase in his
observing time, other incremental
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models would yield similar
prescriptions for maximization of
expected payoff. Once 8 has learned
how his accuracy and mean time cost
covary (through the appropriate
feedback), he can use D to determine
his best speed-accuracy compromise.

8wensson and Edwards (1971)
showed that if 8 can use only the two
strategies assumed by the fast guess
model, and if their expected payoffs
differ for a given D and h , no tradeoff
mixture of these strategies will ever
maximize 8's payoff. The expected
payoff for any strategy mixture must
always be some weighted average of
those for his two pure strategies. Let
D* be the value of D (not necessarily
an integer) that would yield equal
expected payoffs for both 8's guessing
and his discrimination strategies. (D*
depends on k and can be estimated
from S's performance; it is
proportional to the difference in his
mean RTs between these strategies.)
To maximize his payoffs, S should
guess consistently in conditions with
D < D* and respond accurately on all
trials when D > D*.

Using these explicit costs and
payoffs, combined with large
monetary incentives, Swensson and
Edwards found that seven of their
eight Ss closely followed the fast guess
model's prescriptions for maximizing
payoffs. In most conditions, these Ss
either responded accurately
throughout or they obviously
predetermined their responses by a
simple rule on all 300-450 trials (e.g.,
"left on every trial") and performed
faster. In virtually all of their
remaining conditions, these seven Ss
clearly switched between the two
response strategies (usually only after
many consecutive trials), apparently
unsure about which strategy would
yield the higher payoff. Dichotomous
performance emerged even when the
procedure deliberately tried to elicit
intermediate tradeoffs (with values of
D that were as close as possible to the
estimated D* for each S). These results
make the fast guess model a more
credible explanation of the tradeoffs
reported by many choice RT
experiments in which the relative costs
of errors and time were ambiguous for
Ss. Many Ss in choice RT experiments
would consider it "cheating" to
predetermine their responses very
frequently (or very obviously). For
most of Swensson and Edwards's Ss,
the large monetary incentives
presumably overrode such implicit
"ethical" considerations.

Swensson and Edwards used easily
discriminable stimuli of two types:
(1) a bright square that appeared to
the right or left of a vertical line, and
(2) a diagonal bar rotated 45 deg
clockwise or counterclockwise from

vertical. These easy stimuli produced
only small differences in mean RT
between the Ss' two strategies:
15-20 msec and 45-70 msec across 8s
for the spatially coded and diagonal
bar stimuli, respectively. Strong
conclusions would have been
impossible had not the large incentives
made most Ss reluctant to switch
strategies frequently. (In fact, one of
their Ss did produce ambiguous data
consistently: it was unclear whether
his tradeoffs resulted from partial
processing of the stimulus evidence or
from varying amounts of intermittent
guessing. Both the fast guess and
random walk models fit his data
equally well.) Larger differences in
mean RT between an 8's dichotomous
guessing and discrimination strategies
would make their presence easier to
detect, even if he switched between
strategies.

The three experiments reported
here attempted to magnify differences
in mean RTs by using stimuli that
were hard to discriminate. Presumably,
pairs of highly similar stimuli would
require longer times for Ss to achieve
accurate discrimination performance,
but they should not affect stimulus
detection times. If the fast guess
model is correct, the mixtures of
all-or-none discrimination strategies
would be more easily observed with
difficult stimuli; the appearance of
such strategies would greatly increase
the model's generality. If Ss can
perform the partial processing assumed
by the incremental models, difficult
stimuli would provide a greater range
of RTs over which these tradeoffs
could be observed. These experiments
used the most difficult pair of stimuli
that each S could discriminate with no
more than 1%·2% errors during his
initial sessions. They used large
monetary payoffs, and deliberately
tried to produce speed-accuracy
tradeoffs for each individual 8.

EXPERIMENT I
Experiment I followed the

procedure used by Swensson and
Edwards (1971), holding the cost for
time (proportional to 8's RT on each
trial) constant across conditions. The
payoff for each correct response (D)
varied between conditions in an
attempt to converge on a small range
of values around each S's estimated D*
for which he would either: (1) switch
between a guessing and a
discrimination (accurate) strategy, or
(2) produce intermediate tradeoffs
(e.g., 25% errors) without resort to
guessing.

Method
Display and stimuli. Each 8 sat

before a cathode ray tube display,
controlled by a PDP-1 computer. He

depressed two microswitch response
keys with his index fingers to begin
each trial. This produced a faint
fixation cross on the display, over
which the stimulus appeared following
a random foreperiod interval. To
respond, 8 released only the left or
only the right key. If 8 released the
second key within 100 msec of the
first, his response was treated as an
error. If 8 responded before the
stimulus appeared, the computer
suppressed the stimulus and directed S
to begin the trial again.

The purpose of the random
foreperiod was to discourage S from
attempting to estimate when the
stimulus would occur, and then to
produce a response coincident with it
(thus obtaining spuriously fast RTs).
The foreperiod distribution was
uniform in 1-msec intervals over the
range between 1 and 3 sec. A heavy
penalty ($1.25) for each premature
response further discouraged S from
any attempt to minimize his RT by
anticipating the occurrence of the
stimulus.

The stimulus appeared centered on
the fixation cross; it was a rectangle in
one of two equiprobable orientations,
with its longer sides slanting
northwest-southeast or
northeast-southwest. 8 had to respond
with his left finger if the rectangle's
length lay along the diagonal slanting
upward 45 deg to the left of vertical,
and with his right finger if it lay along
the diagonal that tilted 45 deg to the
right. When the rectangle's length and
width were very similar, it looked very
much like the same tilted square in
either orientation. The smaller the
rectangle's length:width ratio, the
more difficult was S's discrimination
task. Initial informal sessions selected,
for each S, the most difficult stimulus
pair (smallest length:width ratio) that
he could discriminate with no more
than 1%-2% errors when told to
disregard his RT completely. Table 1
presents the characteristics of the
stimuli used for each S; their visual
angle depended on S's choice of
viewing distance, since his movements
we r e unconstrained. Figure 1
illustrates the easiest pair used
(length:width ratio of 55 :53); Fig. 1a
required a left-finger response. and
Fig. 1b required a response with 8's
right finger.

Since the phosphor of the cathode
ray tube faded fairly slowly, traces of
the previous stimulus were removed
prior to each trial by illuminating all
points in the square area around the
stimulus seen in Fig. 1. This insured
that the stimulus for the next trial
would appear on a faintly illuminated
and homogeneous field. The location
of the fixation point also varied
slightly along the horizontal axis from
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Fig.1. The easiest pair of stimuli used (length:width ratio of 55:53).
Figure la required a left-finger response and Fig. Lb required a response with the
right finger.

Table 1
Lencth:Width Ratios and Actual Dimensions in Inches of Stimulus

Rectan&les U sed for Each S in Experiment I

Results
It was possible to develop criteria

that could separate, for each S, trials
on which he preselected his response
and guessed from other trials on which
he apparently attempted to respond
accurately. Both verbal reports and
data from all seven Ss indicated that
they easily discovered and used a
guessing strategy in the early
experimental conditions, when the
payoff for a correct response
decreased until their net payoff
depended primarily on the speed of
their RTs.

Two criteria were used to identify
preprogrammed guesses among Ss'

were meaningful incentives, points
were worth 1,4 cent each. This meant
that S was charged at the rate of
$1.38/sec for the time he took to
respond. To compensate for the large
variation in S's net payoff produced
by varying D between conditions, he
received a handicap in points at the
beginning of each session. At the end
of the session, his total net points
either added to or subtracted from this
handicap.

The relations between S's
performance, payoffs, and monetary
earnings (as presented here) were
thoroughly explained and illustrated
to each S, and were adhered to rigidly.
The magnitude of his handicap for
each condition adjusted S's net
payoffs to yield an expected net
payoff of $1.50/h. Calculation of this
handicap used S's most recent
performance with either an accurate or
a guessing strategy (whichever had the
higher expected payoff for that value
of D). This procedure provided an
incentive for S to improve his speed
and accuracy in order to increase his
payoffs; it also enabled him to recoup
the occasional large loss he incurred
from a poor performance.

FIG. 10

performance in the previous 9-11
sessions). Thereafter, D changed
between sessions according to the
following rule. If S responded
accurately, D decreased for his next
condition; if he used a strategy of
preprogrammed guesses, D increased.
If S switched back and forth between
the two strategies or used some
unclassifiable strategy, D remained the
same up to a limit of three sessions
and then changed. Because long-term
improvement in S's accurate-perfor
mance RTs caused D* to decrease over
sessions, the amount by which D
changed for each new condition
depended on how S's performance
changed. Following each improvement
in performance, the next condition
tracked the change by approximating
the new estimated value of D*.
Table 2 presents the values of D used
for each S's real money conditions and
shows that these values tended to
converge over the later sessions.

Feedback and incentives. After each
trial, S received a feedback display
that showed, in both vector and
numeric form: (1) the payoff for his
response (D points if correct, 0 if an
error), (2) the cost for his response
delay (his RT in milliseconds
multiplied by 0.55), and (3) his net
gain or loss on that trial. To insure
that these explicit costs and payoffs

Actual Dimensions (Inches)
Length:

S Width Ratio Length Width

TM 55:53 1.038 1.520 1.464
EK 35:34 1.029 .966 .940
RP 40:39 1.026 1.104 1.078
GO 40:39 1.026 1.104 1.078
Me 40:39 1.026 1.104 1.078
MMcL 50:49 1:020 1.380 1.354
WL 63:62 1.016 1.740 1.712

trial to trial, as an additional
precaution against effects due to traces
of the previous stimulus. .

