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Detection ofauditory signals
presented atrandom times: 111*

Reaction times to a pure tone in noise were measured. Throughout, the time from the
warning signal to the reaction signal was exponentially distributed, and the signal was
response terminated. Response criterion, signal intensity, and mean foreperiod wait were
varied. A model that assumes a Poisson sensory transduction, a pulse-activated decision
process, and an additive bounded residual process was tested. It was concluded that the
assumed decision process was in error. Among the empirical results, the dependence of
mean reaction time on signal waits was shown to depend largely on the average wait, not
the actual one, and that this relationship between mean reaction time and average
stimulus wait increased for strong signals and decreased for weak ones.

This paper, the third in a series,
continues our attempt to develop a
rigorous analysis of behavior in certain
auditory detection experiments which
mimic, to a degree, the temporal
uncertainty of most actual detection
situations. In the two earlier papers we
reported data from free-response situations
which, by definition, lack both warning
lights and lights to mark intervals during
which a signal might occur. We analyzed
these data in terms of several models, all of
which postulated a Poisson sensory process
but which differed in their assumptions
concerning the decision process, in
particular in the memory assumed in the
decision process. Although some data,
especially the tails of various latency
distributions, provided strong support for
the Poisson assumption, a marked
discrepancy between theory and data in
another regard suggested that when two or
more Poisson events occur at nearly the
same time they are stored in a more
complex way than was assumed in any of
our models. As mathematical difficulties
seemed to block the rapid investigation of
better memory assumptions, we elected
temporarily to bypass that difficulty by
modifying our experimental procedure into
what is, essentially, a simple reaction-time
design.

The major differences between our
procedures and those employed in usual
reaction-time experiments are: (I) the
signal may be difficult to detect; (2) once
the signal is on, it remains on until the S
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responds (this has the advantage that the
model is much simpler to analyze because
there is but one d.scontinuity in the
Poisson parameter rather than two
occurring at the onset and offset of the
fixed duration signal); and (3) the
foreperiod, i.e., the time between the
warning signal and the onset of the
reaction signal, is a random variable with
an exponential distribution. In our second
paper, we reported an analysis of such an
experiment in terms of a simple Poisson
model. Although the model appeared
useful in several respects, the data
suggested a difficulty in our representation
of the S's response criterion. Here, we
report new data on this point which clearly
reject our previous assumption and, equally
clearly, suggest a new one, just as simple.

Our general approach is to treat the
observed reaction as a result of two
independent stages or processes, and thus
the reaction-time distribution becomes a
convolution of the times required by each
of these two processes. In the middle
section of the paper we use numerical
Fourier analysis to achieve an analytic
separation of these two processes. The
results are mixed but it seems clear that,
although certain assumptions of the model
are surely in error, the model has
considerable merit. Finally, the concluding
section of the paper concerns signal levels
so high that detection is hardly a problem,
and so these experiments closely resemble
conventional reaction-time experiments.
Several characteristics of the resulting
reaction-time distributions are studied as a
function of two variables: the intensity of
the signal and the mean (exponential)
foreperiod. The same Poisson model
continues to be useful, although, once
again, a clear inadequacy is apparen t ,
which suggests that we must modify our
assumption about how responses are
triggered.

EXPERIMENTAL PROCEDURE
Each trial was initiated by a sequence of

five "count-down" lights which were lit
successively for 200 msec each, (We would
have preferred a continuous clock display,
but technical problems of synchronization
with the computer forced us to a discrete
approximation.) Following the offset of
the last light, whieh we refer to as the
warning signal, a random wait, t, with
density, Ae- At, preceded the onset of the
signal. The S responded by pressing a
button which protruded slightly above the
armrest. The response terminated the
signal, and, after certain data were
recorded, a new trial began. If the response
preceded the onset of the signal, the signal
was blocked.

The exponential delay was programmed
as follows. A table of 256 delays was
constructed by dividing the exponential
density into 256 equiprobable areas and
finding the mean of each interval. On each
trial, a value was selected at random from
this table. Thus, our delays were a discrete
approximation to an exponential in which
the maximum delay was 6.54 times the
mean delay,

The observable times were three. If the
response preceded the signal, the only
observable time was from the warning
signal to the response, the false-alarm time,
which we assumed to have a density,
denoted fR(t), If the response occurred
after signal onset, we recorded both the
time from the warning signal to the signal
onset, called the signal wait, and the time
from the signal onset to the response, called
the reaction time. The densities of these
times are denoted fS(t) and fR-set),
respectively. Note that fS(t) *Ae- Xt

because fS, the signal-wait density, is
conditional on the response following the
signal and so it favors short waits. On the
assumption that observed times in different
trials are independent, which probably is
not strictly true, we estimated these three
densities in the obvious way. For
theoretical reasons, given below, we are
especially interested in their tails which,
for these experiments, we have defined to
be all times longer than ~ sec, this choice
will receive strong empirical justification.

