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Six psychological dimensions were recovered from similar
ity judgments of 20 random forms using Kruskal's nonmetric
scaling technique. These were related to 10 physical factors
describing the forms by using canonical correlation analysis
and rotations of the resulting vectors. Four factors accounted
for 2/3 of the variance of the intersection of the physical
and psychological spaces for each of II Ss. The factors are
described as Complexity, Curvature, Curvature Dispersion,
and Straight-length Dispers ion. The problem of the proper
psychological distance metric is discussed, and individual
differences among Ss are analyzed. The results lead to the
conclusion that the four major factors found may be good
representations of processes occurring in the perceptual
system.

The judgment of similarity among members of a
set of objects requires an observer to make simul
taneous use of all the perceptual dimensions that
he deems relevant. Thus, data on judged similarities
contain information on the dimensions of perception.
A variety of techniques for recovering the nature
and the number of these perceptual dimensions from
similarity data has been developed, beginning with
the work of Richardson (1938) and the theorems of
Young and Householder (1938). Torgerson (1958) re
views the scaling theory underlying the techniques
in use up until the time of his book. Since Torgerson's
book, important breakthroughs have been accomplished
in the analysis of similarities by Shepard (1962)
and Kruskal (1964).

The work of Kruskal d, to be described later, is
of major concern in the present study. Kruskal's
method is used here to recover the psychological
dimensions underlying the judged similarities among
members of a set of random shapes. These psychol
ogical dimensions are then related through the use
of canonical correlation analysis to a set of physical
dimensions that describe the same set of shapes.
The result of this analysis is a physical description
of the intersection of a set of psychological mea
sures of these shapes with a set of physical measures
of the same shapes.

The following sections on the general nature of
the similarity scaling model, the non-metric scaling
technique, and canonical correlation are designed
to introduce the reader informally to concepts
necessary for the understanding of this study. So

as not to break the continuity between this Intro-

duction to the concepts and their use in the following
sections, the discussion of literature pertinent to
the substantive results of this study has been de
ferred to the Discussion section. There the results
of relevant studies are stated and compared with
the results of the present study.

The Model
The basic model on which this study is based is

quite an old one. It is the same general model as
that described by Torgerson (1958) for analyzing
similarity data, and the same model forms the basis
for the methods of Shepard (1962) and Kruskal (1964).

In this model the percept of a stimulus object is
represented as a point located in a multidimensional
Cartesian coordinate system, whose reference axes
are (unknown) dimensions of perception. The points
representing two very similar percepts are close
to each other in this psychological space, and very
dissimilar percepts are represented by points that
are far apart. The interpoint distances, which rep
resent similarities, have usually been treated as
Euclidean distances: That is, the distance between
any two points is equal to the squared differences
of their projections on each reference axis of the
space summed over all axes. A notable exception
to this practice is, Attneave's "city block" distance
model for form perception (Attneave, 1950). In this
model the "distance" between any two points in
the psychological space is the sum of the absolute
differences of their projections on each axis of the
space.

The data collected in the study of similarities
are usually ordinal in nature, e.g., we ask Ss whether
one pair of stimuli is more similar than another
pair, or to choose the most similar pair in each
possible tetrad of stimuli, or to rate each possible
pair of stimuli on a category scale of similarity,
and so on. The problem then is to transform these
ordinal data to ratio-scale data that are taken to
be the interpoint distances in the model described
above. Various scaling techniques have been devised
to accomplish this transformation, most of which
are variations and adaptations of Thurstone's laws
of comparative and categorical judgment (see Tor
gerson, 1958, p. 261).

Assuming a Euclidean distance model, tt is a
fairly simple matter to construct a conceptual space
from which a set of interpoint distances could have
come, given ratio-scale data for these distances.
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However, there has been dissatisfaction with the
assumptions required to scale ordinal similarity
data in such a way as to achieve a proper ratio scale.
It is in this area that the breakthrough has come.
The multidimensional scaling methods developed by
Shepard (1962) and refined by Kruskal (1964) enable
one to construct the space from which the ordinal
data must have come without first having to perform
a unidimensional scaling of interpoint distances.
Thus, these methods are referred to as nonmetric.

Nonmetrie Multidimensional Seal ing
Bennett (1956) and Bennett and Hays (1960) demon

strated that in a space with fewer dimensions than
points, the rank order of interpoint distances con
strains the possible locations of the points. If the
number of dimensions is held constant and the num
ber of points increased, the constraint imposed by
ranking on the location of each point increases. In
the limit, the location of each of an infinite number
of points in a finite-dimensional space is completely
determined by the rank order of the interpoint dis
tances if one of the interpoint distances is already
specified.

Shepard (1962) examined this same phenomenon
and demonstrated that the constraints imposed by
the rank- ordering of distances increase very rapidly
as the number of points increases in a space of
fixed dimensionality. For example, Shepard obtained
an extremely good reconstruction of the configuration
of only 15 points in a plane by using the constraints
implied by the (~~ interpoint distance rankings.

Kruskal (1964) studied the same problem, refined
Shepard's method, and added a "goodness-of-fit"
measure to it. To attain an intuitive grasp of Kruskal's
method, suppose that we have data consisting of a
similarity ranking for each of (~) pairs of n stimulus
objects. The rankings are the input to the Kruskal
computer program, MDSCAL (multidimensional scal
ing program). This program first generates an
arbitrary configuration of n points in an m,:"dimen
sional space, where m is specified by the experi
menter. It then computes the (~) interpoint distances
among these arbitrarily numbered points and com
pares them with the rankings of the corresponding
stimulus pairs as given by the Ss. The degree to
which the relationship between distances and rank
ings is monotonic is expressed by a goodness-of-fit
measure called "stress." The MDSCAL program
then moves the n points slightly in the m-space
in such a way as to improve the fit (decrease Stress).
This process is repeated un~il a minimum Stress
is achieved. The same procedure may be followed
for various values of m, and the minimum Stress
is obtained for each value of m, The smallest di
mensionality that produces a satisfactory fit, as
indicated by stress, is then chosen as the best rep
resentation of the dimensionality of the conceptual
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space from which the similarity rankings must have
come. The coordinates of each of the n points in
this space are then obtained using an arbitrary unit
of measure.

A parameter is provided in the MDSCAL program
to control the distance metric used in the program.
One may use Euclidean distances, city-block dis
tances, or any other of a class of distance metrics
referred to as Minkowski r-metrfcs (see Kruskal,
1964). Assuming that Euclidean distance is used,
one obtains the coordinates of n points in a best
fitting m-space with an arbitrarily oriented set of
reference axes. If a non-Euclidean distance metric
is used, one obtains the coordinates of n points in
a best-fitting m-space the locations of whose refer
ence axes are fixed by the interpoint distances in
the configuration of points. Thus, the reference axes
can be rotated without affecting the interpoint dis
tances only if the Euclidean metric is used.