The stimulus sequences had run
length distributions that conformed as
closely as possible to the expected
distributions in a sequence of 350
independent trials from a binomial
process with equal stimulus
proportions. This restriction insured
that each individual sequence was
representative, and contained no
fortuitous sequential dependencies.
Each sequence was used for only a
single session.

Procedure. The Ss were seven paid
volunteer men, who received a fixed
$1.50 per hour rate for initial sessions
used to select the stimuli. Thereafter,
the time cost was introduced, and S's
earnings depended entirely on the
number of points he won. The net
payoff on each trial was D - kRT for
a correct response and -kRT for an
error. The conditions (each an entire
350-trial session) varied the
importance of fast relative to accurate
performance by changing D, the
payoff difference between a correct
response and an error. When D was
close to 0, S's net payoff was only
slightly higher for a correct response
than for an error; both depended
primarily on the speed of his RT. As D
increased, S's net payoffs depended
more and more on how accurately he
responded.

The first conditions provided a
gradual transition between S's initial
sessions (in which he ignored his RTs)
and conditions that demanded very
fast performances. Since no S had any
previous opportunity to use or to
discover a strategy of making fast
preprogrammed guesses, the E
carefully emphasized how speed
became increasingly more important
to his net payoff as D became smaller.
The first of these conditions used a
value of D large enough to require high
accuracy. D decreased systematically
between sessions in large steps until S
used a pure guessing strategy (or made
about 50% errors) for two successive
conditions, and then increased again.

The remaining conditions began
with a value of D as close as possible
to each S's estimated D* (based on his
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Table 2
Difference in Payoff Between Correct Responses and Errors (D) Used

for Each Sand Condition in Experiment I

S

Condition TM EK RP GO Me MMcL WL

1 800 800 800 400 800 800 800
2 500 600 600 200 600 500 500
3 200 400 400 200 400 200 200
4 200 200 200 300 200 200 200
5 300 200 200 400 200 300 300
6 400 300 300 500 300 400 400
7 500 400 400 600 400 500 500
8 600 500 500 500 500 600 600
9 800 600 600 400 600 800 800

10 300 600 600 300 600 1000 1000
11 350 300 300 350 200 1000 250
12 300 250 200 350 200 300 225
13 275 250 225 400 150 250 275
14 290 225 225 350 150 275 260
15 280 225 250 300 175 260 280
16 270 250 2&0 27& 200 260 300
17 260 275 235 290 225 240 310
18 260 250 230 305 200 220 325
19 240 250 200 300 185 220 275
20 240 250 225 310 185 210 290
21 225 250 215 350 195 225 280
22 250 235 220 350 215 270
23 250 225 225 310 215 260
24 240 225 220 305 220 230
25 230 210 225 280 225 220
26 235 200 222 222 225
27 235 190 220 224 230
28 232 180 221 224 235
29 230 170 221 220 240
30 225 170 200 210 250
31 220 170 210 260
32 225 180 210 270
33 235 200 270
34 230 205 265
35 235 215 255
36 240 215 245
37 250 225

responses. Criterion 1 was identical to
that used by Swensson and Edwards
(1971). It separated all blocks of
consecutive trials within which S
selected his response by a consistent
and mechanical rule that was unrelated
to the identity of the stimulus on that
trial. Three such rules were easily
identified, each favored by at least one
S: strict repetition of the same
response, strict alternation between
left and right responses, and making
the response appropriate to the
stimulus that occurred on the previous
trial (stimulus following).

To be classified as preprogrammed
by Criterion 1, a block of consecutive
responses had to meet two conditions:
(1) the mechanical rule for response
selection had to be unbroken and
(2) it had to contain at least three
errors (i.e., S ignored at least three
successive opportunities to abandon
the rule and respond as directed by the
stimulus). The invariable sudden
change in level of S's RTs was used
only to help resolve any remaining
ambiguity about precisely where each
block of preprogrammed responses
began or ended. Individual blocks of
preprogrammed trials ranged in length

from entire sessions (350 trials) to less
than 20 consecutive trials, but were
usually fairly long. Even excluding the
entirely preprogrammed sessions, the
mean length of these preprogrammed
blocks ranged from 77 to 239 trials
over the seven Ss.

Unlike Ss in the earlier experiments
(Swensson & Edwards, 1971),
however, only two of these seven Ss
confined their use of a guessing
strategy to long sequences of trials
with a simple mechanical rule for
determining which response to make.
The other five Ss at least occasionally
embedded very fast responses (with a
high frequency of errors) among trials
on which they apparently attempted
to respond accurately, even in sessions
having low overall error rates. This
intermittent guessing required the use
of a second criterion for identifying
individual preprogrammed guesses.

Fortunately, because of the
relatively long times necessary for Ss
to achieve accurate performance with
these difficult stimuli, the RT
distributions for each 8 (pooling over
all responses and conditions) were
clearly bimodal, with few responses in
the region between 240 and 280 msec.

Very few of any S's responses that
were identified as preprogrammed by
Criterion 1 were slower than 250 msec
(1.5% for one S and less than 0.3% for
the remaining six Ss after the first 10
experimental sessions). To identify the
occasions on which S took a guess and
made a preprogrammed response when
he detected the stimulus, Criterion 2
separated and pooled all trials with
RTs faster than 250 msec. It was
applied in each condition, to all
responses that were not classified as
preprogrammed by Criterion 1.

Figures 2a-2f and 3a present mean
RTs and error rates within each
condition for both S's accurate and his
preprograrnmed modes of responding.
Open points represent sessions in
which 8 used either an accurate or a
guessing (Criterion 1) strategy on all
350 trials. Solid points indicate mean
RTs and error rates for each strategy
in sessions that included both types of
performance. For such mixed-strategy
sessions, several points are plotted:
solid triangles for preprogrammed
responses identified by Criterion 1 (if
any), solid square points for guesses
identified by Criterion 2 (all responses
with RT < 250 msec), and solid circles
for S's remaining responses.

Because Criterion 2 was applied to
all sessions, circular points
(representing S's accurate
performances) contain only responses
that were 250 msec or slower. But the
large number of conditions in which
all 350 responses were slower than
250 msec (open circles) indicates that
this procedure could not have had
much effect on estimates of Ss'
accuracy-strategy RTs. Mean guessing
RTs identified by Criterion 2 (solid
square points) tended to be variable
because they frequently contained
only a few observations. However, the
general levels of Ss' mean RTs (about
200 msec) and error rates (about 50%)
were comparable for preprogrammed
responses isolated by both criteria.

Solid lines in Figs. 2a-2f and 3a
represent weighted moving averages of
mean RTs and error rates over each set
of three adjacent conditions. Most of
the deviant points in these figures
simply reflect the greater variability of
estimates based on only a small
number of observations; they had little
effect on the moving averages. Vertical
bars in Figs. 2a-2f and 3a periodically
indicate the variability of the RT
distributions for each response
strategy about its moving average.
They represent plus and minus one
"average" standard deviation,
calculated as the square root of the
weighted mean variance for the
adjacent three conditions. Circled
asterisks in Figs. 2d, 2e, 2f, and 3a
indicate the part of a single condition
for four of the seven Ss that could not
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Fig. 2. Mean RTs and error rates for both accurate (RT ;;. 250 msec) and
guessing performance of six Ss in Experiment I. Open and filled points
differentiate entire sessions under the same strategy from mixed sessions, in
which S used both strategies. Triangular points represent preprogrammed guesses
identified by the blocking procedure (Criterion 1); solid square points represent
all responses faster than 250 msec (Criterion 2). Solid lines indicate moving
averages over adjacent sessions, and vertical bars periodically indicate RT
variability. The single performance indicated by a cricled asterisk for three Ss did
not separate clearly into the two strategies.

be clearly separated by the two criteria
into accurate and preprogrammed
response performance. They were not
included in the moving averages. Error
rates and mean RTs for these trials fell
in between those for the two types of
performance. These intermediate
performances occurred only on the
first occasion that each 8 experienced
a condition with a small value of D
(demanding very fast responding) and
may reflect the 8s' inefficient and
sporadic first attempts to apply a
guessing strategy.

Mean RTs for accurate performance
decreased considerably over sessions.
With the possible exception of the
final conditions for 8 E.K. (Fig. 2f),
these de creases reflect absolute
improvement in 8s' discrimination
times, since error rates showed little
change. By the end of the 20-37
conditions, differences in mean RTs
between preprogrammed-response and
accurate performance ranged between
135 and 210 msec.

Error rates among responses with
RT;;. 250 msec were about 0.10 for
most Ss, substantially higher than each
S's error rate in his initial sessions
without time pressure. These increases
in error rate (above 0.01-0.02) during
the experimental conditions must be
attributed either to a change in 8s'
discrimination accuracy or to the
presence of guesses. Since its
ali-or-none assumption requires 8's
discrimination performance to remain
invariant, the fast guess model must
postulate that some proportion of his
intermittent guesses were slower than
250 msec. When these guesses were
misclassified by Criterion 2, they
would have inflated the error rate
attributed to discrimination responses.
Although this argument can be made
to account for any set of data, it
implies constraints on S's RT
distribution for guess responses. The
all-or-none assumption can be
discredited if these constraints are
sufficiently implausible.

Consider each 8's responses with
RT ;;. 250 msec. The fast guess
model's equations provide an estimate
of q, the proportion of these responses
that were guesses:

(1)

where Pe is the observed error rate and
E is the error probability assumed for
8's "true discrimination" responses.
Multiplying this estimate of q by the
number of responses with
RT ;;. 250 msec produces an estimate
of the number of guesses that were
250 msec or slower. This leads to an
estimate of the proportion of all
guesses with RT;;. 250 msec, under

the assumption that responses faster
than 250 msec were entirely guesses.

