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Evidence is presented to show that in stereoscopic vision
a constant ratio of perceived size to perceived distance
corresponds to a constant visual angle (the size-distance
invariance hypothesis). The functions relating the size!
distance ratio to visual angle and the depth!distanc e ratio
to disparity are determined for three as using the methods of
magnitude estimation and magnitude production. The results
for each a may be represented by power functions, the depth;
distance function having the higher exponent. These scales
are used to predict the outcome of an experiment in which
depth is matched to size. The agreement of predictions with
results is good for the combined data of the group, but signi­
ficatlt deviations occur from curves predicted for individual
as. An experiment in which an oblique line is matched to
a frontal extent yields data consistent with Luneburg's
hypothesis that the intrinsic geometry of visual space is
non-Euclidean. The indicated curvature is negative for two
as and varying from positive to negative for the third.

If an a is presented with unfamiliar objects
in a situation where secondary cues to distance are
lacking (e .g., an otherwise completely dark room),
his [udgments of size and distance are not reliably
related to the actual sizes and distances of the ob­
jects. It is not simply that such judgments are
inaccurate, but rather that their variability, both
between and within as, is so large as to make
it virtually impossible to establish psychophysi­
cal functions. Although neural activity associated
with accommodation and convergence potentially
contains distance information, which together with
visual angle information is sufficient to determine
size, this information is not generally, and perhaps
cannot be, used to make reliable judgments of size
and distance. On the basis of convergence and ac­
commodation alone, many as are not even able
to order distances correctly (Gogel, 1961). In the
absence of secondary cues, unanalyzed nonstimu­
Ius variables, such as an a's preconception of the
range of stimuli that are likely to be presented,
appear to exert a major influence on judgments of
size and distance.

Although in a primary cue situation spatial psy­
chological magnitudes tend to be independent of the
stimulus, it is possible that the relations among
such magnitudes are largely stimulus determined.
This consideration led to the size/distance invari­
ance hypothesis, which says (in its weak form) that

the ratio of perceived size to perceived distance
is a function of visual angle alone, that is

S'
D' = f l (8),

where S' stands for perceived size, D' for per­
ceived distance from the 0, and 8 for visual angle.
(The interpretation of perceived size and distance
will be discussed below.) The hypothesis is often
stated in a stronger form which asserts that the
size/distance ratio is proportional to visual angle
(Gogel, 1964). In either form the relation between
two perceptual magnitudes replaces an absolute
perceptual magnitude as the dependent variable in
the psychophysical relation. Few hypotheses have
had a less happy history than the size/distance in­
variance hypothesis. Instances of its disconfirmation
are legion. The literature up to 1960 is reviewed
by Epstein, Park, and Casey (1961). Since then,
disconfirmations have been reported by Rump (1961),
Gogel, Wist, and Harker (1963), Gogel (1964), and
others. Nevertheless, there is evidence that the
hypothesis holds for monocular vision when all
secondary cues are excluded (Over, 1960). No test
has been reported when all the primary cues (I.e.,
accommodation, convergence, and binocular dispar­
ity), but no other cues, have been present. Evidence
that the hypothesis does hold in such a situation
will be reported below.

Foley (1967a) suggested that a relation of similar
form might hold between the ratio of perceived
depth to perceived distance and disparity. Symbol­
ically:

Here D' stands for the perceived distance to the
nearer point, d' for the difference between the per­
ceived distances of the two points (depth) and r
for the horizontal disparity associated with the two
points. SUbsequent work (Foley, 1967b) showed that
the disparity corresponding to a constant depth/
distance ratio is not constant, but increases as con­
vergence increases (depth micropsia). This means
that the depth/distance ratio is a function of both
disparity and convergence, and there is no invari­
ance in the traditional sense. However, if consid­
eration is restricted to a small range of convergence,
Equation (2) may be expected to hold at least to a
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good approximation. For such a limited range, one
can ask what the function is relating the depth/
distance ratio to disparity. That question will be
considered in this paper. Elsewhere it will be shown
how the dependence on convergence and the depend­
ence on disparity can be integrated into a single
theory.

Gogel (1958) presented data on the matching of
depth intervals to extents of varying visual angle
in a frontal plane. This data is suggestive of a third
relation of similar form. Specifically, Gogel's data
are consistent with the hypothesis that the ratio of
perceived depth to perceived size is a function of
the ratio of the disparity to the visual angle sub­
tended by the extent, Le.:

d' = f (L)
S' 3 8

The same qualification that applies to Equation (2)
also applies here. The ratio of disparity to visual
angle corresponding to a constant depth/size ratio
increases as convergence increases (Foley, 1967b).
Here again, however, we will be concerned with a
restricted range of convergence within which the
influence of convergence is assumed to be minimal.