In the present study Euclidean distances are used
in the analysis of the psychological data, and the
physical space defining the shape stimuli is also
Euclidean. This approach allows a choice of refer
ence systems in both the physical and psychological
spaces, a situation in which canonical correlation
analysis can provide the quantitative basis for the
establishment of a multidimensional psychophysical
relationship.

Canonical Analysis
Whenever two different sets of measurements are

available on the same set of Objects, the interre
lations of the measurement sets can be studied by
canonical-correlation techniques. Hotelling{1935,1936)
developed canonical correlation as a method of ob
taining the maximum correlation between a single
pair of linear combinations of two sets of variables,
one member of the pair from one set of variables
and one from the other set. The technique may be
extended to obtain correlations between successive
pairs of linear combinations within the two measure
ment sets. Each successive pair is determined in
such a way as to maximize the correlation between
the members of that pair, subject to the restriction
that they be independent of both members of all
previous pairs of linear combinations. The product
moment correlation coefficients between the suc
cessive pairs of linear combinations of measures
are called the canonical correlation coefficients, the
linear combinations themselves are called canonical
vectors, and the weights applied to the original mea
sures in order to obtain the canonical vectors are
called the canonical weights.

Alternatively, one may consider canonical corre
lation to be a method of measuring the amount of
variance that two sets of normalized measurements
of the same objects have in common. That is, the
relative size of the intersection of two vector spaces
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is measured. In the present paper the size of the
intersection between a set of normalized physical
measures and a set of normalized psychological mea
sures on the same set of random shapes is found
for each S. The intersection is then interpreted as
the physical basis for the perceptual dimensions
that generate the judgments of similarity among
the shapes. The psychological measures are de
rived from similarity judgments analyzed by the
Kruskal MDSCAL program as described earlier, and
the physical measures are the scores of each of
the random shapes on a set of 10 physical factors
describing these shapes as given by Stenson (1966).

METHOD
Subjects

The Ss were 11 undergraduates at Antioch College
who were paid to participate in the experiment.

Stimuli
Twenty outline shapes drawn according to Method 4

of Attneave and Arnoult (1956) were used as stimuli.
These shapes are exhibited by stenson (1966). Each
of the 190 possible pairs of these stimuli was printed
on a 4 x 8 in. card. Within each pair the member
of the pair that was to appear on the righthand half
of the card was randomly determined.

Procedure
Each S was run individually for 1 h on each of five

successive days. On his first day each S was shown
a display of all 20 shapes and told that his task
would be to judge the similarity between the mem
bers of each possible pair of shapes. He was then
shown to a table on which was a pack of the 190
cards containing the stimulus pairs. He was asked
to leaf through the pack, looking at each pair of
shapes, and mentally note the degree of similarity
between the members of each pair. The pack of
cards was then shuffled and the experimental trials
began.

The S was instructed to sort the pack of cards
into two piles, placing cards with the more similar
pairs of shapes in a pile to his left and those with
the more dissimilar pairs in a pile to his right.
He was told to set his criterion for similarity in
such a way that the two piles would not differ greatly
in size. Two small signs reading "More Similar"
and "More Dissimilar" were placed on the table
to the S' s left and right, respectively, to continually
remind him of the pile designations. Each of the
two resulting piles of cards was then shuffled by the
E, and the piles were moved a short distance apart
on the table. The S was then asked to sort the left
hand pile and then the righthand pile each into two
piles, a similar and a dissimilar pile. The four re
sulting piles were then shuffled by the E, and the S
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was asked to sort each into two more piles beginning
with the leftmost of the four piles and working toward
the right. This same sorting procedure was followed
once more on the resulting eight piles. At the end
of the fourth sort the S had produced 16 piles of
cards ranging from cards with the most similar
pairs at the extreme left end of the table to cards
with the most dissimilar pairs at the extreme right.
He was then asked to look through each pile of cards,
beginning with the leftmost pile and working right,
and was told that if he found a card that should not
be in the particular pile he was looking at, he was
free to move it to any other pile. This same pro
cedure (beginning with the sorting) was followed in
each of the four following sessions. The pile number
(1-16) for each card was recorded after each ses
sion. This sorting method was devised by Silver,
Landes, and Messick (1966) for use in a study similar
to the present one.

Analysis of Similarities
The data for each S was analyzed separately. First

the average pile number for each pair of shapes
over the five sessions was computed. The 16 piles
and five sessions made possible a 76 point scale
(5 x 16 - 4) of average pile numbers (APN) over the
five days. The APN data were the input for the MD
SCAL program. The program, as described earlier,
relates computer-generated, interpoint distances to
the rankings received from the Ss. If some of the
rankings are duplicated, that is, the stimuli are
only partially ordered, as is the case with the APN
data in the present study, two program options are
available. The Primary Method (see Kruskal, 1964)
allows a single ranking to correspond to more than
one interpoint distance in the psychological space,
subject to the restriction that the distances and rank
ings be monotonically related to as great a degree
as possible. In the Secondary Method if two pairs
of stimuli are ranked the same, the program re
quires that the tnterpoint distances for these pairs
be made equal. The Primary Method was used for
the present data analysis.

The number of dimensions in which the APN data
were analyzed was varied from 10 dimensions to
one dimension in steps of one. Thus, stress (the
goodness-of-fit measure) was obtained for each of
10 dimensionalities for each S. Stress is an index
number that can vary from zero to one, with zero
Stress indicating a perfect fit. Kruskal (1964) states
that his " ... experience with experimental and syn
thetic data suggests the following verbal evaluation"
of the Stress measure: Stress of 20% or more in
dicates a poor fit, 10% indicates a fair fit, 5% a good
fit, and 2.5% or less an excellent fit. Zero Stress
indicates a perfect monotone relationship between
similarities and distances,
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The Stress for each dimensionality used was
examined, and the appropriate dimensionality was
decided upon for each S for further analysis.

Physical Measures of Stimuli
The physical data to which the psychological data

are related are the factor scores of each of the
random shapes on 10 simple-structure, orthogonal
factors found by Stenson (1966) to account for 94%
of the total variance in 24 physical measures de
scribing the shapes. Table 1 provides a name for
each of these factors and shows the physical mea
sures that had the highest loadings on them. A brief
description of each of these factors follows.

