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Two information processing models of the perception of
binary patterns are outlined. The H (k-span) model assumes
S er;aluates the transitional uncertainty associated with the
different k-tuples constituting the pattern. The H (run-span)
model assumes S codes the pattern into runs and then evalu­
ates the transitional uncertainty associated with the pattern's
run-tuples. Both models give a measure of the complexity
of a pattern. The models are tested by using the complexity
measures to predict various response indices of pattern
complexity; e.g. judged pattern comp lexity, mean number
of words to describe a pattern, accuracy of recall of a pat­
tern. H (run-span) proved to be highly correlated with all of
the pattern complexity indices. H (k-span) received only
moderate support.

The purpose of this paper is to present two in­
formation measures of the complexity of binary
sequences or strings with special emphasis on re­
peating binary patterns such as: aab, aab ... ; abaabb,
abaabb ...; etc. Such measures are of interest be­
cause they are based on hypotheses of how Ss code
and organize sequential stimuli; binary patterns are
of special interest because they are easily generated,
and their simplicity presumably exposes the pro­
cess of perceptual organization more clearly than
other patterns.

Existing measures of the complexity of sequential
binary patterns are primarily response measures.
Glanzer and Clark (1963a, b) propose that the mean
number of words used to describe a pattern be used
as a measure of pattern complexity. They presented
tachistoscopically the 256 binary numbers of length
eight. After a brief exposure S reproduced the pat­
tern and an accuracy of recall score was obtained
for each number. Another group of Ss was shown
each number for 30 sec and then asked to write
a short description of it. The mean number of words
used to describe the number correlated highly with
the accuracy scores. Depending upon the particular
stimulus representation of the binary number, the
correlation between mean verbalization length (MVL)
and accuracy ranged from -.79 to -.83. Glanzer
and Clark (1964) also demonstrate that MVL is cor­
related to the same extent with judged complexity
of conventional geometric figures. Thus. MVL is
a widely applicable response measure of pattern
complexity.

Another response measure of binary pattern com-

plexity has been proposed by Royer and Garner
(1966). They also used binary numbers of length
eight, but presented the patterns as repeating series
of two distinct tones. There are equivalences ex­
isting within the 256 numbers due to complementarity
and cyclic repetition. When these equivalences are
taken into account there remain 20 different repeat­
ing 8-place binary patterns. The S listened to the
repeating patterns and at whatever time he believed
he could follow the pattern he began predicting.
Although the Ss had equal opportunity to select any
of the logically possible starting points they USUally
showed marked preferences for particular starting
points. As a measure of perceptual complexity Royer
and Garner computed the uncertainty associated with
the probabilities of starting each pattern at differ­
ent possible starting points. This response point
uncertainty (RPU) measure is proposed as a mea­
sure : of S's difficulty in organizing a pattern and
can be considered a measure of pattern complexity.

Although they are useful, there are fundamental
difficulties with response measures of pattern com­
plexity. One important limitation is that complexity
cannot be evaluated in advance. Because of the large
number of stimulus patterns of experimental interest,
having to run Ss to get a measure is a serious re­
striction. In addition, a correlation between two
response measures is often hard to interpret caus­
ally; e.g., does the mean number of words to describe
a pattern determine perceptual accuracy?

The complexity measures developed here, H(k-span)
and H(run-span), are derived from stimulus char­
acteristics of the pattern, and are based on simple
models of how binary sequences are perceptually
organized.

Modell: H (k-span)
For the present we will consider only repeating

binary patterns. (The model's restriction to binary
patterns is only for convenience since it can be
applied to repeating patterns consisting of any num­
ber of different elements, e.g., trinary patterns such
as aabbbcc, aabbbcc, etc.) The major operation of
the H(k-span) model is evaluation of the uncertain­
ties in the pattern starting with HO, the uncertainty
associated with the absolute probabilities of the two
events. then progressing to first order transitional
uncertainty, HI' then to second order transitional
uncertainty, H2' to H3•...Hn- Evaluation of the
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higher order transition uncertainties stops when Hn
equals zero. Of course, to evaluate the increasingly
higher transition uncertainties an increasingly longer
memory span is required, hence the name H(k-span).
The complexity of a pattern is defined as the total
of the average uncertainties evaluated during this
process, i.e.,

N
H(k-span) = ~ Hnn=o

The following transition matrices summarize the
model for the repeating pattern, aabhab, aabbab, ....
Although something like this analysis is described
in Attneave (1959), the representation of the transi­
tion matrices and uncertainties used here follows
the Markov model as presented by Binder and Wolin
(1964), in which H=-:SPi Pi jlog2 Pij' where Pi and
Pij are the absolute probability of being in state i
and the transition probability of going to state j

after being in state i, respectively.
Repeating Pattern: a a b b a b (HO: memory = k = 0)

In this special case the Markov measure becomes
the familiar H = -:2::Pi log2 Pi' I.e., the information
associated with the absolute probabilities of a and b.