Up to this point, some ambiguity has existed about
the definitions of perceived size and distance. Judg­
ing by the sorts of experiments done to test the
size/distance invariance hypothesis, size has gen­
erally been interpreted as the size of an object in
a frontal plane and distance as the perpendicular
distance to that plane. On the other hand, Foley
(1967a), hypothesizing the relation between depth/
distance ratio and disparity, interpreted distance
as radial distance. This interpretation is based on
the hypothesis of Luneburg (1947) that points of
constant convergence angle are perceived as radially
equidistant. The choice between these two interpre­
tations of perceived distance hinges on the validity
of this hypothesis. If the locus of constant conver­
gence angle corresponds to the equal radial distance,
then this is the preferred measure. On the other
hand, if the locus of constant convergence angle
corresponds to equal perpendicular distance (Le .,
to an apparent frontoparallel plane) as has often
been proposed (Ogle, 1950), then perpendicular dis­
tance is the preferred measure. The matter is still
in doubt. Although Foley (1966) found the locus of
perceived equidistance to lie outside the locus of
constant convergence angle when lights are pre­
sented in real depth, preliminary experiments with
stereoscopic presentation indicate the reverse. Shipley
(1959) found the reverse in real depth. It may be
that when all but primary cues have been excluded,
as typically they have not been, the old fronto­
parallel plane hypothesis wnl be found to be most
nearly correct. This issue will not be taken up here.
It will be skirted by keeping all stimuli relatively
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close to the median plane where radial distance and
perpendicular distance are very nearly the same.
Where the wrong choice of measure may have con­
tributed to an inaccuracy of predictions, this will
be noted.

If Equations (I), (2), and (3) hold, a strong con­
straint is placed on the three functions f1, f2' and
f3. These functions must all be power functions with
the same exponent (Foley, 1967a).2

The principal purpose of the present study is to
examine the implications of this argument and,
should it be found inadequate, to propose a revision.
The procedure consists first of attempting to estab­
lish the functions f1 and f2 to see if they are power
functions with the same exponent. Since it turns out
that they are power functions with different expo­
nents, it is concluded that Equation (3) must be
incorrect and an alternative is derived from f1 and
f2. An attempt is then made to verify this alterna­
tive in an experiment in which depth is matched
to size.

Method
The apparatus used was a polarization stereoscope

(Foley, 1964, 1967a, b). This instrument presents
a three-dimensional configuration of small, point­
like sources (opthalmoscope bulbs) to the O. Each
point is simulated by a pair of horizontally separated
bulbs, one member of which is visible to each eye
as shown in Fig. 1. The stereoscopic presentation
is achieved by means of properly oriented pieces
of Polaroid film, one in front of each bulb and one

F

PLANE OF
STEREOSCOPE

IlIINT lYE

Fig. 1. Schematic illustration of the polarization stereoscope
as seen from above. The stereoscopic lights are designated by
open circles; the simulated lights by filled circles. The Polaroids
are represented by lined rectangles.
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Fig, 2, Visual,anglp as a function or convergence angle for
a size 'drstance ratio or 1 2. (N'IOI.

This was accomplished by iterative computer pro­
grams which sought those parameter values which
minimized the sum of the squared deviations of
data points from the fitted function. It is more
common to transform the data so as to render the
function linear, then fit the transformed data. This
latter procedure has the effect of weighting points
near the origin more than others in making the fit.
This is appropriate in cases where the variance
varies with the mean in such a way that the trans­
formed data have approximately equal variance at
each point. Here, however, the transformation often
leaves the variances more unequal than they were
to start with. As a consequence, it was decided to
weight all points equally by applying the least
squares criterion to the untransformed data.

Size/Distance Ratio as a Function of Visual Angle
The first experiment was a test of the size/dis­

tance invariance hypothesis (Eq. (1». The basic
idea of the test was that if an 0 adjusted a frontal
extent until its size was equal to one-half the dis­
tance from himself to the extent, then the visual
angle subtended by the extent should be independent
of its distance.