The Curvature factor may be thought of as the
proportion of the perimeter of a shape that is com
posed of arcs, while the Curvature Dispersion factor
is a measure of the diversity of arc lengths in the
perimeter. The Orientation factor may be simply
described as the angle that a line drawn through
the maximum extent of the shape makes with the
horizontal. Complexity is a factor defined by the
variables found by Attneave (1957) and Arnoult (1960)
to be highly related to the judged complexity of
random shapes. Stenson (1966) found that complexity
ratings were highly related (r = .90) to a single factor
described by these same variables. Straight-length
Dispersion measures the diversity in the lengths
of straight segments in the perimeter of a shape.
The general meaning of Height-Width Ratio is ob
vious, but it should be noted that this factor does
not simply measure the ratio of maximum vertical

Table 1. Ten Factors Describing 94% of the Variance of Physical

Measures Made on 20 Forms, and the Physical Measures that De

fine Each Factor

Factar Defining Measures Laading

A. Curvature Mean Straight Length -.93
% Arcs .90
% Straight Perimeter -.82

B. Curvature Dispersian Variance Arc Length .96
Mean Arc Length .83
Skewness Arc Length .78

C. Orientatian Elongation Index -.88
Orientation Angl e .81

D. Complexity Perimeter (Pl 85
Number of Turns in P .83
p2/Area .80
Variance Internal Angles .70

E. Strai ght-L ength Skewness Straight Length -.72
Di spersion Variance Straight Length -.69

F. Height-Width Ratio Varian ce on X-axi 5 -.91
Variance Index 88

G Topheaviness Skewness on Y-axi s -.93

H. Angular Concavity % Convex Angles -.86

I. Curved Concovi ty % Convex Arcs -.92

J. Angular Asymmetry Skewness Internal Angles .88
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extent to maximum horizontal extent. Rather. the
shape is viewed as a bivariate statistical distribu
tion of unit density within the form and zero else
where. The factor is best defined by the Variance
Index, which is the difference between the variances
along the x and y axes of this distribution divided
by the sum of these variances. The skewness (third
central moment) along the vertical axis when the
shape is treated as a bivariate density function de
fines the Topheaviness factor. The meanings of
Angular Concavity and Curved Concavity are given
respectively by the proportion of the angles in the
perimeter that are concave when viewed from the
interior of the shape and the proportion of the arcs
in the perimeter that are concave when viewed from
the interior of the shape. The last factor. Angular
Asymmetry. is defined by the skewness (third cen
tral moment) of the distribution of angles contained
in the perimeter.

It should be noted that when 12 factors rather than
10 factors were retained and rotated for this set
of shapes. about 97% of the total variance of the
physical measures was accounted for. with the two
additional factors described by Area and by Skew
ness along the horizontal axis of the shape. The
latter is the horizontal counterpart of Factor G.
Topheaviness. These factors contributed so little to
the total variance of this particular set of shapes
that they were omitted from the analysis. However.
it is reasonable on logical grounds to expect them
to be important descriptors for other sets of shapes
where the area and the degree of skewness along the
horizontal axis contribute more variance.

Canonical Analysis
The next step of the analysis of the similarities

among shapes was to relate the psychological space
for each S as represented by the results of the
MDSCAL analysis to the physical space represented
by the physical factors just described. Canonical
correlation analysis was used for this purpose. Note
that the physical variables (factors) that entered
into the canonical analysis were independent and
normalized at the outset of the canonical analysis .
(The physical factors will be referred to as "physi
cal variables" in what follows in order to avoid
ambiguities.) This characteristic of the physical
variables forces independence among the sets of
canonical weights for the physical variables. and
makes the following type of analysis possible for
each S.

The members of each set of canonical weights
for the physical variables were multiplied by the
canonical correlation coefficient corresponding to
the given set of weights. This process produced a
matrix very similar to a principal axes factor ma
trix because of the independence among sets of
canonical weights for the physical variables. In this
matrix the "loadings" of each physical variable on
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a given psychological "factor" are a set of weights
showing the relationship of the physical variables
to one dimension of the psychophysical intersection.
These psychological factors were then rotated to
simple-structure using the Varimax criterion. The
resulting matrix was interpreted as a physical basis
of psychological judgments of similarity. The mathe
matics underlying this analysis are given in the
Mathematical Appendix.

RESUL TS
MDSCAL Analysis

Table 2 shows stress as a function of dimension
ality for each S. The MDSCAL program was set to
discontinue iterations for the dimensionality on which
it was working if Stress reached 5% or less, or if
a minimum stress greater than 5% was reached.
stress is shown for only 1 through 7 dimensions
in Table 2 because stress had reached 5% for all
Ss for dimensionalities of 8, 9, and 10.

For no S is there an abrupt change in the down
ward progression of stress as dimensionality is
increased. Such a change would help to determine
the proper dimensionality to use for an S (see
Kruskal, 1964). Therefore, the 5% Stress level was
used as a criterion to determine the proper dimen
sionality. Table 2 shows that with five dimensions
Stress for all Ss is greater than 5%, although S No.5
is close to 5%. For six dimensions the stress for
all Ss is at or very near the 5% criterion, and for
seven dimensions the criterion is met for all Ss.
Each increase in dimensionality decreases the con
straints on the locations of points in the conceptual
space. Therefore, the results for six dimensions
were used for further analysis, even though the 5%
criterion is not rigidly met for all Ss, The stress
for all Ss is lower than 6.8% when six dimensions
are used. The stress for S No. 5 is sufficiently
close to 5% at five c;.imensions to warrant using
five rather than six dimensions for him, but for
the sake of uniformity of analysis, six dimensions

were used for all ss, The goodness-of-fit may be
said to be good in six dimensions for all Ss, using
the verbal criteria stated earlier.

Canonical Analysis
The 6-dimensional MDSCAL data and the 10

dimensional physical data were subjected to a can
onical correlation analysis for each S independently,
resulting in the canonical correlation coefficients
shown in Table 3. No test of statistical significance
was done on the canonical coefficients for reasons
to be discussed later.

The final column of Table 3 shows the percentage
of the total variance in the psychological space that
can be accounted for by the six canonical vectors,
in the physical space. These percentages are obtained
by squaring and summing the canonical coefficients
for an S and then dividing this sum by six, the total
variance of the normalized psychological space.

For each S each of the six sets of canonical weights
for the physical variables was multiplied by its cor
responding canonical coefficient. This produced a
matrix for each S in which the rows corresponded
to the 10 physical variables named in Table 1, and
the columns were six unnamed psychological axes.
The six columns of each of the 11 resulting matrices
(one for each S) may be viewed as six independent
principal axis factors from a factor analysis of the
psychophysical intersection. The squared canonical
coefficients are the variances along these factors.
A rotation of each matrix, using the Varimax cri
terion, produced a 10 by 6 matrix with simple-structure
for each S.