Table 3 presents for each 8
estimates of: q for responses slower
than 250 msec, the number of these
guess responses, and the implied
proportion of guesses that had
RT ;;. 250 msec. These estimates are
based on all of each 8's data after
Condition 10, and they assume that
E = 0.02 (if E were assumed to be less
than 0.02, all estimates in Table 3
would be increased). To account for
the observed error rates if each 8 could

have achieved an error rate of 0.02,
the fast guess model with an
all-or-none assumption must assume
that Ss guessed rather frequently, and
that between 26% and 96% of these
intermittent guesses were 250 msec or
slower.

Discussion
The data from this experiment

seemed unambiguous; they
contradicted the incremental models'
prediction that Ss can (and will, when
encouraged by payoffs) process only
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EXPERIMENTS II AND III
Experiments II and III pursued the

apparent contradiction between the
fast guess model's assumption of

removed. This is embarrassing for the
model's ali-or-none assumption, since
each S could and did achieve
performance with no more than
1%-2% errors when he ignored his RT
in the initial sessions used to select the
stimuli. To account for error-rate
increases of this magnitude, the model
is forced to the unpalatable
assumption that between 26% and
96% of Ss' intermittent guesses were
slower than 250 msec, whereas
obviously preprogrammed responses
(identified by Criterion 1) were almost
never this slow.

Thus, the fast guess model seems to
be required to postulate a different RT
distribution for each of S's two types
of guess responses. Both distributions
must be nearly identical in form below
250 msec (since the observed RT
means and standard deviations were
very similar), but the distribution for
intermittent guesses would have to be
bimodal. Although each S made
relatively few responses whose RT was
240-280 msec, the model must assume
a large proportion of intermittent
guesses slower than 250 msec, The
model must also assume that Ss made
rather frequent use of this inefficient
guessing strategy, despite their keen
interest in maximizing their payoffs
with these large incentives, and the
ready availability of their
preprogrammed guessing strategy.

An alternative explanation of the
higher error rates in the experimental
conditions would: (1) reject the
assumption of all-or-none
discrimination, (2) assume that few or
no guesses were slower than 250 msec,
and (3) suggest that Ss were able to
compensate for their higher error rates
by achieving generally faster
discrimination RTs. Although
incremental models cannot easily
explain the absence of less accurate
(but nonguessing) performance in
these data, they may explain Ss'
a p pa rent refusal to respond as
accurately as they could. As a
consequence of the experimental
procedure, the payoff for a correct
response (D) varied over only a small
range for each S's later conditions,
about the value that would make him
switch between a "guessing" and an
"accurate" strategy. Perhaps achieving
very low error rates with these
difficult stimuli would have demanded
increases in RT that were prohibitively
expensive for these intermediate values
of D. If so, larger values of D would
increase the cost of making an error
relative to Ss' cost for time and should
force them to respond more accurately
in order to maximize their payoffs.
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accurate trials. Even after large
amounts of practice with these
difficult stimuli, mean RT differences
between strategies were more than
three times greater than those
previously obtained with easily
discriminable stimuli (Swensson &
Edwards, 1971).

Only one feature of the data seemed
inconsistent with the fast guess model:
Ss' relatively high error rates
(8%-12%), even when all responses
faster than 250 msec had been
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Fig. 3. Mean RTs and erro;rates for S R.P.'s accurate performance and
preprogrammed guesses in both Experiments I (Fig. 3a) and II (Fig. 3b). Open
and filled points differentiate conditions in which he used the same strategy on
all 350 trials from mixed sessions, in which he used both strategies. Figure 3b
separately indicates mean RTs for correct responses (circles) and for
single-response errors (crosses). Solid lines indicate moving averages over
adjacent conditions; in Fig. 3b, solid and broken lines differentiate moving
average RTs for correct responses and for single-response errors for R.P.'s
accurate performance (RT ;;;. 250 msec). The single performance in Fig.3a
indicated by a circled asterisk did not separate clearly into the two distinct
strategies.

intermediate amounts of evidence
about the identity of the stimulus
before responding. Each S used only
the two types of strategies assumed by
the fast guess model. Five of the seven
Ss did not always group their
preprogrammed responses into long
sequences of consecutive trials, but the
clear separation between RT
distributions for the two strategies
permitted identification of the
preprogrammed guesses that Ss
embedded among predominantly
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Table 3
Faat Guess Model Estimates of the Frequency (CI) and Number of Guesses Amona

Responses With RT ;;. 2~0 MICe, Number With RT <; 250 Msee, and the
Estimated Proportion of Guesses Slower than 250 Msee

For RT ;;. 250 Msee Estimated
Estimated NWith Proportion of

- Numbft RT" 250 Guesses With
S q of Guesses Msee RT;;' 260Msee

EK .167 792 1341 .371
RP .180 687 111 .861
TM .012 69 191 .265
GO .112 419 162 .721
MMeL .110 606 1280 .321
Me .187 397 18 .9&7
WL .171:> 698 30 .9&9

all-or-none discrimination and the
change in Ss' performance accuracy
that occurred when time pressure was
introduced in Experiment 1. Both
experiments tested the possibility that
because of the particular payoffs and
time-cost function used in
Experiment I, the Ss had refused to
vary the amount of stimulus evidence
they processed before
responding-e-even though the¥ could
ha ue performed such partial
processing. Although the two studies
were chronological, Experiment III
being based upon the results of
Experiment II, they will be reported
and discuued together.

Experiment II used two experienced
Sa from Experiment I. but varied over
a large range the incentive for accurate
relative to fast performance (0). The
principal question was whether the 8s,
when confronted with pressure from
the payoffs to achieve very low error
rates, would be forced to respond
more slowly than they had in
Experiment I. FolIowing this,
Experiment II pursued the effects of
stimulus discriminability by giving one
S extensive training on anew,
extremely difficult pair of stimuli.

Experiment III tested a hypothesis
(derived from Experiment II) that Ss
had refused to exhibit any
performances with high error rates
that were free of guesses. because such
performances were dominated in
expected payoff by their guessing
strategy. This fixed-cost hypothesis
assumed that 8 had to pay a substan
tial fixed cost in time, with no
improvement in his accuracy, for any
attempt to base his response on the
stimulus identity. Experiment III
modified the time-cost function,
intending to charge S only for his
actual observing time, to make the
hypothesized savings in time enabled
by a guessing strategy irrelevant to his
payoffs. In terms of the incremental
models. removal of this large
hypothesized cost (associated with
taking the first stimulus observation)
would make S's cost per observation
independent of the number of
observations he sampled before
responding. In Experiment III, 8's cost
for time began only when his RT
exceeded t msec (a free delay). If the
fixed-cost hypothesis were correct,
large variations in 0 should then have
made Ss willing to exhibit formerly
suboptimal tradeoffs with both high
and very low error rates.

Method
Experiment II. The two 8s were

R.P. and E.K., who had performed in
20-32 sessions during Experiment I.
During his final 10-15 sessions in
Experiment I, 8 R.P.'s accurate
performance had remained fairly

stable, with about 10% errors and
mean RTs of 350-360 msec. 8 E.K.
displayed the greatest change in his
accurate performance during
Experiment I. Figure 2f shows that his
early accurate performance had low
error rates and the slowest mean RTs,
while his accurate performance in the
final sessions had the fastest mean RTs
(325 msec) and highest error rates (up
to 0.20) of all seven Ss.

Except for the variation in Dover
conditions, the apparatus, procedures,
and stimuli were identical to those
used in Experiment I. Over successive
conditions, D increased and decreased
systematically, from a value smaIl
enough to produce consistent
preprogrammed guessing (or 50%
errors) to values as high as 1% times as
large as Sa' cost per second of response
time. Under these large values of D, an
error cost 8 as much in his net payoff
as an RT of 1,450 msec; one error
more or less could change his net
payoff by as much as 800 points
($2.00). The 26 conditions for 8 R.P.
and 32 conditions for 8 E.K. traversed
this range of D in both ascending and
descending order.

Following these 32 conditions,
8 E.K. performed in 56 conditions
with a new, more difficult pair of
stimuli. These had a length :width ratio
of 85 :84 (1.012) and measured 2.348
x 2.320 in. Between conditions, D
changed systematically from values
low enough to produce 50% errors to
values almost 20 times as large as his
cost per second of RT. Even though
points were devalued from 1/4 to
1/10 cent per point, a single error with
these extreme values of D changed 8's
net payoff by as much as $10.00.
Although S's income from individual
sessions varied a great deal (and he
frequently lost money), he averaged
about $2.25/h over the entire 56
sessions.

Experiment III. The three 8s, T.M.,
M.McL., and W.L., had produced
performances that were stable during
their final 10-15 sessions in
Experiment I and devoid of any
speed-accuracy tradeoffs. The
apparatus, stimuli, and most

procedural details were identical to
those used in Experiment I. Under the
free delay modification, Sa received
feedback about the duration of their
RT only when it exceeded t msec
(with t = 250 or 300 msec). If their
RT was less than t msec, the feedback
displayed only 0 cost for time. Since
Ss were charged for time in excess of t
at the same rate as before (0.55
points/msec), the cost function was
0.55(RT - t) for RT > t and 0 for
RT..: t.

Ss W.L. and M.McL., whose
accurate performance had error rates
of about 0.10 during their final
sessions in Experiment I, received
conditions with both large and small
values of D. The maximum value of D
used was 5.5 times the cost per second
for RT in excess of t ($7.50 lost for
each error). Because 8 T.M. had the
lowest error rates in Experiment I
when he responded accurately
(0.01-0.02), he received only
conditions with small values of D to
encourage faster and less accurate
performance.