Two lights in the same frontal plane were pre­
sented on each trial (see insert, Fig. 2). One light,
A, was in the median plane and the other, B, to the
right of it. The O's task was to move B left or right
until the distance AB was perceived to equal 1/2
the distance OA from the 0 to A. The size/distance
ratio 1/2 was chosen over the ratio of 1/1 (Le.,
a size-distance match) because the latter ratio
brought the settings quite close to the end of the
range of the apparatus. The independent variable
was the simulated distance to A. This was mea­
sured in terms of the convergence angle (Yf in
Fig. 1) at A.

The prediction is borne out by the results, which
are presented in Fig. 2. Observer F did not partici-
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in front of each eye. The bulbs are in a frontal plane
at a distance of 2 m except where otherwise noted.
Points behind this plane are simulated by using un­
crossed Polaroids as shown; points in front of the
plane are simulated by crossing the Polaroids. The
simulated distance of a point is varied by changing
the horizontal separation of the two lights. This
separation can be varied continuously by 0 or E.
Each has a pair of buttons which control a rever­
sible motor (60 rpm); the motor drives a screw
(40 threads/In.) that moves the lights together or
apart. The direction of a point is varied by sliding
the pair of lights left or right along the horizontal
bar on which they are mounted. This is done manu­
ally by the E in response to button-produced visual
signals controlled by the 0, but visible only to the
E. In the experiments reported here all lights were
in the horizontal eye-level plane with the exception
of a single reference light in the size-distance
experiments.

The field is completely dark except for the lights.
These are about 2 log units above foveal threshold
and are matched for brightness. The O's position
is dimly illuminated between trials so that he main­
tains a relatively constant state of light adaptation.
He is allowed to make slight adjustments in the
intensity of the lights so as to keep them clearly
visible, but not so bright as to illuminate their sur­
roundings. The O's head is held fixed by means of
a bite. In the studies reported here, free eye move­
ment was allowed throughout.

The same three Os were used in all the experi­
ments reported here. TWO, Band P, had acuity
of better than 1 min and stereoacuity of better than
30 sec, uncorrected (as measured by Keystone
Orthoscope tests). The third, F, wore contact lenses
and met these same standards with the correction.
All were experienced in this type of experiment.

Certain features of the procedure were constant
for all the experiments to be reported, and these
will be mentioned here. Each experiment required
8-10 1 h sessions for each O. A practice session
was given when each new task was introduced. Con­
ditions and stimuli were presented in random order,
except that where each condition required a different
setting of the fixed light a block of 5-8 trials was
conducted at that condition before moving to the
next. All data points are based on the mean of at
least 40 trials except the magnitude estimates, which
are based on 15. The arithmetic mean is given in
all cases. Its use, in preference to the frequently
used geometric mean, is considered justified by the
fact that distributions are approximately symmetri­
cal throughout, with no consistent skewing in either
direction. The same analysis applied to the medians
yields essentially the same result.

All curves were fitted to satisfy the least squares
criterion with respect to the untransformed data.
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Fig. 3. Illustration or the (our experimental tasks employed in
this study viewed (rom ahove. 0 indicates the position ot the
observer.

pate in this experiment. No trend is evident in the
data over the range examined, which corresponds
to a range of about 1 m to beyond simulated infinity.
A slight increase in visual angle with convergence
might have been expected as a consequence of size
micropsia (Heinemann, Tulving, & Nachmias, 1959;
Foley, 1967b). This effect is apparently too small
to be evident in these data.

The slightly irregular spacing of the points is a
consequence of the fact that the stereoscope frame
was first set at 118 em when the settings for points
outside the frame (uncrossed Polaroids) were made.
Then the frame was moved to 2 m and settings for
points inside the frame (crossed Polaroids) were
made. Only in this way is it possible to avoid a gap
in the center of the range because the minimum
separation of the lights is 1.2 em. The fact that the
two sets of data fit well together, in spite of the two
weeks that intervened between the two experiments,
is evidence for the stability of these settings.

It is likely that some would not consider it a
proper test of the size/distance invariance hypothe­
sis unless perceived size and distance were made
to vary. To insure that this would be the case a
third light, C, was present on every trial. This
light was in the same position throughout (in the
median plane, 2.50 below the eye level plane, and
with a convergence angle of approximately -60 min).
Verbal estimates of the distance to A in feet de­
creased with convergence from 5.2 to 1.6 for Ob­
server B and from 4.2 to 1.9 for P.