Table 4 is an example of the results of this treat
ment of the data for a single S. The matrix shown
is a simple-structure description of the intersection
of the physical and psychological spaces for S No.7.
The last row of Table 4 shows the percentage of
the intersection that is accounted for by each of
the six factors. These percentages are analogous
to "the percentages of common variance accounted

Table 3. Canonical Correlation Coefficients for Psychological and

Table 2. MDSCAL Stress Values for Each of 7 Physical Canonical Vector Pairs, and Percentage of Total Variance

Dimensionalities for Each of 11 Ss Accounted for by these Correlations for Each of 11 Ss

Dimensional ity Canonical Vector Pair %ofTotal

5 2 3 4 5 6 7 5 2 3 4 5 6 Variance

1 .324 .229 .144 .097 .075 .056 .050 1 .98 .91 .85 .72 .63 .46 .61
2 .347 .184 .135 .086 .064 .050 .050 2 .99 .98 .92 .88 .63 .48 .70
3 .413 .221 .148 .103 .068 .054 .050 3 .99 .98 .89 .84 .69 .35 .67
4 .376 .254 .160 .111 .084 .068 .050 4 .98 .96 .93 .85 .57 .38 .65
5 .229 .142 .097 .073 .052 .050 .049 5 1.00 .98 .92 .84 .78 .36 .71
6 .340 .174 .108 .080 .058 .050 .050 6 .99 .92 .91 .71 .60 .47 .62
7 .340 .213 .166 .111 .075 .057 .050 7 .98 .94 .86 .81 .69 .63 .68
8 .360 .198 .113 .074 .062 .050 .049 8 .99 .95 .86 .81 .59 .49 .65
9 .340 .152 .109 .084 .064 .053 .049 9 .98 .93 .75 .71 .62 .57 .60

10 .244 .186 .138 .083 .065 .052 .050 10 .98 .95 .88 .66 .58 .41 .60
11 .410 .225 .149 .101 .075 .059 .050 11 .99 .97 .88 .82 .77 .57 .72

Median .340 .198 .138 .086 .065 .053 .050 Median .99 .96 .88 .84 .63 .47 .65
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Table 4. A Simple-Structure Representation of the

Psychophysical Intersection for S No. 7

Physical Psychological Axes
Variable II III IV V VI

A. -.15 .75 .04 .03 .05 -.10
B. .00 .05 .70 -.12 .09 .05
C. .00 -.04 .08 .04 .68 .02
D. .82 -.16 -.01 .03 -.02 -.01
E. .01 -.02 -.11 .60 .04 .05
F. -.17 -.23 -.19 .11 .19 .13
G. -.02 -.09 .07 .09 .05 .63
H. -.23 -.21 .26 .19 -.17 .05
I. -.05 -.14 .27 .33 -.38 -.36
J. .04 -.26 .05 .15 .12 -.21

% of
Intersection 19 19 17 14 17 15

for" in the usual factor analysis. For this S the
intersection of the two spaces contains 68% of the
total variance in the psychological space as shown
in Table 3. That is, the common variance which is
apportioned in Table 4 is 68% of the total variance,
to use the parlance of factor analysis. A column
of anyone of the 11 simple-structure matrices (one
for each S) obtained by this method will be called
an Intersection Factor (IFAC).

Tables 5, 6, 7, and 8 summarize some of the re
sults in the 11 IFAC matrices, of which Table 4 is
an example. Each of these tables shows the physical
structure of a particular IFAC for each S who had
an IFAC appropriate for the table in question. The
tables were constructed as follows. A single physical

. variable was chosen fo-r consideration, and the cor
responding row of an S's IFAC matrix was scanned
for the highest (absolute) loading. When this maximum
loading was found, the column (IFAC) containing it was
scanned for higher loadings. If no higher loading was
found, that IFAC was entered into a table labelled with
the name of the physical variable under consideration.
(Reflections of factors were used when appropriate, so
that all maximum loadings were positive.) This proce-

dure was followed with each physical variable. For ex
ample, Column 7 in Table 5 contains a loading of
.82 for physical variable D, Complexity. Table 4
shows that .82 is the highest loading that variable D
has on any IFAC for S No. 7 and also is the highest
loading on the IFAC in question. Thus, Column 1
from Table 4 was entered in Table 5 for S NO.7 •
If, for a given S, the highest loading for a particular
physical variable was not also the highest loading
on the corresponding IFAC, no entry was made for
that S in the table bearing the name of the physical
variable in question. For example, Column 2 of Table
6 is filled with xs, This means that for S No.2
there was no IFAC for which physical variable A,
Curvature, had the highest loading.

Thus, Table 5 shows that all 11 Ss had an IFAC
best described by physical variable D, Complexity.
Table 6 shows that each of 10 Ss had an IFAC best
described by physical variable A, Curvature. Table 7
shows that each of 10 Ss had an IFAC best described
by physical variable B, Curvature Dispersion. And
Table 8 shows that all 11 Ss had an IFAC best de
scribed by physical variable E, Straight-length Dis
persion. The last column of each of these tables
shows the median factor loadings for the Ss enter
ing into the table. The last row of each table shows
for each S the percentage of the psychophysical in
tersection that is accounted for by the IFAC in
question and the median of these percentages.

As a summary of the data up to this point, it may
be noted that the 10 physical variables whose names
are listed in Table 1 account for about 2/3 of the
variance in the psychological space on the average
(see Table 3), and that for most Ss, four of these
physical variables account for about 3/4 of the vari
ance in this psychophysical intersection (see Tables
5, 6, 7, and 8). Thus these four physical variables,
Complexity, Curvature, Curvature Dispersion, and
Straight-length Dispersion, account on the average
for about 1/2 of the total variance (3/4 of 2/3) in
the psychological space.

Table 5. Complexity Intersection Factor for Each of 11 Ss, Showing Factor Loadings of Physical Variables.

Percentage of Intersection Variance Accounted for (%), and Medians (Md) over Ss. (Decimal points omitted)

Physical Subject No.
Factor 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Md

A. 02 -39 -19 03 00 -09 -15 -35 -08 -17 -07 -08
B. 04 -OS -08 -09 02 -07 00 -08 -09 13 -11 -07
C. -06 01 01 12 -03 06 -00 04 -04 -06 07 01
D.- 74 81 75 88 88 86 82 79 83 90 86 83
E. -03 13 -13 01 06 -08 01 03 -05 02 -11 01
F. -03 -09 -25 -16 -03 -08 -17 -07 -04 -05 -15 -07
G. -04 -04 01 -08 -14 01 -02 01 -12 -07 -09 -04
H. -47 -03 -24 -07 -37 -10 -23 -17 -02 -08 -13 -13
I. -03 02 08 -09 -06 07 -05 09 -01 -00 02 00
J. -14 00 13 06 05 -07 04 04 04 04 02 04
% 22 20 19 22 22 21 19 21 20 24 19 21

- Criterion variable used to compile table.
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Table 6. Curvature Intersection Factor for Each of 10 Ss, Showing Factor Loadings of Physical Variables,

Percentage of Intersection Variance Accounted for (%), and Medians (Md) over Ss. (Decimal points omitted)

Physical Subject No.
Factor 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Md

A.* 83 x 66 76 86 80 75 52 76 69 88 76
B. 05 x -01 01 22 07 05 -02 34 22 03 05
C. 18 x 32 -43 -05 10 -04 -03 -03 -24 12 -03
D. -18 x -02 -03 -16 -09 -16 07 -10 -11 -07 -10
E. -04 x -07 -06 05 -18 -02 -00 -01 17 -08 -03
F. -06 x -02 13 -05 -03 -23 -12 -13 -10 -11 -08
G. -09 x -10 -08 -15 08 -09 01 06 -13 -06 -09
H. -15 x -49 -02 -20 -11 -21 -42 08 -22 -14 -18
I. 03 x -02 -04 05 07 -14 -05 -02 -04 01 -02
J. -07 x -04 15 -04 -11 -26 -29 -05 03 -04 -05
% 22 x 20 21 21 20 19 14 20 20 '19 20

* Criterion variable used to compile table.