For the binary pattern, aabbab,

3
H(k-span) = ~ Hn = 1.00 + 0 .92 + 0.66

n=o

= 2.58 bits.
The measure H(k-span), which summarizes the

preceding process, is based on a model of a theo­
retically perfect perceiver since there are no all­
justments or parameters included to account for
human deviation from the model. It is assumed that
human Ss closely approximate the model.

A more detailed description of the k-span model
will not be given since its general adequacy can
be tested without further development. The H(k-span)
values for all the repeating binary numbers of
lengths 1-4, 6, and 8 are presented in Table l.

For computational purposes it is important to
note that the laborious transition matrix analysis
previously outlined can be avoided. The H(k-span)
value of any pattern is equal simply to the 10g2 of
the length of the pattern, where the length is the
number of elements in the pattern. Thus, all re­
peating patterns of length 6 have H(k-span) values
of 2.58, etc. The basis of this interesting and use-

Transition Matrix Summary of H (k-span) for Repeating Pattern: aabbab

Pi state i

]/2

1/2

a

b

hOo= 1/2 1092 1/2 = 0.50

hOb= 0.50

HO = hOo + hOb= 1.00

Hr memory = k = 1.

Pi state i

1/20
1/2 b

state j

a b

1/32/3
2/3 1/3 h10 + 1/2 (0.92)

h1b + ]/2 (0.92)
H1 = h10 + h1b = 0.92
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H2: memory = k = 2

Pi stote i state j
----

k = 2 a b

1/6 00 a 1
]/3 ab 1/2 1/2
]/6 bb 1 a
1/3 bo ]/2 1/2

H3: memory = k ee 3

Pi state i stote j
----

k = 3 a b

1/6 oob 0 1
L'6 ebb 1 a
1/6 bba 0 1
1/6 bob 1 a
1/6 abo 1 a
1/6 boo 0 1

H2 = 1/6 (0) + 13 (1.00) + ]/3 (1.00) + 16 (0)
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Table I. Measures or the Complexity or Repeating Binary Patterns

No. Repeating H (k-spcn] H (run-spcn) Mean Mean Verbal ization
Pattern Complexity Complexity Judged Complexity Length"*

Exp. 1* Exp. 2** Exp. 1
N=22 N=15 N=22

1 0.00 0.00 .14 1.00 1.23
2 ab 1.00 1.00 1.91 2.40 4.68
3 aab 1.58 1.00 3.96 5.05
4 aabb 2.00 1.00 5.60
5 aaab 2.00 1.00 5.40
6 aaabbb 2.58 1.00 2.92 5.18
7 aaaabb 2.58 1.00 3.82 5.32
8 aoooob 2.58 1.00 2.77 5.14
9 ooabob 2·58 2.00 5.95 10.36
10 abaabb 2.58 2.00 6.96 10.14
11 oaaobbbb 3.00 1.00 5.33
12 oaoaobbb 3.00 1.00 7.07
13 oooaoobb 3.00 1.00 5.93
14 aaaaaaab 3.00 1.00 3.60
15 ooobobab 3.00 2.58 14.33
16 ooobbbob 3.00 2.00 14.00
17 ooaabbab 300 2.00 14.13
18 oaoaobob 3.00 2.00 10.80
19 oaoababb 3.00 2.00 15.60
20 ooaoboab 3.00 2.00 11.33
21 ooabaabb 3.00 2.00 15.40
22 ooobbaob 3.00 2.00 14.47
23 oaabbobb 3.00 2.00 14.13
24 oobbobob 3.00 2.58 16.33
25 oababbab 3.00 2.58 17.80
26 aabaabob 3.00 2.58 15.33

differences betu'een means;' .80 significant at .01 lerel, 2-tail.
for pattcms 1-14, diitercnces beiuccn means:-- 1.00 significant at .05 le rei, 2-tail.
tor patterns 15-26, differences betueen means> 1.99 significant at .05 let:el, z-tou.