The next step was to determine how the size/
distance ratio depended on visual angle. The meth­
ods of magnitude estimation and magnitude produc­
tion were used to determine this function. The
configuration of lights was exactly the same as in
the experiment just reported, except that the light

(4)

in the median plane and the light to the right of it
were single real lights rather than stereoscopic
pairs (see Fig. 3a). This increased the range of the
size variable at both ends and made it possible for
two of the Os to set size/distance ratios of I, t.e.,
to match size with distance. In the estimation task
the 0 gave a numerical estimate of the ratio of
perceived size to perceived distance. In the pro­
duction task he was given a ratio and asked to
adjust the size by moving the light on the right until
the size/distance ratio corresponded to the one given.
The production and estimation data were obtained
in separate experiments, the production experiment
being run first. The results are given in Fig. 4.
standard deviation increased with mean estimate in
the estimation task (range: .015 to .072) and with
visual angle in the production task (range: .5 to
2.70 ) . The data are plotted on log-log coordinates.
The graphs are approximately linear in every case
indicating that the data can be well fitted by power
functions.

The straight lines fitted to the data are power
functions of the form

On the log-log plot the fitted lines sometimes
appear not to be the lines of best fit. This is a
consequence of the fact that when the log-log trans­
formation is made, deviations at small values of
S'iD' are exaggerated relative to deviations at
large values.

The two methods are seen to yield slightly dif­
ferent results, but the usual finding of a greater
slope in the production task (Stevens & Guirao, 1962)
is borne out only for Observer F. The same function
was fitted to the combined data from the two tasks.
Values of the parameters P and K are given in
Table 1. In all three cases the exponent P is greater
than 1.

Depth/Distance Ratio as a Function of Disparity
The same two methods were used to study the

relation between the depth/distance ratio and dis­
parity. Two lights were present on each trial, one
in the median plane, A, and the other 60 to the right
of this, B (see Fig. 3b). B was fixed throughout both
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Fig. 4. Size/distance ratio as a (unc­
tion of visual angle as determined by
the methods of magnitude estimation
(N~15) and magnitude production (N~48).
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Table 1. Coefficients and Exponents of Power Functions

• Predictions ll'ere made by substitutino P t- P 2' K l: and K2 in
equation (7) for each observer

Observer
B F P

K P K P K P

s izevd istance .01229 1.498 .00908 1.497 .03320 1.133
(combined data)

depth 'distance 00102 1.769 .00055 1.985 .00496 1.392
(combined data)

depth 'size 4075 .847 4.080 .754 3.920 .814
(predicted)'

depth 'size 8335 612 3.538 .80? 4.349 .851
(obtained)

(5')

added constant was fitted to the data first, then
each value of d'/D' corrected by SUbtracting the
1-intercept before fitting Equation (5». The straight
lines represent the best fitting function for each set
of data. Functions of this form were also fitted to
the combined data. The values of K2 and P2 ob­
tained from the combined data are given in Table 1.

Although the power function handles these data
reasonably well, the question of the form of the func­
tion relating depth/distance ratio and disparity de­
serves more careful scrutiny. The reason is that
there is a logical consideration which suggests that
an exponential function of the form:

~ = eQ1 - 1
D'

is to be preferred. The reason why the exponential
function is preferable becomes clear when we con­
sider a configuration in which there are three or
more points at different distances. If there is a
single relation which gives the relative distance of
any pair of points in the configuration as a function
of their disparity, then that relation must be of
form (5').

This is shown as follows:
Let Dl > D2 > D3 be the distances to three

points. Di
Let D. = f(lji) be the function relating rela­

J
tive distance to disparity (i < n. Since:

D1' D2' D1'

D2' D3' D3'

but

131 = 121 + 131
therefore:

f(121) . f(132) = f(121 - 132)·
It follows that:

D'·
_1 = eQ1 (see Bellman, 1965, p.499), or
D'.

J(5)
d' P-=K 1 2
D' 2

experiments. The convergence angles were 85, 89,
and 77 min for Observers B, F, and P, respectively.
The different convergence angles are a consequence
of different interpupillary distances, the separation
of the stereoscopic light pair being held constant.
In the estimation task the center light was set behind
the light on the right, and the task was to estimate
the ratio of the perceived distance to the far light
to the perceived distance to the near light. This
ratio was converted to the depth/distance ratio by
subtracting 1. In the production task, the center
light was variable, and the 0 set it behind the fixed
light so that the ratio of the two perceived distances
had a specified value. Again the production and esti­
mation data were obtained in different experiments,
the production experiment being conducted first.
The results are presented in Fig. 5. Standard de­
viation increased with mean estimate in the esti­
mation task (range: .017 to .466) and with disparity
in the production task (range: 3.9 to 9.91 min).