Tables similar to Tables 5-8 were constructed
for each of the remaining six physical variables.
However, only summary data from these tables are
given here because the Ss were quite heterogeneous
with regard to the structure of the remaining IFACs,
and because the percentages of the variance accounted
for by these remaining IFACs were, in most cases,
substantially lower than for the four types of IFAC
presented in Tables 5-8. Table 9 summarizes these
remaining IFACs by presenting the median factor
loadings from each table and the median percentages
of variance accounted for. Thus, each column of
Table 9 is the analogue of the last column (me
dians) of each of the preceding IFAC tables, Tables
5-8. The last row of Table 9 shows the number of
sa who had IFACs that qualified for inclusion in the
table from which the medians in a given column in
Table 9 were computed. The labels on the columns
of Table 9 are the names of the tables from which
the medians were computed. These are the names
of the physical variables that were under consider
ation when compiling the tables on which Table 9 is
based. Note that Table 9 shows that seven of the
11 Ss had an IFAC that is best described as Top
heaviness, but that only three or four Ss' data con
tained anyone of the remaining five types of IFAC.

There were, of course, 10 types of IFAC possible
because 10 physical variables entered into the analy
sis, but there were only six psychological dimensions
to account for. Therefore, only six of the 10 possible
types of IFAC were possible for a given S. Table 10
shows the pattern of types ofIFAC found for each
S by giving the percentage of the variance ofeach
S's intersection that was accounted for by each of
his six IFACs.

DISCUSSION
The major finding of this research is that four

physical variables account for the majority of the
variance in a conceptual psychological space whose
dimensions are judgment axes of figural similarity.
This finding is based on a chain of analyses, certain
aspects of which require discussion.

First, the interpretation of the results relies on
the acceptance of the model of conceptual space
described earlier in an introductory section. While
there seems to be general agreement among psy
chologists on the general nature of this model with
regard to the judgment of similarity, there has been
discussion of some critical features of the model
and of some procedural matters related to its use.
A critical feature that has received much attention

Table 7. Curvature Dispersion Intersection Factor for Each of 10 Ss, Showing Factor Loadings of Physical Vari-

ables, Percentage of Intersection Variance Accounted for (%), and Medians (Md) over Ss. (Decimal points omitted)

Physical Subject No.
Factor 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Md

A. 07 17 12 17 03 08 04 25 x -04 01 08
B.' 69 80 72 66 57 58 70 63 x 53 48 65
C. 22 01 15 14 -04 01 08 06 x 09 -26 07
D. -05 -02 -07 -04 02 06 -01 -07 x -03 -02 -02
E. -07 22 -06 03 03 -13 -11 05 x -06 03 -01
F. 04 -10 -29 -20 -14 -46 -19 04 x -01 -46 -16
G. 13 23 07 14 32 -04 07 16 x 52 15 15
H. -05 -06 35 05 02 -10 26 01 x 13 46 04
I. -02 -10 -04 -25 -57 -04 27 -07 x 05 02 -04
J. -05 -05 -03 -07 -07 01 05 02 x 00 00 -01
% 15 19 19 16 18 16 17 13 x 17 17 17

• Criterion variable used to compile table.
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Table 8, Straight Length Dispersion Intersection Factor [or Each ot 11 ss. Showing Factor Loadings o[ Physical

Variables, Percentage ot Intersection Variance Accounted [or (%), and Medians (Md) over Ss ,

(Decimal points omitted)

Physical Subj ect No,

Factor 1. 2, 3, 4, 5, 6, 7, 8, 9, to. 11. Md

A. -08 11 -15 07 04 05 03 -15 -01 as -07 03
B. -09 03 --05 08 14 36 -12 06 -19 -03 -15 -03
C. 08 47 37 27 11 34 04 13 as 32 16 16
D. -06 10 as 02 14 04 03 01 -06 --03 -06 02
E.- 61 56 59 80 73 67 60 75 57 52 74 61
F. 17 --04 24 24 10 16 11 29 20 17 -03 17
G. -09 -07 -01 02 18 02 09 08 -02 as -13 02
H. 00 06 07 03 as 03 19 06 -26 06 15 06
!. 13 24 04 19 21 11 33 13 23 18 40 19
J. 17 -07 34 16 10 -09 15 --03 01 02 02 02
% 13 15 17 22 16 20 14 19 15 13 19 16

- Criterion variable used to compile table.

is the nature of the proper distance metric to be
used to describe the interpoint distances. The issue
was first raised by Attneave (1950), who contended
on the basis of his data that a "city-block" metric
was appropriate for the model describing the [udged
similarities among a set of forms. The problem
of distance metric with regard to the present study
is discussed below.

Next, the statistical aspects of the data are dis
cussed, after which a procedural matter relating
to the effects of individual differences on the model
is discussed. Consideration of the latter was prompted
by an important paper by Tucker and Messick (1963),
and by a study by Silver, Landes, and Messick (1966).
The decision to analyze each S's data separately
in the present study reflects this consideration. Fi
nally, the substantive results of this study, the
psychophysical dimensions of figural similarity, are
discussed, after which some conclusions are stated.

Distance Metrics
One of the assumptions underlying the present

study is that a Euclidean distance metric is appro
priate for the conceptual space in which the percepts

of the stimuli are represented. Several aspects of
the results tend to support this assumption. First,
the four physical variables found to describe four
major dimensions of the intersection of the psychol
ogical and physical spaces are plausible from an
interpretive point of view. That is, the four factors
in Tables 5-8 are verbally interpretable without in
volving highly abstract mathematical concepts. Second,
the results are consistent with those from a study
by Stilson (1966) where the task set for the S was
not the same as in the present study, a different class
of shapes was used, and the method of analysis was
different from that used here. Acomparison of Stilson's
results with those of this study is made later. Third,
there was a high degree of consistency between Ss
in the present study with regard to the major physi
cal variables correlated with their similarity judg
ments. Two of the four major physical variables
in Tables 5-8 were important for all of the 11 Ss ,

However, consistency and meaningfulness of re
sults, using a Euclidean metric, do not imply that
an even better fit and even more consistency could
not be achieved by assuming a non-Euclidean metric.
Kruskal's scaling program specifically provides a

Table 9. Median Factor Loadings [or 6 Least Important Intersection Factors

(IFAC) Showing Median Percentage of Intersection Accounted for (%), and

Number ot Ss (N) for Each IFAC (Decimal points omitted)

Factor Name
Physical Top- Orien- Curved Angular Angul or Height
Variable Heaviness tation Concavity Asymmetry Concavity Width

A. -13 05 --02 ....{J) -11 --06
B. 09 05 -07 -07 -07 -09
C. 04 68 -13 -15 08 -06
D. -as 05 09 04 -09 -11
E, 02 04 12 02 as 11
F. -as -19 --02 -12 12 51
G, 53 05 -19 --01 -01 -as
H, 04 -01 13 -02 50 01
I. -17 -08 53 10 00 -02
J, 00 01 19 55 -12 07
% 15 15 14 13 12 12
N 7 3 4 3 4 3
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Table 10. Pattern of Intersection Factors of 11 Ss Showing Percentagesf of Variance of Intersection

Accounted for by the Factor Best Described by the Physical Variable Shown on the Left

Physi cal Subject No.
Variable l. 2. 3. 4. 5. 6. 7. 8. 9. 10. ll.