.. * di iterenccs bctu'een means;' .30 significant at .05 level. 2-tail.

(1/6)

(1/6)

(1/6)

(1/6)

(1/6)
(1/6)

measure are associated with the k-tuples of dif­
ferent lengths. Assuming these are the stimulus
elements is mathematically reasonable but makes
little psychological sense. There is much evidence
strongly implying that 5 codes a series of binary
events into coded elements quite different from the
k-tuples , Perhaps the simplest assumption about this
coding process is that the sequence is coded into
runs of like events. Evidence that Ss code binary
patterns into runs is presented by Restle (1961,
1966), Keller (1963), Rose and Vitz (1966), and Vitz
and Todd (1967).

The H{run-span) model assumes that the sequence
is first coded into runs and that runs are treated
as the only stimuli in the pattern. A run is defined
as any event repeated n times. and preceded and
followed by any event other than itself. Except for
this stimulus coding principle the H(run-span) model
is identical with Htk-spanj , That is, the model rep­
resents the perceiver as analyzing the uncertainties
associated with the run-tuples just like the H(k-span)
model analysis of the k-tuple uncertainty. For ex­
ample, the repeating pattern aabbab is first broken
into runs: aa , bb, a, and b. There are four runs and
each occurs with probability 1/4 and hence Hr O '"
2.00 bits. Next the first order run transition un­
certainty, Hr 1 ' is evaluated with the runs as the

ful equivalence can be observed by representing
the transition probabilities outlined above with a
tree diagram. For the pattern aabbab this diagram

is: 1 1
'3/aa-baa

la/ 1
2 ~ -

2. ba-Laba
3 ~bba

'2

Model 2: H (run-span)
The probabilities which are used in the H(k-span)

1 1
3/bb-abb

lb/ 1
2 '-"... -

2 "ab..1.-aab
'3 ~bab

'2
This diagram, which ends when perfect predictability
of each point in the pattern has been reached, demon­
strates that any pattern must have n final and
equally. probable branches for unique prediction to
be possible at each point. Thus, in the final analysis
all patterns have H(k-span) values equal to 10g2 of
the pattern length. The transition matrix is shown
to give a more descriptive account of pattern pro­
cessing than the simple measure, log2 of the length
provides.
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EXPERIMENT 2

Table 2. Correlations between the measures of

pattern complexity used in Experiment 1. (N = 22)

Method
Sti muli. The 20 patterns used were identical with

those numbered I, 2, 4, 5, and 11-26 in Table 1.
These are all of the logically different repeating
binary numbers of lengths I, 2, 4, and 8. Each pat­
tern was typed on a white 3 x 5 card and repeated

Results
The complexity values for each of the eight stimu­

lus patterns are presented in Table I, in the columns
titled H(k-span) and H(run-span), Mean Verbalization
Length, and Judged Complexity, Experiment 1. Table
2 presents the correlations among the four mea­
sures. It is clear from these correlations that the
judged complexity values are related to both H(k-span)
and H(run-span) with H(run-span) the markedly better
predictor. In addition the mean verbalization length
(MVL) is equally highly correlated with judged com­
plexity.

The stimuli used in Experiment 1 are a small
number of the possible repeating binary patterns
and it is possible the above correlations are not
representative of the larger population of such pat­
terns. Experiment 2 is designed to evaluate the same
relationship with a larger number of patterns.

.73

.95

.96

.71

.99
.73

H (run-span) MVL Judged
Camplexity

patterns was simpler: The simpler pattern was de­
scribed as the pattern S found the "easiest and
fastest to comprehend." The cards presented the
28 possible paired comparisons. A pattern's com­
plexity score is the mean number of times it was
not chosen as the simpler. After judging, S was
given four cards; on each were two of the eight
patterns, and S was told to write a short accurate
description of the repeating part of the pattern,
avoiding all unnecessary words.

The MVL is the mean number of words used to
describe the repeating pattern. Words used to de­
scribe the binary characters, e.g., the size of the
circle or triangle, or words mentioning the number
of times the pattern was repeated were not counted.
Such words were easily identified and since they
did not refer to the repeated pattern their omission
seems required. The Ss were college undergraduates
fulfilling an introductory psychology course experi­
ment participation requirement and were run in small
groups. Eleven Ss judged each series; N = 22.