Here again the relations are approximately linear
when plotted on log-log coordinates. The slope is
greater in the production task than in the estimation
task for Observers Band P. The explanation of the
fairly large deviation between the results of the two
methods for Observer F is unknown.

Functions of the form:

were fitted to each set of data. (As a consequence
of aniseikonia 1 = 0 does not in general correspond
to d'/D' = O. Consequently a power function with an

~ = eQ1 - 1 since d'=D'. -D'·
D' ' 1 J

If Equation (5') does not hold, then no single func-
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Fig. 5. Depth distance ratio as a
function of disparity as detennined b)'
the methods of magnitude estimation
IN~15) and magnitude production(N~48).
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Depth-Size Matches
An attempt was made to verify Equation (6), in­

dependently, by an experiment in which an 0 matched
depth intervals to frontal extents of varying visual
angle. If depth is matched to size, d'/S' = 1 and:

the scales are based is the same for both dimen­
sions. It is the perceived distance to the frontal
plane. It follows that theoretically both coefficient
and exponent of the function relating disparity to
visual angle in the depth-size match should be
predictable from the scales for size/distance and
depth/distance just described.

Two lights were present on each trial, one in
the median plane, A, and one to the O's right of
the first, B (see Fig. 3c). B was fixed on each trial
at 6, 11, or 160 from the median plane. A was vari­
able in depth. Here the task was to set A as far
behind the frontal plane containing B as B was to
the right of the direction of A.

The task was a difficult one because the 0 was
matching two segments each of which had one end­
point which was not physically present (the inter­
section between the frontoparallel line through B
and the line from the 0 to A). It is impossible to
set a light here because it would be directly in front
of A. The difficulty of the task is reflected by the
high variability of the settings, especially at the
larger angles. Standard deviations ranged from 2.45
to 12.60 min, increasing with visual angle. The mean
settings are presented in Fig. 6.

The solid lines in Fig. 6 represent the function
predicted from the size/distance and depth/distance
scales for each O. It is clear that the data differ
significantly from predicted values, especially for
Observers Band P. However, several respects in
which the data agree with the predictions should
be noted: (1) Each relation is approximately linear
on log-log coordinates, as would be expected if the
relation is a power function. (2) All three slopes
are less than 1. This is consistent with the finding
that the exponent for the depth/distance scale is
greater than the exponent for the size/distance
scale. Power' functions were fitted to the obtained
data and the parameter values are given in Table 1.
(3) The functions lie in the predicted order with
respect to the disparity axis, Observer B highest,
then P, then F. (4) Exponents are predicted to within
±.05 and coefficients to within ±.6 for Observers F
and P.

Several factors may have contributed to the dis­
crepancies between the predictions and results in

(7)

(6)

K P2
d' 2 r
-----
S' P

Kl e. 1

tion relates the relative distance of each pair of
points to its disparity. It may be that all relative
distances are determined by the disparity between
each point and some reference point. This raises
many questions, such as what determines the refer­
ence point and what is the function (Foley, 1967a).
Experiments done in the context of the Luneburg
theory suggest that Equation (5') does not hold and
that the farthest point in the configuration serves
as the reference point (Blank, 1958).

Equation (5') was fitted to each of the six sets
of data and the sums of squared deviations com­
pared with those obtained in fitting the power func­
tion. In every case the least sum of squares was
substantially greater for the exponential function,
indicating that the power function provides the better
fit. For this reason we will take Equation (5) as
descriptive of these data.

For each of the three Os the exponent P2 for
the depth/distance task is substantially greater than
the exponent PI for the size/distance task. This
is inconsistent with the theory sketched in the
introduction and suggests that Equation (3), the
strongest and least examined of the hypotheses, is
incorrect. From Equations (4) and (5) we have, in­
stead of (3):

r. (::)'
/ P

2 ,p,/ P 2

The argument is formally the same as that for
cross-modality matching (Stevens, 1966). The dif­
ference is that here the matches are intramodality
matches, between two dimensions in the same mo­
dality. Further, the coefficients are not arbitrary
since the unit of psychological magnitude on which
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Fig. 6. Mean disparity as a function
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VISUAL ANGLE (OEG.)