A. 22 20 21 21 20 19 14 20 20 19
B. 15 19 19 16 18 16 17 13 17 17
C. 15 17 16
D. 22 20 19 22 22 21 19 21 20 24 19
E. 13 15 17 22 16 20 14 19 15 13 19
F. 12 16 08
G. 20 12 11 15 18 14 16
H. 10 10 17 14
I. 16 14 13 14
J. 11 13 09

a Percentages may not add to 100 because of rounding.

parameter to enable the user to select anyone of
an unlimited number of metrtcs, and an interesting
project for future research would be to vary this
parameter and see which metric provided the best
fit to the input data.

The whole question of metric for similarity judg
ments of shape probably has its origin in a single
paper by Attneave (1950). Attneave scaled the simi
larity ratings of pairs of simple form stimuli. He
found that the scale values for similarity were in
consistent with the simple representation of the
stimuli as points in a two-dimensional space de
scribing the only geometric characteristics on which
the stimuli differed. He partially resolved this in
consistency by adding a constant to all the psychol
ogical scale values. Another problem then arose.
The transformed scale values did not conform to
a Euclidean distance metric in two dimensions.
Instead, they seemed to conform more to a distance
metric that Attneave termed the "city-block" model,
in which the distance between two points is the sum
of the absolute distances between the projections
of the points on all reference axes, rather than
the length of a straight line connecting the two points.

Torgerson (1958, p. 254) treats this topic in some
detail, and Hake (1966) presents an excellent critique
of Attneave's studies of similarity. Hake discusses
the many difficulties in Attneave's methodology and
assumptions, and then concludes, " ... the city-block
model has no real support here. This being so, why
has the city-block model, which is based almost
entirely on Attneave's data, persisted as a real al
ternative? A partial answer is that the Attneave data
have not been fully explored to see whether they
satisfied the critical assumptions involved. A more
important answer, probably, is that the city-block
model has a strong intuitive appeal."

Hake's exploration of the Attneave data indeed
suggests that there is no reason aside from intuitive
appeal to use a city-block metric rather than any
other metric. But because of its intuitive appeal
and because of the serious consideration of this
alternative by psychologists, the similarity rating
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data from the present data were reanalyzed by the
Kruskal method using the city-block metric rather
than the Euclidean metric. The psychological data
from this analysis, then, are in a non-Euclidean
space, but the physical data on the shapes are in
a Euclidean space. Therefore, the psychophysical
analysis of these data involves some thorny mathe
matical problems which are presently being inves
tigated. The data are not presented here because

. of these analytic problems and because they would
detract from the results already presented. It may
be said, however, that the results of the city-block
analysis compared to the Euclidean analysis do not
show as much consistency among Ss with regard to
the number of psychological dimensions required to
achieve a good fit to the similarity data. Also, it
appears that more dimensions are required in the
city-block analysis than in the Euclidean analysis
for the average S. The goodness-of-fit measure,
stress, reached the 5% ievel in from 5-8 dimensions
for different Ss using the city-block metric. This
finding makes the city-block analysis somewhat sus
pect at the outset, because a good fit becomes more
of a mathematical necessity as the number of di
mensions is increased.

Statistical Analysis
There are two sources of statistical error in the

present data analysis. The first source is in the
representation of fallible data in the conceptual space
through the use of the MDSCAL program. The nature
of this source of error can be demonstrated with
a hypothetical example. Suppose that a S in the
present experiment were in fact making use of five
physical dimensions of the stimuli to assess the
similarities among all pairs of stimuli. If the S
were perfectly consistent in his sorting behavior
then the MDSCAL analysis should construct a stim
ulus configuration such that Stress would be very
close to zero when five dimensions were used in
the program (assuming that a Euclidean analysis is
appropriate). If, however, the S is somewhat incon
sistent in his sorting, sometimes he will place a
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stimulus pair in a pile in which it does not belong,
and/or he will give different weights to the same
physical dimension as he progresses through the
sorting task. These inconsistencies will be reflected
in the MDSCAL analysis by the appearance of
"extra" dimensions. That is, more than five dimen
sions may be required to achieve a low stress, the
excess being due to statistical error in the data,
which the program tries to account for. Notice that
in Table 2 the Stress for all Ss when four dimen
sions are used is in the range that is termed a "fair"
fit using Kruskal's verbal description of Stress. It
is entirely possible that a fair fit is all that can be
achieved using data collected by the present method.
If that is the case, then the fifth and sixth dimen
sions can be said to have no systematic relationship
to the perception of shape and should not be used
in further analysis. Unfortunately there is no clear
cut method by which one can make this determination.
As a result, six dimensions were used in the pres
ent analysis with the rationale that if one or two
of these dimensions were primarily due to errors
in the data, then they should show no relationship
to physical characteristics of the shapes.

The relationship of the psychological dimensions
to the physical dimensions is the second possible
source of statistical error. Suppose that one of the
psychological dimensions is due primarily to sorting
errors made by the S. This dimension may show
some relationship to the physical dimensions of the
stimuli because of a capitalization on chance in the
canonical analysis. Here we again are hampered
by the lack of an adequate methodology. The only
statistical tests available to test the significance
of canonical correlation coefficients require the
assumption of a multidimensional normal density
function (Kendall, 1957). The robustness of these
tests under conditions of nonnormality is unknown.
We do know, however, that the common univariate
statistical tests requiring an assumption of normal
ity may react in bizarre ways to violations of the
normality assumption (Bradley, 1964). It is too much
to hope that deviations from normality in a multi
dimensional situation would not produce similar
extreme unpredictability. We therefore must rely
on logical and psychological analyses of the canon
ical relationships rather than statistical tests.

If the canonical coefficients in Table 3 are ex
amined for sudden changes in trend as successive
coefficients are examined one finds no clear evi
dence of a discontinuity that would indicate that the
smaller coefficients should be regarded as due to
chance. An alternative attack on the problem is to
require that the smallest canonical correlation to
be considered meaningful be greater than .30, indi
cating that more than 10% of the total variance is
accounted for by the corresponding canonical vector
pair. This is analogous to the tradition in factor
analysis of disregarding factor loadings that are

~10

not greater than .30. Table 3 shows that the median
canonical coefficient for the sixth pair of vectors
is .47 and that the smallest coefficient for any S
is .35. Thus, this criterion also gives no evidence
for ignoring the canonical vectors with the smallest
coefficients.