Each response was followed by feedback
as to whether it preceded the signal or, if
not, into which of five time categories the
reaction time fell. The bounds of these
categories were varied from one
experiment to another. We tried to locate
them so that approximately 20% of the
responses fell in each category. Throughout
these experiments, Ss were encouraged to
respond as quickly as possible.

A low-level background noise, 40-dB
spectrum level, was continuously present in
the TDH-39 earphones, which were
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Fig. 1. Functional parts of the general theory.
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mounted in sound-absorbing circumaural
cushions. The I,OOO-Hz sinusoid signal was
gated on at a zero crossing. Because signals
were response terminated, we can only
specify their power, P (= signal energy per
second). The background noise is
characterized by its power density, No
(= noise power per cycle per second). To
provide some intuitive feel for the quantity
reported, we note that a signal-to-noise
level of IO log PINo =20 dB corresponds
to a level of IO log EINo = IO dB for a
signal of I I IO-sec duration, and that
produces about 75% detections in a
conventional two-alternative forced-choice
experiment.

The experiment was controlled by a
PDP-9 computer.

The Ss, three undergraduates, were run
concurrently in separate sound-treated
rooms. They were paid for their services at
a rate of $1.87 per hour.

REVIEW OF THE MODEL
The model has been presented in detail

in Green and Luce (1967) and Luce and
Green (I970), so we only summarize the
concepts here. The signal enters into a
"sensory process" transducer (see Fig. I),
which converts it into a sequence of
discrete "internal events." One may think
of these events as neural pulses, although
that interpretation is not essen tial to the
model. For a signal, s,of constant power,
as assume that these events form a Poisson
process with a mean rate of I/p(s). An
obvious assumption, supported by the
data, is that p(s) is a strictly increasing
function of signal-to-noise ratio. Since we
have a constant background and only two
signal levels;'no signal and signal, in our
experiment, we denote these two values of
p(s) by u and u, respectively, where v';;p.
We assume that the parameter of the
Poisson process changes instantaneously
from u to p with the onset of the signal.
Undoubtedly, this model of the sensory
transducer is overly simple. Some transient
effects probably occur at the onset and
offset of the signal, and when an internal
event occurs, some refractoriness may
develop, in which case the process cannot
be strictly Poisson. In addition, we may
(and do, below) find that factors other
than the signal-to-noise ratio and the S
influence p(s); e.g., it may vary with other
properties of the experimental situation,

such as the density of signal presentations,
payoffs, etc. In that case, however, we are
likely to conclude, not that the sensory
transducer is affected by such variables,
but that we have failed to provide an
appropriate decomposition of the sensory
and decision-making processes.

Next, the events enter into a "decision
process" (see Fig. I) which processes them
in some fashion to arrive at a decision
about the presence or absence of a signal.
Our primary problem is to understand the
nature of this process. Since the events
arrive sequentially, decisions must of
necessity take time, and it is this time, as
reflected in the S's reaction time, that
should permit us to get some insight into
the nature of the decisions. In our earlier
papers, we assumed an exceedingly simple
process, which we shall show in this paper
cannot be correct. It was assumed that
with some probability, b, an event is taken
seriously, and the first one to be taken
seriously initiates a response. The point of
this assumption was to model, via changes
in the value of the parameter, the effects
on response behavior of payoffs,
instructions. etc. Given this assumption,
the output of the decision process is
Poisson, with parameter bp(s).

Our final box we label "residual
processes" and this box represents all other
delays not treated as part of the
sensory-decision process. These various
delays, though represented by a box at the
end of the process, can, of course, occur at
any point in the chain. The residual
processes might include neural transit
times, times to activate muscles, and fixed
delays between the sensory and decision
process. We lump all of these delays into a
single "residual latency" and we assume
that it can be described by a bounded
random variable with density r.! By
bounded, we mean that there is some
r > 0, such that r(t) = 0 if either t .;; 0 or
t ;;;, 1. We assume that this process is
statistically independent of the two
preceding ones.