Fig. 7. Solid line represents group mean disparity (average of
points on fitted curves) as a function of visual angle in depth-size
matching task. Dashed line represents the average of the functions
predicted from the size/distance and depth/distance scales for the
six observers.

as a means of verifying the size/distance and depth/
distance scales. This would avoid the problem of
having one point directly behind another. The equi­
lateral triangle experiment illustrated in Fig. 3d is
such an experiment. Here the 0 moves light A in
depth until the distance h' from A to B equals the
distance 2S' from B to C. The analysis of this ex­
periment, however, is complicated by the fact that
it depends on the intrinsic geometry of the visual
space.

If the geometry is Euclidean then:

by the Pythagorean theorem. Since h' =2S', we have
d'/S' = J3: The predicted relation between disparity
and the visual angle (corresponding to S') is then:

r =0~)'/P2 ,p./P2 (7)

Expected disparity is directly proportional to dis­
parity in the depth-size match, the constant of
proportionality being (/3 )1/P2.

If the geometry is hyperbolic (i.e., of constant
negative curvature) as Luneburg (1947, 1950) and
Blank (1959) have hypothesized, then the equation:

COSh(~) = cosh(f) COSh(~')

replaces the Pythagorean theorem. Here k is a
parameter which depends on the curvature of the
space.

Expressing the hyperbolic cosine in terms of its
Maclaurin expansion and giving only the first three
terms, this yields:

IS10

------- PREOICTED

--OBTAINED

,
/,

/
/

/
/

,,/"/

/,
/

32

30

>­....
'" 10«
11.

'"o

Z 20

"

The Intrinsic GeDmetry of Visual Space
It might appear that an experiment in which an

oblique line is matched to a frontal extent would
provide a simple alternative to the depth-size match

this experiment. One is the difficulty of the task
which is evidenced by the relatively high variability
of the settings. Other factors are the several weeks
which passed between the scaling tasks and the
matching task, and the failure to correct for the non­
correspondence of the apparent frontoparallel plane
with the locus of constant convergence angle.

To see if these last two factors could account
for the discrepancies, the experiment was repli­
cated with three new Os and some refinements in
design. Each of the Os estimated size/distance ra­
tios, estimated depth/distance ratios, and matched
depth to size at every session, the order of tasks
varying from session to session. In addition, for
each of the five visual angles used in the depth­
size matching task, the 0 set the light in the median
plane, A, so that it was perceived to be in the same
frontal plane as the peripheral light, B. These set­
tings were used to correct the disparities in the
other tasks. Since the number of conditions in this
experiment was large, each condition occurred only
once at each session. There were 10 sessions.

The size/distance and depth/distance functions
came out essentially as before. They were power
functions with exponents greater than 1. The depth/
distance exponent was greater than the size/dis­
tance exponent in every case. In spite of the changes
in design, the depth-size matches again deviated
from predictions by substantial amounts. However,
in the discrepancies obtained for all six Os no con­
sistent trend is evident. For three Os the data
points lie above the predicted line and, for the other
three, they lie below it.

This suggests that if the data from different Os
is combined, good agreement with prediction might
be obtained. It is impossible to average the scaling
data because different values of the independent
variables were used with different Os. Therefore,
the predicted depth-size match was calculated sepa­
rately for each 0, and these predicted lines averaged
to yield a predicted line for the group. For the
same reason, it was impossible to average depth­
size matches across Os , Consequently a line was
fitted to the data of each 0, and these fitted lines
were averaged to yield an obtained line for the
group. These two lines are shown in Fig. 7. Con­
sidering that both slope and intercept are predicted
here and that the variability is relatively high, the
fit is about as good as might be expected. It appears
that the scales predict the matches on the average,
but that in individual cases a transformation of ran­
dom magnitude intervenes in going from one type
of task to the other.
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It follows that:

and if h' =2S9,

(9)

Setting d'/S' =1 and integrating:

1
r = ;: In (Ca e+ 1)

where C is an individual constant, and Ynand Yf
the convergence angles at the near and far ends of
the depth interval. In order to apply this equation,
it is necessary to know or assume the function
Sf/ 8 = f (Y). In several applications Gogel (1960a, b,
e; 1964) has used the function 8'/8 = k (i/V)n, where
i is the interpupillary distance I and k and n are
constants (n::: 0). This function is not appropriate
for stereoscopic visual space because for n > 0
(which it is since svs increases with distance) the
function requires that sve go to infinity as " goes
to O. It is quite easy to realize this situation with
the stereoscope, and at Y=0, sve is clearly finite.