All three Sa received one training
session (with t = 250 msec), at an
hourly rate of pay to accustom them
to the new time-cost feedback. This
session contained three blocks of 100
trials each under a high, moderate, and
low value of D. During this practice
session, it became obvious to all three
Sa that their guessing strategy would
always yield 0 cost for time and a
guaranteed average net payoff of D/2
points per trial. To minimize the 8s'
temptation to use this "safe" guessing
strategy, D was reduced gradually, so
that one of their previous
"nonguessing" performances always
predicted an expected payoff higher
than D/2 points per trial. Sa W.L. and
M.McL. received 18 and 19 test
conditions of 350 trials, all with t =
250 m see , The free delay was
250 msec for 8 T.M.'s first five
sessions, but it increased to 300 msec
in Sessions 6-14.

Results
Response strategies. When they did

not preprogram their responses, four
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comprised 88% of R.P.'s total errors
under the accurate strategy in
Experiment II. Figure 3b shows that
their mean RTs were consistently
10·15 msec faster than his correct
responses.

Speed-accuracy tradeoffs. One S in
Experiment II and all three Ss in
Experiment III exhibited
speed-accuracy tradeoffs as D changed
between conditions. Figures 4 and
5a-5c plot each S's accuracy against his
mean RT for all nonguessing responses
in each condition (Le., those with
R T ;;;. 250 mse c, .by Criterion 2).
Accuracy is plotted as an odds
transformation of S's error rate
(proportion of correct responses
divided by proportion of errors) on a
log scale. This transformation reflects
how much more likely S was to make
a correct response than an error; it
provides an essentially unbounded
scale for accuracy, with chance
performance (50% errors) at the
baseline. The equivalent error rates are
indicated at the right in each figure.
Figure 4 presents S E.K.'s data from
Experiment II for both the 32
conditions with the easier 35:34
stimuli (circles) and for his final 30
conditions with the difficult 85 :84
stimuli (diamond-shaped points).
Figures 5a, 5b, and 5c present the data
for the three Ss in Experiment III.
Open points refer to conditions in
which all responses were slower than
250 msec; solid points rep~nt

conditions in which some guesses were
identified (by Criterion 2) and
removed. Triangular points in Fig. 5c
indicate S T.M.'s performance in his
final nine accurate conditions of
Experiment 1.

The curves in Figs. 4, 5a, 5b, and 5c
represent functions fitted to the Ss'
mean RTs, against different
transformations of their accuracy.
They will be discussed later. However,
for all five sets of data, these fitted
functions (and virtually any other
reasonable extrapolations of these data
points) intercept chance-level accuracy
at RT values much slower than the
times these Ss achieved when they
made preprogrammed guesses. It was
this "dead time" interval, noted for
S E.K. in Experiment II (Fig. 4), that
led to the "fixed cost" hypothesis and
the procedure used in Experiment III.
Figure 4 also indicates that the more
difficult discrimination task greatly
reduced the rate at which S E.K.'s
accuracy increased as he slowed his
mean RTs. However, extrapolations of
E.K.'s data for both discrimination
tasks in Fig.4 appear to intercept
chance-level accuracy at about the
same RT value.

With the easier 35 :34 stimuli, Fig. 4
shows that E.K. could reduce his error
rate to less than 0.01, but there was

.006

.01

Criterion 2). Of all responses faster
than 250 msec, error rates were 0.512
and 0.493 for M.McL. and W.L., but
their mean RTs were 212 and
224 msec. These mean times were
about 20 and 40 msec slower than in
Experiment 1. The increased RTs for
guesses in Experiment III could have
resulted from the absence of any
pressure to respond much more
quickly than the free delay interval
(250 or 300 msec), together with the
lack of any feedback about how fast
or slow these "zero-cost" responses
actually were.

Of the five Ss, only S R.P. in
Experiment II did not vary his
accurate performance, even for the
largest values of D used. Figure 3b
plots R. P.' s data as done in
Experiment I, except that it separately
indicates his mean accurate
performance RTs for correct responses
and for single-response errors. As a
comparison between Figs. 3a and 3b
shows, his performance did not change
appreciably between Experiments I
and II. The decrease in error rates for
his accurate performance during the
final few sessions in Experiment II
seemed to reflect only further
improvement in performance, since it
was not accompanied by any change in
his mean RTs. Single-response errors
(excluding trials when he made both
responses less than 100 msec apart)
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Fig. 4. S E.K.'s speed-accuracy tradeoff performance with both discrimination
tasks in Experiment II. The figure plots odds transformations of S's accuracy
(ratio of number of correct responses to number of errors) on a log scale against
his mean RT in each condition for discdmination responses only (RTs ;;;.
250 maec). Open points represent conditions that contained no responses faster
than 250 msec; filled points represent conditions from which some guesses (RT
< 250 msec) were removed. Solid lines and broken curves indicate two different
tradeoff functions fitted to each set of data (see general discussion). Numbered
square points show E.K.'s highly accurate performance (5% errors or less) in his
first 26 conditions with the more difficult 85:84 stimuli. Neither these data nor
the later conditions indicated by circled points were used in fitting the tradeoff
functions.

of the five Ss in Experiments II and III
produced data that showed clear
evidence of speed-accuracy tradeoffs
(presented in the following section). In
both experiments, all Ss used a
guessing strategy on at least some trials
during conditions with small values of
D. For both Ss in Experiment II, these
guesses had mean RTs that were
virtually identical to those in
Experiment 1. S E.K.'s guesses had to
be identified by separating all
responses faster than 250 msec
(Criterion 2). With his easier pair of
stimuli, guess responses had an error
rate of .475 and a mean RT of
198 maec; in his more difficult
discrimination task, these values were
.502 and 196 maec.

In Experiment III, Ss' guesses were
slower than they had been in
Experiment I. S T.M. always repeated
his left or right response for relatively
long blocks of consecutive trials
whenever he abandoned any attempt
to respond accurately. Although these
preprogrammed responses were
obviously independent of the stimulus
identity, and had an error rate of
0.481, their mean R Twas
218 msee-more than 20 msec slower
than his mean guessing RTs in
Experiment 1. The same phenomenon
occurred in the data for Ss M.McL.
and W.L., whose guesses had to be
identified by their speed (using
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all-or-none assumption can be rejected
if these two estimates of q differ
excessively.

Notice that Eq. 2 estimates smaller
values for q as RTg decreases, because
fewer guesses are required to account
for the decrease in mean RT as guesses
become faster. Consider only S's
responses in each condition that have
RT;;. 250 msec; obviously, 250 msee
is the minimum value that can be
assumed for RTg among these
responses. Consequently, with RTg set
at 250 msec, Eq.2 estimates q(min),
the smallest possible proportion of
guesses that could account for this
mean RT given RTd . Equation 1 yields
an estimate of q(max) under the
assumption that all errors were
produced by guesses (e = 0):
q(max) = 2Pe'

Estimates of e and RTd for each 8's
'''true discrimination" responses were
obtained by averaging performance
over his five most accurate conditions
(seen in Figs. 4 and 5), none of which
had any responses with
RT < 250 msec. These estimates of e
and RTd (shown in Table 4) were
applied in each of the 8's remaining
conditions to obtain q (from Eq. 1),
q(max), and q(min). Table 4 presents
the results of this analysis for each of
the five 8s: mean values of these
estimates, the number of conditions in
which q < q(min), and the number in
which q(max) < q(min).

The estimated q from Eq. 1 is
inconsistent with the ali-or-none
assumption if it is smaller than q(min).
An even more conservative test of the
fast guess model, less likely to reject
the all-or-none assumption, considers
the assumption to fail only if q(max)
< q (min). The assumption was
rejected in a large majority of each S's
individual conditions, even by the
more conservative test. Examination
of Eqs. 1 and 2 shows that these
systematic discrepancies in estimates
of q imply performances that were
more efficient than could be
accounted for by the fast guess model:
8s' mean RTs decreased more than
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increase in error rate. This section will
reject this hypothesis by using the fast
guess model's equations to obtain two
irreconcilable estimates of q, the
frequency of such guesses.

Two independent estimates of q can
be obtained from S's performance in
each condition, given certain assumed
parameters of his "true
dis crimination" and guessing
performance. Equation 1 estimates q
from the error rate, given the error
probability for a discrimination
response (e). Equation 2 estimates q
from RT, the observed mean RT, given
RTd and RTg , the mean time for
discrimination and guess responses:

RTd -lIT
q=RTd-RTg

Table 4
Estimates of "Troe Discrimination" Performance (e and RTd), TestLof the Fast Guess

Model, and Mean Estimates of the ..§uessing FreqJ!.ency (q) With
Lower and Upper Bounds [q (Min) and q (Max)]

Five Most Remaining Conditions
Accurate Conditions

q<
Mean Estimates

q(Max) <
5 e RTd N q(Min) q(Min) q (Min) q q(Max)

EK (35:34) .022 364 27 21 19 .300 .201 .236
EK (85:84) .029 465 18 14 13 .311 .291 .332

TM* .018 401 14 14 11 .236 .091 .120
MMcL .027 371 14 13 12 .353 .237 .278
WL .030 432 13 12 12 .414 .236 .282
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Fig. 5. Speed-accuracy tradeoff performance for each of the three Ss in
Experiment III. The figures plot odds transformations of 8's accuracy (ratio of
number of correct responses to number of errors) on a log scale against his mean
RT in each condition for discrimination performance only (RTs ;;. 250 msec).
Open points represent conditions with RT ;;. 250 msec on all 350 trials, filled
points represent conditions from which some preprogrammed guesses (RT <
250 msec) were removed. Triangular points in Fig. 5c indicate 8 T.M.'s final nine
sessions in Experiment I. Solid lines and broken curves indicate two different
tradeoff functions fitted to each set of data (see general discussion).

evidence of a ceiling on his accuracy
for the more difficult 85 :84 stimuli.
The numbered square points in Fig. 4
indicate his performance in the most
accurate of his conditions prior to
Session 27 (those with error rates less
than 0.05). Although in some of these
earlier sessions. E.K. drastically slowed
his mean RTs (to 830 msec), he was
unable to reduce his error rates below
0.03. The ordering of the session
numbers shown in Fig. 4 indicates that
these very slow performances cannot
be dismissed simply as the result of
insufficient practice. They occurred
during his first experiences with
payoffs that demanded extreme
accuracy, when making an error was
more costly than delaying his RT for
5·20 sec. Many of these individual RTs
were longer than 2-3 sec. Figure 4
shows that E.K. could achieve error
rates as low as 0.03 with much faster
mean RTs than these; during later
conditions, he rarely allowed his
individual RTs to extend beyond
1 sec, for even the most extreme
values of D.