With no reason to reject any of the six canonical
relationships as statistical artifacts, the analysis
proceeded as if all dimensions were meaningful, and
the IFACs in Tables 5-9 were found. At this point
the data again can be examined for possible statis
tical artifacts. If an individual rotated factor does
not account for a substantial proportion of the in
tersection variance, and if the individual differences
with regard to the importance of such a factor are
great, then we have reason to suspect the validity
of this factor. The implied psychophysical relation
ship may be considered as due to chance, or, at
the least, a real, but relatively unimportant rela
tionship. This view of the data is discussed in the
next two sections.

Individual Differences
The pattern of individual results as summarized

in Table 10 indicates that if one considers all the
relationships implied by Table 10 as statistically
significant then only two of the 11 Ss had similar
results. These are Ss Nos. 7 and 8. This view of
the data would indicate that there were 10 subject
"types" among the 11 Ss, A more conservative ap
proach would be to ignore those physical variables
that account for 10% or less of the variance in the
intersection of the psychological and physical spaces
and then compare Ss , Table 10 shows that for Ss Nos.
4, 5, 6, and 11 there was one such physical variable
for each S. Physical variable H accounted for 10%
of the intersection for Ss Nos. 4 and 7, physical
variable F accounted for 8% of the intersection for
S No.5, and physical variable J accounted for 9%
of the intersection for S No. 11. Ignoring these per
centages as nonsignificant, we find that Ss 7 and 8
still have similar results and, in addition, Ss 4 and
11 now also show similar results. This view of the
data would indicate that there are nine subject types.

A still :more conservative approach is to demand
that a physical variable account for more than 10%
of the total variance in the psychological space be
fore being considered meaningful. The intersection
of the psychological and physical spaces accounted
for about 2/3 of the total variance in the psychologi
cal space for each of the Ss (see Table 3). Thus,
a physical variable that accounts for 15% of the
intersection accounts for about 10% of the total vari
ance in the psychological space. If in Table 10 we
ignore those physical variables accounting for 15%
or less of the intersection, then Ss 3, 4, 5, and 6
have similar results, and there are eight subject
types.

The question of the existence of different per-
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ceptual types among Ss with regard to similarity
judgments was raised and an analysis was proposed
by Tucker and Messick (1963). For this method of
analysis one computes a matrix of correlations be
tween all pairs of Ss by summing cross-products
of similarity ratings across all pairs of rated
objects. This "Subjects-by-Subjects' I matrix is fac
tored, and the factors are rotated to simple-structure.
Each rotated factor is considered to represent the
"viewpoint" of an "ideal subject." The factor load
ings that an individual S has on each viewpoint factor
represent the degree to which his behavior con
formed to that viewpoint throughout the experiment.
Homogeneous viewpoint subgroups may be' formed
on the basis of such an analysis, and the similarity
data then may be analyzed within each subgroup.

The Tucker and Messick (1963) type of analysis
could have been performed on the data in the present
study before the MDSCAL and canonical analyses
were performed. However, this was not done because
of certain interpretive problems raised in a paper
by Ross (1966), in which he shows " .•. that to com
bine readings from 'points of view' configurations
as assumed in Tucker and Messick's model is not
to combine configurations in any simple way." Ross
shows in particular that it is possible to generate
interpoint distances from the Tucker and Messick
method such that no vector space can be found to
represent them. These problems were avoided in the
present analysis by analyzing each S's data separately.

Silver, Landes, and Messick (1966) report the re
sults of a study in which they used the Tucker and
Messick method of analysis on the similarity judg
ments of pairs of random shapes. Using 50 Ss they
found five viewpoint dimensions. Each of two view
points was best described by the data from two
separate groups of 14 Ss each, and the remaining
three were primarily determined by the data from
separate groups of 10, 7, and 5 Ss, respectively.
A conservative view of the results of the present
study indicates eight subject types among the 11 Ss,
as described earlier. However, the difference be
tween the number of types found in the Silver et al
study and the present study is of no great concern
because of the differences in methodology and the
associated assumptions. The point to be made from
these two sets of results is that there are apparently
a fair number of different strategies employed by
Sa when they are asked to make similarity ratings.
Thus, it is possible that studies of similarity in
which data are averaged over all Ss produce results
representative of no individual S.

However, it is interesting to note that if one con
fines his interest to only four IFACs, Complexity,
Curvature, Curvature Dispersion, and Straight-length
Dispersion, all Ss seem to be more or less of a
single type. They all make use of these physical
dimensions of the stimuli, and these four dimen-
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slons account for the majority of the variance in
the perceptual space for most Ss. Thus, with regard
to these major variables, there are not wide indi
vidual differences.

Psychophysical Dimensions
Thus far in -the discussion of the simple-structure

factors that span the psychophysical intersection, I
have been careful not to imply that these factors
are isomorphic with the characterization of stimuli
in the perceptual system. Certainly these physical
factors must bear some relation to perceptual pro
cesses, or there would be no empirical relationship
between similarity judgments and the physical fac
tors. But any rotation of the physical factors would
account for exactly the same proportion of the in
tersection variance, and the "meaning" of the factors
would change with each rotation. This problem will
be considered in this section.

First, consider the two IFACs that appear in each
S's results, the Complexity and Straight-length Dis
person factors. Complexity accounts for about 1/5
of the intersection variance, and Straight-length
Dispersion accounts for about 1/6 of the intersection
variance as shown in Tables 5 and 8. A comparison
of these results with the results of a study by Stilson
(1966) is relevant to the meaningfulness of these
IFACs.

Stilson had a group of Ss learn nonsense names
for a set of triangles of equal area, but of a varying
triangular shape. After five learning trials the Ss
were asked to recall the proper name for each tri
angle. Confusion of the names for any given pair
of triangles was then used to index the similarity
between the two triangles. Four measures of physi
cal similarity between any given pair of triangles
were taken by computing the absolute difference be
tween the two triangles on each of four physical
measures. The correlation between psychological
similarity and physical similarity was then com
puted for each of the physical measures. Stilson
found that the perimeter squared to area ratio
(p2/ A) accounted for about 43% of the variance
among psychological similarities, and a measure of
the variability of the side lengths within a triangle
accounted for about 40% of the variance among
psychological similarities.

One of the best descriptors of Complexity in the
present study is p2/A, and one of the best descrip
tors of Straight-length Dispersion is the variance
of the lengths of the straight sides of a form as
shown in Table 1. Thus, using two widely different
sets of stimuli, different measures of similarity,
and different analytic techniques, Stilson's study
and the present one show essentially the same re
sults: Complexity and Straight-length Dispersion are
important predictors of the psychological similarity
among forms. This replicability under widely dif-
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ferent conditions supports a view that these physical
variables are in some sense basic to information
processing in the human perceptual system. It is
also encouraging to note that the other two impor
tant dimensions highly related to similarity for 10
of the 11 Ss in the present experiment could not
have entered into Stilson's study. These dimensions
are Curvature and Curvature Dispersion, each of
which accounted for slightly less than 1/5 of the
intersection variance as shown in Tables 6 and 7.
Stilson's forms were all triangles so that curvature
measures were not relevant.