An examination of the data on equidistant alleys
(Indow et al, 1962; Zajaczkowska, 1956) suggests
that for stereoscopic vision a function of the form
S'/8 =Ke-a'Y, where k and a are constants, would
be appropriate. Substituting this function in Equa­
tion (8) and dividing both sides by Sf, one obtains:

d' 1 JY
n

e-aY dY
S' - C8e-aYn Y

f

Not knowing the values of C and a for Observers
B, F, and P, it is impossible to decide on the basis
of the depth-size matching data between this for­
mulation and that represented by Equation (7) G Both
are consistent with the obtained concave downward
shape of the function relating r to e.

Gogel has demonstrated the predictive power of
Equation (8) in several experiments. For example,
he has shown that the linear increase in physical
depth with physical distance obtained when depth
intervals are matched to frontal extents of con­
stant physical size follows from this equation to­
gether with the assumption 8'/e = K (l/V)n (Gogel,
1960b). He also matched depth intervals at different
distances with each other and found that the physical
depth interval increased proportionally with physical
distance. This finding also follows from his devel­
opment (Gogel, 1960c). Neither of these findings is
predicted by Equation (6) except in the special case
where PI = P2. It does follow in this case if it is
assumed that Equation (6) applies only for dispari­
ties between a frontal extent and the point adjacent
in depth. The situation in these experiments differed
in two respects from that in which Equation (6) was
developed: (1) A variety of cues to absolute distance
was present: (2) More than one disparity was pres­
ent in the configuration. This suggests that Gogel '8

10

08SERVEIl P

OBSERVER F

5 .7

VISUAL ANGLE (DEGREES)

/
10

Discussion
Although Gogel (1958) did the experiment on

which the depth-size hypothesis (Equation (3» was
based, he did not consider this relation to hold, ex­
cept for small values of disparity. On the basis of
considerations which arise when one considers con­
figurations with more than one disparity (consider­
ations similar to those which led to the consideration
of the exponential form for the depth/distance scale).
Gogel favored the following hypothesis:

Fig. 8. Mean disparity as a function of visual angle in equi­
lateral triangle task. Straight lines indicate the function predicted
from the depth-size matches and P2 on the assumption that the
visual space is Euclidean. (N=49).

If the geometry is hyperbolic the disparity re­
quired to match h' to 2S' will be less then predicted
by Equation (7). By a similar argument it can be
shown that if the space is elliptic (Le., of constant
positive curvature), the disparity will be greater
than predicted by Equation (7).

The equilateral triangle experiment was carried
out using the same three Os as in the other experi­
ments. The frame was set at 3 m and the lights
Band C were single real lights. Otherwise the pro­
cedure was the same as in the other experiments.
The results are given in Fig. 8. The solid lines
represent the function predicted from the depth­
size matches and P2 on the assumption that the
geometry is Euclidean (Equation (7)).3 For Obser­
ver P all the, points lie below the line as predicted
by the hyperbolic geometry hypothesis. The same
is true for Observer B except for one point. The
data for Observer F suggest that the curvature is
not constant, passing from positive to negative as
the size of the configuration increases. Here again
standard deviation increased with visual angle (range:
1.93 to 9.58 min).
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formulation may be applicable to a greater variety
of experimental situations. However, as it presently
st.inds , the theory makes no provision for the re­
lations between size/distance ratio and visual angle,
an I between depth/distance ratio and disparity which
obtain when primary cues alone are present.

The author does not regard the results of the
equilateral triangle experiment as definitive with
respect to the curvature of visual space for these
Os, particularly Observer F. The results do, how­
ever, illustrate a method for determining the in­
trinsic geometry of visual space which offers certain
advantages over some of those used in the past,
such as the alley and double-crrcumhoropter ex­
periments (Zajaczkowska, 1956; Blank, 1958; Indow
et al , 1962). The advantage over the first is the
unambiguity of the instructions and the few lights
in the field. Lights are known to interact with one
another spatially in ways that are not yet under­
stood. Consequently the fewer the lights involved,
and the more widely separated, the better. The ad­
vantage over the double-circumhoropter experiment
is that no assumption is made about the perceived
size of visual angles.

The assumption that the perceived size of visual
angles corresponds to their physical size (Blank,
1958) remains a problem. Data derived from scaling
methods (Foley, 1965) indicate that the assumption
is approximately correct, with fairly large individual
differences and with most Os showing a tendency
to overestimate angles somewhat Distance, how­
ever, was not a variable in that study. In the data
reported here as evidence for the size/distance
invariance hypothesis (the first exper-iment] there
is evidence that the perceived size of visual angles
varies with distance. This conclusion follows because
there are no similar triangles in a non-Euclidean
space. Since the triangles constructed here have
corresponding sides proportional, they must have
unequal angles. In particular, if the geometry is
hyperbolic the perceived angles will decrease in
size as the perceived size of the triangle increases.