Test of the all-or-none assumption.
Although the data in Figs. 4 and 5
contain only responses with
RT ;;. 250 msec, the fast guess model
might still be able to explain each S's
tradeoff with its all-or-none
assumption if some intermittent
guesses were slower than 250 msec.
However, in any condition, the
number of these hypothesized guesses
must account for both the observed
decrease in mean RT and the observed
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Fig. 7. Mean RTs for correct responses and for single-response errors in
grouped sessions for each of the three 8s in Experiment III. The ordinate plots
odds favoring a correct response (ratio of number of correct responses to
number of all S's errors) in these pooled sessions.

Fig. 6. S E.K.'s mean RTs for both correct responses and single-response
errors in grouped sessions within each discrimination task. The ordinate plots
odds favoring a correct response (ratio of number of correct responses to
number of all S's errors) in these pooled sessions. Circled points for the 85:84
stimuli represent the pooled data from the five circled conditions in Fig. 4.

the RT differences depended on how
accurately S performed.
Single-response errors were faster than
correct responses only when both were
fast and error rates were high. This
difference decreased as the Ss
responded more accurately, and
actually reversed in their slowest and
most accurate conditions (which were
devoid of double-response errors).
Similar, although much more variable,
differences were observed within the
individual conditions for each S.

In Experiment III, the largest
difference in both directions occurred
for 8 W.L., who had the most difficult
discrimination task (length :width ratio
of 63:62) of the three Ss, His
single-response errors were 41 msec
faster than correct responses in his
fastest conditions (with a combined
error rate of 0.189), but his mean
error RT was 167 msec slower than his
mean RT for correct responses in
conditions whose error rates varied
about 0.029. For the most accurate of
S E.K.'s later conditions with the more
difficult discrimination in
Experiment II, his mean RT for errors
became 125 msec slower than his
mean RT for correct responses.

The considerably slower RTs for
errors with S E.K.'s more difficult
(85 :84) discrimination task appeared
related to the apparent ceiling on his
accuracy, noted for the data presented
in Fig. 4. The data from E.K.'s earlier,
very slow conditions (with error rates
less than 0.05) were not included in
Fig. 6, but as his overall mean RT
continued to increase, so did the
difference between mean RTs for
errors and correct responses. Ir the
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data from the three Ss in
Experiment III. To obtain greater
stability in the estimates of mean error
RTs, conditions with similar total
error rates were pooled. For the easier
of S E.K.'s discrimination tasks, Fig. 6
shows that single-response errors were
substantially faster than correct
responses at all levels of accuracy. For
E.K.'s difficult discrimination task,
and for those of all three Ss shown in
Fig. 7, the direction and magnitude of
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their error rates should have increased,
according to the model.

Correct response and error RTs.
Two types of errors could occur when
Ss did not preselect their response, but
attempted to base it on the stimulus
identity (performance with RTs >
250 msec). An S could make the
inappropriate response only
(single-response errors), or he could
release the other response within
100 msec of his first (double-response
errors). Single-response errors were by
far the most frequent; they accounted
for 92% and 98% of all S E.K.'s errors
with the two types of stimuli in
Experiment II, and 98%, 88%, and
62% of all errors for Ss W.L., T.M.,
and M.McL. in Experiment III. Most
of the double-response errors occurred
in Ss' less accurate (faster)
performances, and virtually all were
occasions on which 8 made the
inappropriate response first. In spite of
the fact that the first of these double
responses ostensively differed from
single-response errors only by the
subsequent occurrence of the correct
response within 100 msec, their mean
RTs were consistently slower for all
8s. The frequency of these double
responses was too low for any more
detailed comparisons to be
meaningful.

Figure 6 plots 8 E.K.'s mean RTs
for correct responses and
single-response errors, for both types
of stimuli in Experiment II, against the
odds favoring a correct response
(counting all errors) on a log scale.
Figure 7 presents similar plots of the
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(7 )

A=H t

= 1 + [Pc log, (Pc) + Pe log, (Pe)],

where Pc and Pe are the probabilities
of a correct response and an error
(Pc + Pe == 1.0), and d' in Eq. 6 is the
familiar statistic of signal detection
theory (Z is the distance value that
separates the unit normal distribution
into areas of Pc and Pe).

Only two of these accuracy
measures derive from present tradeoff
models. Equation 4 is the definition of
expected accuracy that satisfies Eq. 3
for the optional stopping version of
the random walk model (Edwards,
1965; Eq. 19). This version assumes
that S follows his most efficient
strategy in each condition, by setting a
cutoff on his expected accuracy (A)
and responding as soon as the evidence
from his sampled observations satisfies
this criterion. Equation 4 can also be
obtained from other formulations of
the optional stopping version (Stone,
1960; Laming, 1968), and holds only
for choices between two equiprobable
stimuli when error costs are equal for
both. The function becomes much
more complicated in less symmetric
cases (Edwards, 1965).

A fixed stopping version of the
random walk model assumes that S
always preselects the number of
observations he samples prior to each
trial, and then responds with whatever
accuracy he can achieve. Equation 6
provides an exact definition of A for
this version when the diagnostic
impact of a single observation,
conditional on each stimulus, can be
represented by two normal densities
with equal variance (Green & Swets,
1966; Eq.9.1). But in many other
cases, Eq. 6 will provide a good
approximation to A, whose adequacy
increases with the size of S's fixed
sample (increasing RT). Using this
measure of A, Taylor, Lindsay, and
Forbes (1967) produced very close fits
to tradeoff data obtained by
Schouten and Bekker (1967).

Unfortunately, other proposed
incremental models do not present
their predicted tradeoff functions in
sufficiently explicit forms. The
remaining two measures, Eqs. 5 and 7,
were selected because they have been
used successfully to fit empirical
tradeoff data in other experiments.

five slowest of these earlier conditions
(not the earliest, but those exerting
the greatest pressure for very accurate
performance), E.K.'s error rate was
0.030 and his mean error RT was
775 msec slower than his mean time
for correct responses.

GENERAL DISCUSSION
The Elusive Tradeoff

Experiments II and-Ifl clearly reject
the fast guess model's assumption of
all-or-none discrimination. Both
demonstra ted tradeoffs between
discrimination speed and accuracy that
could not be accounted for by a
qualitative change in strategy (fast
guesses). Experiment III also specified
conditions in which Ss would exhibit
such "true" tradeoffs. The Ss in
Experiment I apparently used only
two homogeneous response strategies,
not because they could not trade
accuracy for speed over a wide range
without resort to fast guesses, but
because the payoff structure
discouraged such tradeoffs by making
them suboptimal.

As the fast guess model assumed, a
preprogramrned guessing strategy was
an easily discovered option, and
available to all Ss. It permitted a
considerable increase in each S's speed,
at the cost of chance-level error rates,
by apparently allowing him to make a
lower-level detection response to the
simple presence of the stimulus. Since
the time-cost function used in
Experiments I and II was proportional
to S's total RT, any reduction in RT
increased his net payoff-if it did not
also increase his error rate. Reasonable
extrapolations of all five sets of
tradeoff data in Experiments II and III
(from which fast guesses had been
removed) implied that S's accuracy
would drop to chance level for
performances considerably slower than
he could obtain with his guessing
strategy. This large fixed cost in time,
for even the smallest improvement in
accuracy, meant that the Ss in
Experiments I and II earned a higher
payoff by guessing until the loss in
payoff for making an error (D) became
fairly large.

The substantial dead time,
apparently necessary before responses
could be based on any evidence about
the identity of the stimulus, can
explain why Ss refused to perform
with intermediate or high levels of
errors in Experiment I (and perhaps
also in Swensson and Edwards's
experiments). Certainly, the free delay
procedure of Experiment III, which
reduced or eliminated the cost of this
dead time, elicited considerably faster
and less accurate performances than
any of the three Ss had adopted in
Experiment 1. Their determination to
avoid performing with high error rates,

together with values of D just
sufficient to induce a switch from
guessing to discriminating, probably
accounts for the high degree of
stability in S8' mean RTs and error
rates during the final conditions in
Experiment !.

The explicit costs and payoffs did
not completely control S8'
performance, however. In
Experiment II, S R.P. refused to slow
his mean RT to attain the very low error
rates he demonstrated during his initial
training, even when the payoffs
exerted considerable pressure for high
accuracy. Also in Experiment II,
S E.K. produced fast but inaccurate
nonguessing performances that were
suboptimal-dominated in expected
payoff by his guessing strategy.
However, he did exhibit a considerable
number of fast guesses during these
sessions, as well.