In essence, then, the overall time is the
convolution of the unknown but bounded
residual latency with either one or two
exponentially distributed latencies-one if
the event occurs before the signal onset
and two if not. Because of the
boundedness assumption, it can be shown
that all three observable densities have

exponential tails; i.e., for t;;;' T, the tails are
proportional to e-at, where a is bu + >. for
both fR and fs and is bJ.L for fR -s- Thus, if
the observed tails are exponential, they can
be used to estimate bu and bu. And so,
were the theory correct, we should find the
ratio bp/bu to be independent of b and so
of anything that varies the false-alarm rate.
The ratio was estimated in the previous
study and it appeared to decrease
somewhat, about 20% for one Sand 30%
for the other, with increases in the
false-alarm rate, but, statistically, those
data were inconclusive. Our new data allow
no doubt; happily, they also suggest how
to modify the model. We turn to these
data.

VARIABLE FALSE·ALARM RATE
In this experiment we simply asked the

Ss to vary their "criterion" for reporting
the presence of a signal. All other features
of the experiment were held constant, in
particular 10 log PINo = lO dB and
A=0.25 sec-I. We generated a more
extreme range of false-alarm proportions
than we had before, namely, 0.02, 0.33,
0.50, 0.60, and 0.75. Our training
technique was to state a desired proportion
and after each IO-min run to report to the
S the actual fraction. After about 2 h of
practice they were able to stabilize on a
preassigned proportion within binomial
variability. There was an initial tendency,
especially apparent at the higher
false-alarm rates, for the S to achieve the
requested proportion by responding to the
warning signal as often as needed. These
quick false alarms were easily noted and
were discouraged; we emphasized that the
rate should be varied by "changing the
criterion for saying that a signal is
present." Stable and acceptable data were
ultimately obtained at all five levels.

Estimating the parameters from the tails
of the observed densities, we find that the
bp/bv ratio varies from between 10 and 20
at the lowest false-alarm rate to about I at
the highest. Clearly, the model is incorrect.

Implicitly, we have just assumed that the
tails of the distributions are exponential;
otherwise, our estimated parameters make
Iittle sense. In the previous paper, we
showed this to be approximately correct
for moderate false-alarm rates, but it
continues to be suspect for the high rates
we have obtained here. Even if the sensory
process is Poisson, if the high false-alarm
rates are created by a self-generated
process, it would not be particularly
surprising for the latter process to deviate
significantly from the Poisson.

To test whether or not the tails were
exponential, we used the estimated
exponential parameter to divide the tail of
the false-alarm distribution into 20
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where

Since R-A ~ I, the maximum possible
probability is vj(v + A). If false sensory
detections occur at a mean rate of at least
one per 10 sec. i.e., v~ 0.1 sec-I, then for
A = 0.25 se c - I t he largest possible
false-alarm proportion is about 0.3. An S
faced with a demand for a higher
proportion can, of course, simply press the
response button. independent of any
detection process. The easiest way to do
this. as all Ss did initially, is to respond
immediately to the warning light on the
appropriate proportion of trials. Such
behavior is analogous to what Oilman
(1966) and Yellott (1967) have called "fast
guesses" in their studies of choice reaction
time.

We conjecture that, when discouraged
from making fast guesses, an S may
somehow generate an internal random
process, independent of the. sensory
process, and that he simply "adds" the two
together to create a single Poisson process
which. when an event occurs, triggers the
rcsponsc process. We think of the
background seusory process as having thc
parameter Vo In the case of noise alone.
and as having the parameter Vo + P when
the signal is added to the noise Assume the
self-generated process is Poisson and has
paramter o . then the estimated parameters
are v = Vo -i- 0 for noise alone, and
fJ =Vo + pta =v + P tor signal plus noise.
The parameters Vn and p should depend on
the stimulus conditions. lor example the
noise background, No. and the signal level.
1'. and he independent of instructions. Thc
parameter () should vary with instructions
bUI be independent ot the stimulus
conditions. If these assumptions arc true.
then both u and fJ will vary with
instructions but fJ- v = p will not. The
mathematical forms of the distribution
remain unchanged. we simply set b = I and
assume that u and u will vary with changes
in the false-alarm rate. The estimates of
fJ - u, however. should be independent of
changes in the false-alarm rate.

Modification of the Model
In the theory stated above (with h = I),

the probability of a false alarm is

lOtSUBJECT 22 ~
~~37B '" I..,.......... .......

o
I I I ~
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o
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Fig. 2. Observed distribution of
responses in the tail of the false-alarm
distri bution. Once the tail of the
distribution (t > V, sec) has been fit by an
exponential parameter it is divided into 20
equiprobable intervals. Thus we would
expect 5% of the response in each interval.
The actual percentage of responses
(N = total number of responses) is shown
for three Ss at the two higher false-alarm
rates.