The size/distance data also have implications for
the intrinsic geometry of the space. It will be noted
in Figs. 2 and 4 that the visual angles associated
with the various ratios of size to distance are much
smaller than they would be if size and distance
were matched physically. For example, when S'iD'
= 1 a physical match would require that the visual
angle be 450 • Actually, it is about 200 . What is criti­
cal, of course, is not the physical st. e of this angle,
but its perceived size. Therefore, at the end of the
experiment, each 0 was asked to consider the per­
ceived size of this angle. All agre-ed that it was
substantially less than 450 • Looked at in this way
the experiment corresponds to Blank's isosceles
triangle experiment (1958), and the result is evidence
that the curvature of visual space is negative for
all three Os.

Percopuon I\: Psychophysics, 191ill, '01. 3101..\)

Since the use of the methods of magnitude esti­
mation and production remains controversial (Stevens,
1966; Graham, 1966; Garner & Creelman, 1967), a
comment is in order concerning their use here.
The hypothesis that a particular correspondence be­
tween numbers and stimuli constitutes an interval
scale of measurement is, at least in many cases,
a testable hypothesis. Its validity or invalidity is
completely independent of the source of the corre­
spondence. The depth-size matching experiment re­
ported above constitutes a test of this hypothesis
for the size/distance and depth/distance scales.
Here some of the implications of the hypothesis
were verified, others not. On the other hand, if
these scales indicate only ordinal relations among
the psychological magnitudes, the results are ex­
tremely unlikely. This suggests that the scales are
intermediate between ordinal and interval scales.
As SUCh, they provide an approximation to the
"true" psychological scales. Undoubtedly they can
be improved upon, just as classical measures of
the threshold have been improved upon by taking
response biases into account. It is clear that re­
sponse biases are present in matching and estimation
experiments as well. But just as many conclusions
drawn with classical threshold measures remain
valid today, it is likely that conclusions drawn with
the present relatively crude scaling techniques will
remain valid when more refined techniques are
introduced.

The author does not interpret the large individual
differences in the parameters of these scales as
necessarily reflecting large differences in percep­
tual processes from one 0 to the next. Considering
the high degree of interSUbjective consistency with
respect to established psychophysical functions, it
seems likely that the large individual differences
are introduced in response processes rather than
perceptual ones. In this connection it is interesting
to note that there is much less interobserver varia­
bility in both the predicted and the obtained depth­
size matches than in the scales themselves. This
is a consequence of the fact that the ratio of the
size/distance exponent to the depth/distance expo­
nent, and the ratio of the two coefficients as well,
are relatively constant across Os. This finding is
consistent with the hypothesis that the relation be­
tween psychological magnitude (here conceived as
the magnitude of a hypothetical internal perceptual
event) and the overt response is itself a power func­
tion, the exponent differing from 0 to 0, but constant
for each 0 across different continua, The finding
is also consistent, however, with the hypothesis that
different parameters represent true perceptual dif­
ferences, differences which are highly correlated
across continua. In either interpretation, relative
differences in scale parameters indicate relative
differences in the underlying psychophysical pro­
cesses. Consequently, it is considered justified to



~ (log 11 (0))= ~

dO 0

conclude on the basis of these experiments that the
depth/distance ratio increases more rapidly as a
function of disparity than does size/distance ratio
as a function of visual angle.
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2. The proof is as follows:

From Equations (1), (2), and (3):

12 (r) = t /£)
11 (0) 3\0

Assuming f l, f2, and f3 are non-zero and differentiable, and taking

logarithms of both sides: ( )
(4) log 12 (I") - log 11 (0) = log 13 f

Differentiating (4) with respect to I" and with respect to 0 and
eliminating log f3 (r/o) from the resulting two equations yields:

rd (log 1'2 (r)) _ Od (log 11 (0))
d"r - de

Since in general I",.0. this equation can hold only if both sides
equal the same constant K:

~(Iog 1'2 (r)) = ~

ar r
Integrating and then taking antilogs:

12 (r) = (2rK 11 (0) = (10K

1
3(:)=~~~y

3. Predictions could have been made from the size/distance and
depth/distance scales directly. However, since these scales pre­
dict the depth-size matches only very roughly, and since the
depth-size task is more similar to the equilateral triangle task, the
depth-size data were used to make these predictions.
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