Parameters of
Speed-Accuracy Tradeoffs

Fitted tradeoff functions. To
discuss tradeoff data-reven on a
strictly empirical level-the data points
from individual performances must be
summarized by a theoretical function
that relates some measure of average
RT to some measure of accuracy.
Ideally, such a function would be
implied by a particular model of S's
real-time discrimination process. This
section will discuss the tradeoff data
from Experiments II and III in relation
to four theoretical functions. All are
monotonic tradeoff functions, in the
sense that they associate an increase in
S's expected accuracy with each
increase in his mean RT. Any specific
monotonic tradeoff function can be
converted to a linear function of mean
RT by defining "accuracy" as a
particular monotonic transformation
of error rate. Letting A represent the
appropriate error-rate transformation,
these functions have the form:

A = b(RT - C). (3)

The constant C can be interpreted
as the expected delay contributed by
all processes that S must perform if his
accuracy is to exceed chance level:
stimulus input, detection, and motor
times, plus any dead-time interval
required for a choice response. The
parameter b is the slope of S's tradeoff
function, it reflects the rate of increase
in A per unit increase in S's RT, once
it exceeds C. For RT.;;; C, A is
assumed to be at chance level.

The five sets of tradeoff data
obtained in Experiments II and III
were fit by least-square
approximations to Eq. 3 for A defined
by the following four functions:

A = (Pc - Pe) In [::] ,

A = In [::] ,

A = (d')' ~ (2Z)',

(4)

(5)

(6)
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*Estimated rate of increase in A (as defined by Equations 4-7) per 10-msec increase
in S's mean RT.

Table 5
Slopes* of the Four Tradeoff Formulations Fitted to Data from Experiments 11 and III

Pew (1969) demonstrated good fits to
both individual and group data using A
defined by Eq. 5. This definition of A
is proportional to the accuracy metric
used for plotting Figs. 4-7; it
approaches Eq, 4 asymptotically as Pc
approaches 1.0. Equation 7 defines H t ,

the number of bits of information
about the identity of two
equiprobable stimuli that are
transmitted by S's responses (assuming
equal error rates for both responses).
As an empirical relation, 1 H, has
produced good linear fits to mean RT
for tradeoff data in a number of
experiments (Hick, 1952; Hale, 1969;
Pachella & Fisher, 1969; Swanson &
Briggs, 1969).

All four functions produced good
fits to the five sets of tradeoff data
shown in Figs. 4 and 5. 2 Even the
poorest fit accounted for more than
72% of the total variance between
speed and accuracy over conditions;
the best fits accounted for more than
90%. No function was either decisively
superior or obviously inferior for any
set 0 f data; the difference in
percentage of variance accounted for
by the best and worst fits ranged from
1.8% to 9.2%. Two of these four
functions, those from Eqs. 4 and 6,
respectively, are shown plotted as
dotted and solid lines in Figs. 4 and 5.
The four fitted functions differed
substantially in shape only for
performances with extremely high or
extremely low error rates. Over the
range of accuracy scores in these data
(and those obtained by most other
experiments), each of the four
functions would provide an acceptable
two-parameter fit to data generated by
any other.

Tradeoff function slopes. Table 5
presents each function's estimated
slope for the five sets of tradeoff data
from Experiments IT and III. The
numbers represent the estimated rate
of increase in the appropriate measure
of accuracy for each 10-msec increase
in S's mean RT. Increased stimulus
difficulty (increasing similarity of the
stimulus rectangles' length and width)
clearly seemed to make Ss' tradeoff
functions less steep. All tradeoff
functions estimated their lowest rates

II

not. Table 6 shows a slight tendency
toward slower intercepts for the more
difficult of S E.K. 's stimulus
discriminations, but this did not occur
with all of the four tradeoff functions.

Present incremental models that
predict speed-accuracy tradeoffs
devote scant attention to the
function's RT intercept at chance
accuracy. Without data to argue
otherwise, these models have assumed
that this intercept was at S's "simple"
RT (Stone, 1960; Edwards, 1965;
Vickers, 1970). The present data
indicate that this assumption is
certainly not true, at least for
reasonably difficult discriminations.
Dead-time estimates for these data
were nearly as long as the range in RTs
over Ss' tradeoff functions, from
intercept estimates to the highest
accuracy scores obtained.

The presence of these dead times
could be interpreted in several ways.
Two obvious possibilities arise from
the distinction frequently made
between two hypothetical serial stages
of processing: stimulus identification
and response selection (Smith, 1968;
Welford, 1968). Differences between
tradeoff-function intercepts and mean
RTs for preprogrammed guesses could
reflect: (1) some additional time S
needed to wait (after he already had
adequate evidence that the stimulus
had appeared) before his processing
yielded any evidence about the
stimulus identity, or (2) some fixed
choice time (after processing the
stimulus information) required to
select and prepare the appropriate
physical response. The latter, response
selection, interpretation of these dead
times seems unsatisfactory, because it
implies that choice RTs would always
have to be at least 80-100 msec slower
than preprogrammed guesses. Using
the same physical responses, but easily
discriminable stimuli, Swensson and
Edwards (1971) obtained mean RT
differences much smaller than these
(15-20 msec and 45-70 msee), even
when Ss' accurate performance was far

Table 6
Estimates in Milliseconds of RT Intercepts at Chance-Level Accuracy (C) by the Four

Tradeoff Formulations, and Estimated Delld Time (DT)'" for Each S

Random Walk Modeia Empirical Functions

Optional Fixed

~(::)-Stop Stop H t
Experi-

ment S C DT* C DT C DT C DT

11
EK (35:34) 302 106 307 110 290 93 298 91
EK (85:84) 317 120 324 127 306 109 292 95

TM 286 95 295 104 220 29 267 76
III MMcL 288 92 297 101 279 83 274 78

WL 285 97 294 96 270 72 254 66

MeanS 296 102 303 108 273 77 277 81

*Difference between each estimate of C and S's mean RT for preprogramrned guesses
from Experiment 1 (Experiment II for S EK).

of increase in accuracy for Ss E.K. and
W.L., who had the two most similar
pairs of stimuli (length:width ratios of
85:84 and 63:62). Estimated slopes
were also much lower for the tradeoff
data from S E.K.'s more difficult
(85:84) pair of stimuli than for the
data from his easier (35 :34) pair.

Tradeoff function intercepts.
Table 6 presents each function's
estimate of C, S's RT intercept at
chance-level accuracy, and also his
estimated dead-time delay. These dead
times are defined as the difference
between each estimate of C and S's
mean RT for preprogrammed guesses
(from Experiments I or II); they
represent each function's estimate of
the delay (in addition to stimulus
detection and response execution
times) before S could respond with
better-than-chance accuracy. Both
versions of the random walk model
estimated dead times close to
100 msee-rabout 20-30 msec longer
than those from the two empirical
tradeoff functions-when averaged
over the five sets of tradeoff data.
Unlike estimates of the tradeoff
slopes, the intercept estimates showed
little systematic change with stimulus
similarity among these generally
difficult pairs of stimuli. Apparently,
the processes that determine the
tradeoff function's slope seem to be
sensitive to relatively small changes in
discriminability, while those that
contribute to the dead-time delay are

.541

.213

.316

.375

.226

Random Walk Models

Optional
Stop

III

Experi
ment S

EK (35:34)
EK (85:84)

TM (55:53)
MMcL (50:49)
WL (63:62)

------
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better than chance level (3%-8%
errors). It seems unlikely that the
difficulty of Ss' discrimination should
affect the amount of time they need
to select or prepare their physical
response, once the stimulus has been
categorized.

Other Aspects of
Discrimination Performance

Aside from the overall tradeoff
functions, some of the more detailed
data from Experiments II and III seem
to have significance for theoretical
models of discrimination. This section
considers these effects and examines
their generality.

Correct-response us error RTs.
Single-response errors, trials on which
only the incorrect response occurred,
comprised the great majority of an
errors when Sa did not guess (RTs >
250 msec); double-response errors
never occurred when Ss' error rates
were less than 0.10. The difference in
mean RTs between correct responses
and these single-response errors
seemed to depend on two factors: the
difficulty of S's stimulus
discrimination and the position on his
speed-accuracy tradeoff at which he
chose to perform. In earlier data with
easily discriminable stimuli of similar
type (diagonal bars), single-response
errors were consistently 16-24 msec
faster than Ss' correct responses
(Swensson & Edwards, 1971). With
the difficult discrimination tasks and
time pressure in the present
experiments, errors became
increasingly faster than correct
responses as D decreased and Ss'
overall performance became faster and
less accurate. This difference reversed
for Ss' slowest and most accurate
conditions in Experiments II and III
(with the largest values of D), in which
errors were slower than correct
responses (except for S E.K., in his
easier discrimination task). For the
two most difficult discrimination
tasks, mean error RTs were 125 and
167 msec slower than mean correct
RTs when these Ss responded most
slowly and accurately.

These data seem to resolve the
apparently conflicting results reported
by previous experiments. Faster RTs
for errors seem to come from choice
RT experiments (with relatively easy
stimulus discriminations), which
typically include strong time pressure
(Lemmon, 1927; Weaver, 1942;
Rabbitt, 1966; Egeth & Smith, 1967;
Schouten & Bekker, 1967; Laming,
1968; Hale, 1969). Experiments that
used more difficult stimuli generally
also emphasized accuracy much more
than speed of discrimination. These
experiments typically report slower
RTs for errors than for correct
responses (Kellogg, 1931; Hecker,

Stevens, & Williams, 1966; Pickett,
1967; Audley & Mercer, 1968; Pike,
1968; Vickers, 1970). One early study
(Henmon, 1911) had 10 Ss
discriminate the longer of two lines
that were very similar in length (20.3
and 20.0 mm], for many sessions with
an emphasis on their response speed.
Within the RT distributions for each S,
both the fastest and the slowest
responses contained higher frequencies
of errors than those with intermediate
RTs. Had the nonguessing (tradeoff)
performance of each S in Experiments
II and III been pooled over conditions,
the resulting RT distributions would
have resembled Henmon's (1911) data.