Another study supports the interpretation of Com
plexity as an analogue of a perceptual process.
Stenson (1966) found that the rated complexity of
random shapes and the physical factor that is called
Complexity here were highly correlated for each
of 11 Ss, and that no other physical factor contrib
uted significantly to the prediction of complexity
ratings. Thus, this physical factor represents a
characteristic of form for which a common verbal
label exists, and Ss appear to agree on the use of
this label. It is reasonable to assume that if we
have a common verbal label for a unidimensional,
physical characteristic of form, that characteristic
is probably representative of processing details in
the perceptual system.

Finally, a series of neurophysiological studies,
beginning with the work of Huhel and Weisel (1962),
is relevant to the interpretation of the intersection
factors from the present study. Using single cell
recording techniques, these studies indicate that the
first stage of information processing in the visual
cortex of cats and monkeys consists of activation
of cortical cells sensitive only to the presence of
lines or edges in an appropriate retinal area. The
second stage consists of activation of cells sensitive
to change in direction or endings of lines and edges.
Thus, the presence of angles or the endings of lines
in an appropriate retinal area will cause such a
cell to fire. Note in Table 1 that Complexity is de
fined by the number of turns in the perimeter of
a form (or, alternatively, the number of sides) and
by the variance of the internal angles in the perim
eter. straight-length Dispersion is defined by mea
sures involving the number of straight sides and
their lengths. Thus, these two factors are measures
of characteristics of the forms that are directly
related to known operating characteristics of cells
in the visual cortex.

Curvature and Curvature Dispersion are the two
other IFACs that are important for 10 of 11 Ss as
shown in Tables 6 and 7. Subject 2 has no entry in
Table 6 and S No. 9 has no entry in Table 7. This
is due to the method used to sort the IFACs into
homogeneous groups. Subject 2 had an IFAC on which
Curvature had a loading of -.47, but it was not en
tered into Table 6 because Topheaviness had a loading
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of .72 on this same IFAC. Therefore, this IFAC was
called Topheaviness for S No.2. However, the load
ing of -.47 indicates that Curvature probably was
involved in this S's similarity judgments. Ltkewise,
S No. 9 had a loading of -.44 for Curvature Disper
sion and .48 for Topheaviness on the same IFAC.
ThUS, this IFAC was called Topheaviness by the
sorting criterion used to compile Tables 5-9. Thus,
it is probable that Curvature Dispersion was related
to this S's similarity ratings also. We may say,
then, that all Ss had IFACs corresponding to Cur
vature and Curvature Dispersion, with each of two
Ss having some ambiguity in the IFACs correspond
ing to one of these physical variables.

There is not as much reason to defend Curvature
and Curvature Dispersion as being directly relevant
to perceptual processes as there is for the Com
plexity and Straight-length Dispersion factors dis
cussed above. However, we may note that Curvature
Dispersion is the analogue of Straight-length Dis
persion and that Curvature apportions a form as to
the amount of curvature versus the amount of
straightness in the perimeter. Thus, there is a sym
metry in this set of four IFACs. One may think of
the Curvature and Complexity factors as relatively
gross characterizations of a 'form as a whole, with
the former providing a breakdown of type of perim
eter and the latter summarizing the configuration
of the perimeter. Curvature Dispersion and Straight
length Dispersion provide a more fine-grained analy
sis of the two types of perimeter discriminated
between by Curvature.

All but one of the remaining IFACs may be re
garded either as arising from statistical error, or
as real, but unstable, physical correlates of per
ception. Table 9 shows that Topheaviness appears
as an IFAC for seven of the 11 Ss, while the remain
ing IFACs appear for only three or four Ss each.
Thus, Topheaviness might be considered as a pre
dictor of similarity judgments for the majority of
Ss, The combination of the low proportion of vari
ance accounted for and the variability among Ss for
the remaining IFACs makes them suspect from a
statistical point of view. If one considers them as
real effects they indicate that individual differences
exist among the judgment systems of the Ss, but
little else can be said because of the low probability
that any given S's judgments will be related to these
IFACs.

Conclusions
The major conclusion of this research is that

while there appear to be minor differences among
Ss with regard to the judgment of similarity among
forms, four major dimensions appear in each S's
data. The simplest physical descriptors of these
dimensions are: (1) the proportion of the perimeter
of a form that is curved; (2) the complexity of the
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form as indexed by the number of turns in the perim
eter and the perimeter-squared area ratio; (3) the
variance of the distribution of straight lengths in
the perimeter; and (4) the variance of the distribu
tion of curved lengths in the perimeter. Another
dimension that appeared for seven of 11 Ss can be
described as Topheaviness, as indexed by the skew
ness of the form in a vertical direction when the
form is viewed as a statistical distribution. One
may speculate that another dimension that might be
important for a different set of forms than those
used here would be the horizontal counterpart of
Topheaviness; that is, the skewness of a form along
a horizontal axis.

It was concluded that the four major physical
variables listed above might be more than just sta
tistical correlates of the judgment process: They
may bear a resemblance to analytic processes that
take place in the perceptual system. This conclusion
is based on three considerations: (1) these physical
variables form a kind of hierarchical system of
analysis; (2) two of these variables are the same
as those found to be important in another, quite
different study of figural similarity; and (3) recent
neurophysiological studies of the visual system have
shown that there are cortical cells whose activity
is closely linked to aspects of the visual environ
ment similar in nature to two of these four physical
variables.
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Mathematical Appendix
The canonical analysis of the relationship between

the psychological space from the MDSCAL analysis
and the physical space describing forms yields two
weight matrices, Wand V, for each SUbject, such

. that:

(1) W'<l>'\(iV=C.
and

(2) W' <l>'<l>W = V''JI''ltV = I,

where <1> is a matrix in which each column shows
the scores of the forms on a simple-structure physi
cal factor, and 'JI is a matrix in which each column
shows the scores of the forms on a psychological
reference axis. Each column in both matrices has
a zero mean. C is a diagonal matrix of canonical
correlation coefficients, and I is the identity matrix.

Because <l> is a factor score matrix, <1>' <1> = I, and
from (2) it can be seen, then, that W'W = 1, Note,
however, that WW' f- I because W is not square for
the data in the present study. (Its order is 10 x 6).

If both sides of (1) are multiplied by C-1, then
we have:
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The only matrix that will yield the identity when
premultiplied by C-l W I is WC. Therefore:

(4) 4"'lJ V = WC.

The left side of (4) shows that WC is a matrix
showing the projections of the original physical vari
ables (factors) onto the canonical vectors of the
psychological space. These canonical vectors may be

Z14

transformed by an orthogonal matrix, T, such that
iI>' 'lJ V T has simple-structure. This is equivalent to
transforming WC so that WCT has simple-structure.
Then

(5) tr«WCT)'(WCT» =tr(C2)
= Intersection Variance.

Thus the columns of WCT were called Intersection
Factors.
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