H (k-spen)

H (run-span)

Mean Verbalizatian Length (MVL)

For the pattern, aabbab, this value is 2.00 bits. As
with H(k-span) the transition matrix evaluation of
H(run-span) can be avoided, since H(run-span) also
is equal to log2 of the length of the pattern, where
the length is the total number of runs in the pattern,
e.g., the pattern aaababab has a length of six runs
and H(run-span) = 2.58.2

The H(run-span) values for the repeating binary
patterns of lengths 1-4, 6, and 8 also are presented
in Table 1.

Although H(k-span) and H(run-span) are models
of perceptual processing they are related to well
known models of learning. H(k-span) is similar to
a model first stated by Burke and Estes (1957) and
later extensively elaborated by Restle (1961, pp,
109-111). The H(run-span) model is similar to
Restle's run-model of learning (1961, 1966) and to
his (1967) recent grammatical or rule analysis of
binary pattern learning.

The following two experiments are tests of the
H(k-span) and H(run-span) measures of pattern com­
plexity. Both experiments require Ss to judge the
complexity of repeating binary patterns, and it is
assumed that these judgments should correlate highly
with the stimulus complexity measures. Failure to
do so would cast considerable doubt on any mea­
sure's validity. In addition to the complexity judg­
ments the relation of H(k-span) and H(run-span) to
other response measures of perceptual complexity
are examined.

EXPERIMENT 1

stimuli and responses. In this case each run per­
fectly predicts the next run and Hrl = 0.00. The
H(run-span) total complexity of a pattern is the sum
of the average uncertainties associated with the
run-tuple transition matrices, t.e.,

N
H(run-span) = L Hrnn=o

Method
Stimuli. The eight patterns used are those in

Table I, Nos. 1-3 and 6-10. These are all the logically
different repeating binary patterns of lengths I, 2,
3, and 6; Le., all other possible binary patterns
were equivalent either by complementarity or cyclic
repetition. Each pattern was typed on a white 3 x 5
card and repeated until the string of characters
was 30 in length, e.g., pattern No. 2 was repeated
15 times, etc. The binary characters were a small
circle and a small isosceles triangle. Two series
were constructed. Series 1 was the same as Series 2
except circles were substituted for triangles and
vice versa.

Procedure. The S was given a randomized deck
of 28 3 x 5 cards; on each card were two of the
patterns, one above the other. The task was to re­
cord on a response sheet which of the repeating
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until the string of characters was 32 in length. The
binary characters were lower case a and b.

Procedure. The greater number of patterns pre­
cluded a paired-comparison procedure, hence the
following rank order method was used. The 20 cards
were placed haphazardly on a desk in front of S.
He was asked to first look at each card and observe
the repeating pattern. Next S was told to divide the
cards into two groups, the 10 simplest and the 10
most complex. The term "simple" was defined as
in Experiment 1. Next, S set aside the 10 complex
patterns and rank ordered the 10 simplest from
the simplest to the most complex. The S's first
seven ranks were recorded and those seven cards
were removed. The remaining three cards and the
10 in the complex group were again placed haphazardly
in front of S. The S placed the three most complex
patterns aside and ranked the remaining 10 from
simplest to most complex. When this was done E
recorded the first seven ranks out of this 10 and
removed the corresponding seven cards. The re­
maining three cards and the three previously judged
as most complex were then placed in front of S,
and he made a final ranking of the last six cards
from simplest to most complex. The Ss were under­
graduate and graduate student volunteers: N=15.

RESULTS AND DISCUSSION
The mean complexity ranks for the 20 patterns

are shown in Table 1 in the column: Judged Com­
plexity, Experiment 2. For these 20patterns, H(k-span)
correlated with jUdged complexity .67 while H(run­
span) correlated .94. Because of the weak empirical
support for the H(k-span) measure in both experi­
ments it will be omitted from further consideration.

The published response point uncertainty data of
Royer and Garner (1966) previously described allow
a test of H(run-span). For the same 20 repeating
binary numbers, H(run-span) correlates .92 with
RPU. (The RPU values for each pattern are pre­
sented by Royer and Garner in their Table 1. The
simple pattern, a, a, a, ... was included in the pre­
ceding correlation.)

One of the limitations of H(run-span) which is part
of the previous rationale is the restriction to repeat­
ing or periodic patterns. The following analysis
argues that with a few plausible assumptions the
model can be applied to nonperiodic binary patterns,
such as the 8-place binary numbers used by Glanzer
and Clark (1963a, b).