By the use of large variations in the
pressure for accurate relative to fast
performance, Experiments II and III
demonstrate a continuous transition
between the conditions that
differentiate the traditional
discrimination and choice RT
experiments. Data from experimental
conditions that imposed very large
losses in payoff for errors resembled
those of traditional discrimination
tasks, in which time pressure is weak
compared to the demand for accurate
performance. As typically found in
such experiments, Ss' performances
were very accurate and their errors
were generally slower than correct
responses. Experimental conditions
that reduced the cost of making errors
made the time pressure more
significant, as it is in the usual choice
RT task. Even in the absence of fast
guesses, when these Ss performed their
difficult discriminations fast enough to
begin trading accuracy for speed, their
data began to resemble those typically
obtained in choice RT experiments:
errors became faster than correct
responses.

An accuracy "ceiling." The
existence of an upper limit on
discrimination accuracy is not a novel
concept. An accuracy ceiling is
assumed implicitly in any
experimental procedure that uses error
rate as its sole measure of
discrimination performance, without
attempting either to make S respond
quickly or to limit the time for which
the stimulus is available to him. In
Experiment II, S E.K. appeared unable
to reduce his error rate below 0.03 for
his more difficult task, however slowly
he responded. Under extreme pressure
to achieve high accuracy, he slowed his
mean RT by 400 msec--almost triple
the time he needed to reduce his error
rate from 0.30 to 0.03-with no
further reduction in errors.

Apparently after some point,
additional observation time did not
contribute further to the accuracy of
S E.K.'s more difficult discrimination,
but it did increase his cost for response
time. Because he could have achieved

the same accuracy with faster RTs, all
of these costly but futile attempts to
eli min ate errors represented
suboptimal performances. In his later
conditions, S E.K. refused to exhibit
these attempts. None of the three Ss in
Experiment III ever exhibited this
kind of direct evidence of an accuracy
ceiling, perhaps because their error
costs were never as large and their
discrimination tasks were somewhat
easier. However, the slow error RTs
noted in the most accurate
performance of these Ss might
indirectly reflect an accuracy ceiling.
For S E.K., there was an intimate
association between performance at
maximum accuracy and his mean RT
difference between errors and correct
responses. When he slowed his overall
performance most drastically, this
difference grew to 775 msec.

Models for Discrimination
Under Time Pressure

Performance in a discrimination
task clearly depends on both of two
types of factors: (1) characteristics of
the stimuli to be discriminated and
(2) the interacting pressures for speed
and accuracy that are either explicit in
S's costs and payoffs or are implicit in
the instructions and procedure. The
present experiments demonstrate how
these latter procedural factors can
determine many of the overall and
de t a it e d c h a rae t e r i s tics 0 f
discrimination performance. A model
for discrimination under time pressure
that is general enough to account for
these data could subsume both easy
and difficult discrimination tasks. The
traditional discrimination and choice
RT experiments might be regarded as
special cases: highly similar stimuli
discriminated under very weak time
pressure, and dissimilar stimuli
discriminated under strong time
pressure.

The present results suggest a
number of constraints upon any
general model for discrimination under
time pressure. Stimulus characteristics
must determine limits on S's capability
to trade discrimination speed for
accuracy. The results suggest that they
determine: (1) a minimum value of RT
(slower than detection times) before
accuracy can exceed chance level, (2) a
specified growth in accuracy (assumed
to be monotonic) as mean RT
increases over the tradeoff region, and
(3) an accuracy ceiling (perhaps
measurable in practice only for
difficult discriminations, whose ceiling
is low). A prospective model would
also have to account for how S's
detailed performance seems to change
over his range of possible tradeoffs:
(1) slower mean RTs for errors than
for correct responses when S
apparently performs at or near the
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maximum accuracy he can achieve,
and (2) faster mean RTs for errors
when S's accuracy is substantially less
than its maximum level.

The most straightforward
accounting of these phenomena is in
terms of the incremental models,
which provide for speed-accuracy
tradeoffs in the discrimination process
itself. The second of the following
three sections attempts to do this; it
points out present inadequacies in
these models and discusses how they
might be modified, focusing on the
random walk model. The final section
describes an alternative type of model,
one that postulates a race between two
independent processes: a resurrected
a ll-or-none discrimination and an
internal response "deadline." First,
however, it seems appropriate to
reconsider the fast guess model.

A modified fast guess model. Too
sharp a focus on the failure of the
all-or-none assumption for
discrimination loses sight of the fast
guess model's success in coping with a
rather dramatic empirical fact. When
an S performs a discrimination task
under pressure to respond quickly, he
may not (and frequently does not)
always attempt to discriminate the
stimulus. Yellott (1971) argues that a
more sophisticated interpretation of
the fast guess ideas would view them
as a model of how different mixtures
of S's available response strategies
affect his mean performance. Whether
the model should assume that stimulus
discrimination is a single-stage
(all-or-none) or a multiple-stage
(incremental) process, Yellott feels, is
a matter for empirical data to
determine. In addition to simply
deciding whether to guess or to
respond from a discrimination state, S
might also be able to predetermine
which of several incremental
discrimination stages would provide
the output for his response.

Yellott (1971) shows how the fast
guess model's equations enable
statistical estimation of mean latencies
for both guesses and "stimulus
controlled" responses. If the estimated
discrimination latency remains
invariant over changes in S's accuracy,
there is evidence that he used only a
single stage of discrimination; lack of
invariance would indicate the use of
multiple stages. Yellott points out that
a single-stage (all-or-none) assumption
appears to hold quite well for the
available data from easier
discrimination tasks, such as Swensson
and Edwards (1971).

YelloWs (1971) reinterpretation of
the fast guess model, without a
commitment to any particular model
for stimulus discrimination, can make
it consistent with the present results.
However, the model now seems to

require the estimation of six
parameters, which can assume
different values in each condition.
Three of these parameters relate to S's
discrimination responses: (1) e , the
error probability, (2) RTd for correct
discrimination responses, and (3) RTd
for errors in discrimination. Both
Parameters 2 and 3 seem necessary
because the present results indicate a
difference in RT between correct and
erroneous discriminations, which
apparently changes substantially as S
changes his speed-accuracy trade (I.e.,
the number of stages in his
discrimination process) without
producing fast guesses. The three
remaining parameters for each
condition relate to characteristics of
S's guesses: (4) q, the guessing
probability, (5) the guess-response bias
(between S's two responses, given that
he guesses), and (6) RT~, the mean RT
for guesses in that condition.

With only two stimuli and
responses, the data from each
condition can provide only six
independent quantities that can be
used in estimating the six parameters
of the expanded fast guess model:
mean RTs for each of the four
stimulus-response combinations and
two error probabilities. Without some
constraints on these parameters (e.g.,
some assumed invariance over
conditions), the fast guess model
becomes untestable, guaranteed to fit
any set of data. Yellott (1971) seems
to feel that the model is most useful as
an estimation tool: e.g., to obtain
statistical estimates of discrimination
latencies that are uncontaminated by
S's guessing times. But, although use
of the model's equations avoids the
difficult problem of identifying which
of S's responses were guesses and
which were discriminations, such a
procedure assumes the model's
validity. Without a means to check the
fast guess model's assumptions,
expanding the number of its
parameters saves the model from
rejection at the risk of making
estimates of these parameters
meaningless.

Incremental discrimination models.
Present incremental models all assume
that S has attempted to discriminate
the stimuli. They differ primarily in
their assumptions about how S
accumulates information over
observations, and the mechanisms by
which he triggers a response. The
essential predictions of most of these
models are not affected by their
assumptions about the kind of
evidence these observations
provide-i.e., either qualitative
(binary) or quantitative (relative
likelihood) evidence about which
stimulus is present. Random walk
models, in both the optional and fixed

stopping versions, assume that the
cumulative impact of all S's stimulus
observations is stored in a single
"register." Each observation changes
the current value in this register,
adding or subtracting an amount
assumed to depend on which stimulus
was the more likely to have produced
it (and usually also on the
observation's likelihood ratio). The
optional stopping version assumes that
S responds as soon as the random walk
of the register's value reaches either an
upper or a lower cutoff, whose settings
determine S's expected accuracy for
each response (and indirectly, his
expected RTs). The fixed stopping
version assumes some timing
mechanism or counter that terminates
S's observing process, together with a
single criterion that determines which
response he will make, based on the
sample of evidence in his register.

Versions of the accumulator model
(LaBerge, 1962; Audley & Pike, 1965;
Pike, 1968; Vickers, 1970) assume two
registers, each accumulating evidence
favoring one of S's two responses.
Because these models assume that each
observation changes only one
accumulator without affecting the
other, the process resembles a race; S's
response depends upon which
accumulator reaches its cutoff first.
The runs model (Audley & Pike, 1965;
Pike, 1968) is similar to the
accumulator model for binary valued
observations, except that an increase
in one accumulator is assumed to
"zero out" the other. Thus, the two
registers accumulate only runs of
consecutive observations that favor a
particular response.

In their simplest forms, none of
these models can explain how errors
can be both faster and slower than
correct responses. The optional
stopping random walk model with
fixed response cutoffs predicts
identical mean RTs for errors and
correct responses (Stone, 1960;
Laming, 1968; Audley & Pike, 1968).
The fixed stopping version makes the
same prediction if the size of S's fixed
sample does not change between trials;
all responses based on the same
number of observations will have the
same mean RT (i.e., RT variability can
result only from random variation in
input and motor components of RT).
Both the accumulator and the runs
models predict that errors will be
slower than correct responses (Audley
& Pike, 1965; Pike, 1968), although
some accumulator models may predict
almost identical means for correct and
error RTs when S's responses are fast
and inaccurate (Vickers, 1970).