H (run-span): Nonperiodic Patterns
Consider the nonperiodic binary pattern aaabbbaa,

(If repeated, of course, this pattern would become
aaaaabbb.) The previous development of H(run-span)
would allow the computation of HrO' as the pattern
consists of three runs: aaa, bb, and aa, But Hr l
cannot be defined since the run aa is not followed
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by any other run. To avoid this problem we will
assume that all finite binary patterns consist not
only of the runs as defined but also of two additional
runs: (1) a run representing the stimulus preceding
the first binary element which will be symbolized
BR (Beginning Run). (2) Also, a run foltowing the
last element is postulated. This end run will be
symbolized ER. Further, it is assumed that the pat­
tern is scanned from left to right and when ER is
reached, the process is re-set, that is, it returns
to BR.

The pattern aaabbbaa is now represented as Con­
sisting of five runs: BR, aaa, bbb, aa , and ER, each
occurring with probability 1/5. At the first run
transition level, Hr l ' the pattern is completely pre­
dictable since each run is followed by only one of
the five possible elements. The new measure, non­
periodic H(run-span) or npH(run-span) is, again, the
sum of the average uncertainties at each of the
run-tuple transition levels. And its computation also
is simplified by using the equivalent measure of
10g2 of the number of runs, including the BR and
ER. For aaabbbaa, npH(run-span) =10g25 or 2.32
bits.

To test the npH(run-span) measure, the data from
the previously described experiment by Glanzer and
Clark (1963b) were obtained.3 In their Experiment 2,
each of the 256 binary numbers of length 8 received
a mean verbalization length score (MVL) and an
accuracy of recall score. The accuracy score was
the proportion of the 80 Ss who reproduced the
pattern without any error. Glanzer and Clark report
a correlation of -.81 between the 256 MVL and ac­
curacy scores. However, of the 256 patterns it
seems reasonable to combine the scores of logically
equivalent patterns. Thus, the scores of each pattern
and its complement were averaged and the SCOres
of each pattern and its right-left reversal, if it
had one, were averaged. This averaging reduced
the 256 patterns to 72 different patterns and pre­
sumably results in a more representative score for
a pattern since differences' between the scores of
equivalent patterns are due to random error, to the
easier perception of one of the binary events, or
to pre-experimental perceptual habits. For example,
there is some evidence in Glanzer and Clark's ac­
curacy data that 0 was more easily perceived than 1.

Using these data the correlations between npH(run­
span) and MVL is .89 and between npH(run-span)
and accuracy the correlation is -.86.4 Again, H(run­
span) received considerable support. However, with
these data there was some evidence pointing to
weakness in the H(run-span) model. As is shown
in Table I, there are only four different H(run-span)
values for the 26 patterns, and yet many of the pat­
terns with identical H(run-span) values have different
judged complexity scores. In many cases these dif­
ferences are quite reliable. The measure's failure
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to discriminate among these patterns is probably
because coding into runs is too simple a description
of the coding process. For example, Ss might also
code patterns into alternations (see Royer & Garner,
1966; and Royer, 1967). An examination of the cor­
relation scatterdiagrams of npH(run-span) and MVL
and accuracy supports this contention. The pattern
10101010 and other patterns close to complete al­
ternation had npH(run-span) values that were too
high. If alternations, instead of runs, were treated
as coded elements then the H values for these pat­
terns would have been lowered and prediction im­
proved. Perhaps, a coding principle or rationale
can be developed for treating some patterns as
composed of runs and/or of alternations. If so an
H measure on these two kinds of coded elements
would correlate quite highly with most of the re­
sponse indices treated here.
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tute of Mental Health (MH-11040-0 1 and 13083-01). I am indebted to
Thomas C. Todd for his contributions to this research and to
James J. Candalino for his assistance in the collection of the data.
2. The number of runs in a pattern, Nr, is a still simpler measure
and in the experiments described here almost an equivalent mea­
sure; Nr correlated .98 with H (run-span) in Experiment 1 and .97
with H (run-span) in Experiment 2. But Nr like log2 Nr suggests
little about a model of perceptual processing.
3. I wish to thank Murray Glanzer for graciously providing his data.
4. Interestingly, the correlation between MVL and accuracy is now
-,94. This substantial increase over the -.81 originally reported
by Glanzer and Clark is due to averaging the results of equivalent
patterns.
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