Several suggested modifications
would allow an incremental model to
predict faster mean RTs for errors
than for correct responses. Each such
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modification postulates some inherent
variability from trial to trial, either:
(1) in S's stopping criteria (Fitts,
1966; Pike, 1968), or (2) in the initial
values assumed by S's internal register
or accumulators when the stimulus
appears (Laming, 1968). In any
incremental model, S's stopping
criteria simultaneously control both
his expected accuracy and his mean
RT by controlling the expected
number of observations (expected
sampling time) required to satisfy
these criteria. Any variation in the
stopping criteria between trials would
associate S's less accurate responses
with his shorter RTs (thus making the
mean RT faster for errors). If, as
suggested by Laming (1968), S began
his sampling prematurely, then the
i nitial values in his register or
accumulators at the time the stimulus
appeared might be different on each
trial. By introducing variability in the
expected number of observations S
required to reach his (constant)
stopping criteria from trial to trial,
such premature sampling would
produce effects similar to those of
fluctuating criteria.

However, trial-to-trial variation of
either type does not help the random
walk models to account for slower
mean errorRTs in some conditions,
nor does it help any of the incremental
models to account for an upper limit
on the accuracy 8 can attain with very
difficult discriminations. None of
these models presently provide for any
explicit limit on the number of
incremental discrimination stages. In
particular, the random walk models
directly imply that 8 could reduce his
error rate to any arbitrarily low level
by continued sampling-r-i.e., for
sufficiently slow RTs.

One possible approach to modifying
these models would follow the lead of
signal detection theory (Green &
8wets, 1966) and postulate that 8 uses
an optimal policy, given certain
assumed limitations on his information
processing capabilities. The optional
stopping random walk model, with
response cutoffs that remain fixed at
some particular expected accuracy,
embodies the most efficient sampling
procedure for basing a discrimination
upon an unlimited number of
independent and probabilistic
observations (Stone, 1960; Edwards,
1965). The presence of an accuracy
ceiling could reflect a limit on the
number of useful observations Scan
sample. If 8's observations were
truncated, there would be a limit on
the expected amount of evidence he
could obtain before some "critical
duration" elapsed.3 This would
enforce a ceiling on his discrimination
accuracy and change the sampling
strategy that would be optimal for him
to use.

With only a limited number of
observations available, costs for errors,
and a fixed cost per observation
(proportional to time spent observing),
an optimal sampling procedure would
relax its decision criteria as the
truncation point approached (8wets &
Birdsall, 1967; Bridsall & Roberts,
1968; Rapoport & Burkheimer, 1971).
By following this procedure, S would
maximize his payoffs (minimize cost),
because his sampling would terminate
when additional observations could
not provide evidence sufficient to
change his decision. Such additional
observations would be wasted; they
would increase S's RT, but could not
improve his accuracy. Thus, a
modified optional stopping random
walk model, with progressively
relaxing cutoffs, would embody an
optimal adjustment to an accuracy
ceiling that resulted from a limit on S's
effective observation interval. Pike
(1968) showed that accuracy cutoffs
that relax with the number of
observations (observing time) cause
the random walk model to predict
slower mean RTs for errors than for
correct responses. Cutoffs that become
more lax over time will associate S's
less accurate responses (more frequent
errors) with his longer observation
times (slower RTs). The greater
frequency of errors among S's slowest
RTs would produce a slower mean RT
for errors-even though errors might
represent only a small proportion of
his responses.

The results of a large number of
studies argue for a progressively
relaxed cutoff in any discrimination
model that postulates a stopping
criterion based on S's expected
accuracy. These experiments measured
time and accuracy when the
discrimination difficulty varied
randomly from trial to trial (Henmon,
1906; Lemmon, 1927; Kellogg, 1931;
Johnson, 1939; Festinger, 1943a, b;
Birren & Botwinick, 1955; Botwinick,
Brinley, & Robbin, 1948; Thurmond
& Alluisi, 1963; Morgan & Alluisi,
1967; Pickett, 1964, 1967). For trials
on which the more difficult stimuli
occurred: (1) mean RTs were slower
and (2) error rates were higher. The
first of these results argues that Ss did
not simply predetermine some
observation interval and then respond
with whatever accuracy they could
achieve. The second result indicates
that if these Ss established some kind
of criterion on their expected accuracy
for responding, they allowed this
criterion to relax with increased
observing time.

With the kinds of modifications
considered here, either the optional
stopping random walk model or the
accumulator models might account for
the present results. Both seem to
require either: (1) trial-to-trial

variability in S's stopping criteria and
some critical observation duration (to
explain a ceiling on accuracy), or
(2) two equivalent modifications that
will produce the same effects.
Although the modified random walk
model seems more cumbersome than
the accumulator models, this is
primarily because of its greater original
simplicity (assuming only one internal
"register" rather than two
"accumulators"). The two modified
models may in fact be virtually
indistinguishable by empirical data.
Pike (1968) showed that for
binary-valued observations, a random
walk model whose optional stopping
cutoffs relax by a fixed amount after
each observation is formally identical
to an accumulator model. Both types
of models seem sufficiently unwieldy
to motivate seeking an alternative type
of model.

A deadline model. There is an
alternative to the incremental models
for the task of discrimination under
time pressure. The deadline model
begins with the original fast guess
model, but adds another process that
races with 8's all-or-none
discrimination to determine his
response. It assumes that whenever S
decides to attempt a discrimination
(not to make a fast guess), his
detection of the stimulus starts an
internal timer. This timer triggers a
response "deadline" after some
variable interval, whose mean duration
8 can adjust. The S responds either
when he reaches a discrimination state
or when his deadline elapses,
whichever comes first.

A change in his mean deadline time
changes S's trade between speed and
accuracy. Shorter deadlines are more
likely to elapse before S reaches a
discrimination state, thus they replace
more of his slowest discrimination
responses with chance-accuracy
guesses triggered by the deadline. This
deadline model resembles a model
developed by Nickerson (1969), to
account for RTs in "same"-"different"
judgments. It has also been mentioned
as a possible tradeoff mechanism by
Yellott (1971) and R. T. Oilman
(personal communication).

With no restrictions on the
probability distributions assumed for
discrimination or deadline latencies,
the model is too flexible to be very
useful. However, to account for the
present results, the latency
distribution for these difficult
discriminations must be bounded from
below and must assign substantial area
to very long (perhaps infinite)
latencies. The lower bound is required
to account for the slow
chance-accuracy intercepts of S's
tradeoff functions; there must be some
dead-time interval (e.g., 80-120 msec)
after S detects the stimulus and before
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he has any probability of entering a
discrimination state. This lower bound
can also explain faster mean RTs for
errors than for correct responses when
time pressure forces 8 to set very short
deadlines. If 8 shifted his deadline
distribution to extend partly below
the minimum discrimination latency,
then correct responses would
outnumber errors only among S's
slower RTs, which could include some
discrimination responses.

The second constraint on S's
distribution of discrimination latencies
simply implies that sometimes Seither
would never reach a discrimination
state, or would reach it only after
some long delay. On these trials, only
S's deadline insures that he will in fact
res pond within some reasonable
amount of time. If the discrimination
distribution were concentrated in
some finite area, then S would be
guaranteed to reach a discrimination
state by setting his deadline
sufficiently long; his mean RT and
accuracy would increase
monotonically, but only until all
responses were based on
discriminations. Thereafter, S's
performance would not change,
however long he set his deadline.

The presence of an accuracy ceiling
suggests that the discrimination
process is "blocked" and produces no
output on some trials. After some
point, longer deadlines continue to
slow S's RTs, but do not further
increase his proportion of
discrimination responses. Mean RTs
would increase much more rapidly for
errors than for correct responses as S
continued to extend his deadline, since
these very slow deadline-produced
responses would constitute a much
higher proportion of his errors than of
his correct responses.

Any serious test of the deadline
model requires more complete
specification (or independent
estimation) of the probability
distributions assumed for the deadline
and discrimination delays. The model's
credibility also requires a
demonstration that 8s can actually
carry out these two processes
independently at the same time. In a
simple RT task, OIlman and Billington
(1972) have shown that Ss do have the
ability to release a predetermined
response, either when an internal
deadline elapses (an anticipation
response) or when an auditory signal
occurs (a detection response),
whichever comes first. In a later simple
RT experiment (personal
communication), OIlman was able to
infer deadline time distributions that
could be well approximated by
standard distributions; some were best
fit by normal distributions, others by
the displaced exponential.
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NOTES
1. Hick (1952) suggested several

conceptual models that would predict linear
relationships between RT and Ht for
errorless performance. when Ht reflected
variations in the number of stimuli and
responses and the uncertainty of
the stimulus sequence. However. Oilman
(1966) has pointed out that Hick's models
cannot predict linearity between R T and Ht
when these measures reflect only variations
in S's speed-accuracy tradeoff. For the
two-choice case, a corrected version of
Hick's theories leads to the fast guess model
(Ollman, 1966).

2. Data prior to Session 27, for 8 E.K.'s
more difficult discrimination task. were not
used in fitting these functions. As discussed
later, these earlier accurate performances

seem to reflect a discontinuity in 8's
tradeoff function. The five unusually poor
performances from his later conditions in
the task (circled points in Fig. 4) were also
arbitrarily omitted: correlations for all four
functions were about equally degraded
when these data points were included.

3. Critical durations, similar in magnitude
to those considered here (Le .•
150-200 msec), have been found in other
tasks that required identification of visual
stimuli (Kahneman & Norman, 1964;
Kahneman, Norman. & Kubovy, 1967).
These studies measured the duration within
which time-intensity reciprocity held for
certain form discriminations.
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