60% FALSE ALARMS

10t
SUBJECT 20 ." 05:::::;;, ~.~"
~~421

5 10 15 20
EOUIPROBABLE EXPO~E~TIAL I~TERVALS

equiprobable exponential intervals.
Figure 2 presents the actual percentages of
times found in these intervals at the two
highest false-alarm rates. The data for all
three Ss suggest no systematic departure
from a horizontal 5% line. indicating that
the Poisson assumption is a good first
approximation. The more sensitive X2 test
should have an expected value of about 19
and any value beyond 36 is significant at
the 0.01 level. The observed values arc
shown in Table I. At least two of the six
conditions for 60'k and 75',i rates arc too
variable. For the two lower rates there arc
less data and plots. such as Fig. 2. which
show considerable variability. The )(2

values for the two lower false-alarm rates
are also given in Table I: four of the six
conditions are too variable.

Tahle I

:r: and Sample Sizes for Exponential ht to Tails (t ~ ',,) of the Reaction-Time Distribution
for the Four Highest False-Alarm Rates

lulsc-Alarm Rate

75'/r 6tl' ; ,;IY, 33'.;;
----_.

Subject X
2 N i N i- N X

2 N

20 22.1 581 ';7. J 40'; 87 ..\ 324 92.9 190
21 15.0 428 9.5 297 28.7 276 40.9 209
22 48.1 429 29.5 378 25.9 281 53.9 202

14

Fig. 3(abc). Estimates of parameters fJ

and v for five different false-alarm
proportions at a fixed signal-to-noise ratio
for three Ss, The parameter fJ is estimated
from the tail of the reaction-time
distribution. The parameter V is estimated
from the tails of the stimulus-wait and
false-alarm distributions.
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(4)
v+ A

----
v+ A+ iw

we obtain

v'0.065

f" 8.16

R-A '0.81

FR_S(w)

I [VR_ A (V J.I.)]
="6 (A - iw") + A- iw + J.I. + iw R(w1

(5)

V+ A [ v
=6(A+ iw") I - v + A+ iw

Calculation of Fourier Transforms
In all cases we assume that the function

to be transformed is approximated by
values at a finite number, N, of equally
spaced points; in our data, N is on the
order of 300. The most obvious series
approximation to Eq.2 requires on the
order of N2 additions and multiplications

N'10020

A'0.5

small and capital versions of the same
letter, except that the transform of
e-Atr(t) is written R_A(w). Applying the
Fourier transform to Eqs. 34, 36, and 39
of Luce and Green (1970), and writing

Fig. 4. Observed reaction-time distribution for one S. The signal-to-noise level was
fixed (l0 log PI No =21) and the average exponential wait was 2 sec (A =0.5 sec-I). The
y axis is simply the observed proportion of responses in successive intervals
approximately 5 msec in width. The total number of responses is about 10,000. The
various parameters associated with this distribution are discussed in the text.

of this description can be estimated in
some manner, either from signal-to-noise
measurements or from the reaction-time
data itself, then, using Eq.3, one can
divide F by S and thus estimate R.
Inverting R leads to an estimate of r.

In practice, we work with conditional
densities and the resulting equations are
somewhat more complex, but the basic
ideas are the same. Because we assume that
the latency of the response process is
bounded, we can estimate the two sensory
parameters, v and J.I., from the tails of the
observed distributions. The parameter A,
which is controlled by the E, and the
quantity R_ A, which we may estimate
from u, J.I., and the observed values of the
tail probabilities, complete our description
of the 5 process. We then take the Fourier
transform of the observed reaction-time
distribution and attempt to estimate R,
and so r.

Such an estimate of r permits us to test
at least two aspects of the theory. First, we
can see if our assumed bound t on the
response process is confirmed. Second, and
much deeper, we can see if the estimate of
r is independent of our experimental
conditions-for example, is r independent
of signal strength, mean wait for a signal,
and instructions about false-alarm rates?
These tests will be made, but first we must
obtain the exact form for Eq. 3 and we
must discuss some of the practical realities
of calculating Fourier transforms from
estimates of probability densities.
Specific Equations

We denote functions and transforms by

.026

(1)

(3)

(2)

F(w) =S(w)R(w).

f(t) = fat s(x)r(t - x)dx

DISTRIBUTION OFTHE
RESPONSE PROCESS

General Approach
As we pointed out earlier (see Fig. I),

our model postulates that the overall
observable reaction time is the sum of two
independent unobservable latencies-one is
the time it takes the decision process to act
on the Poisson input and the other is all
other delays in the process, their sum being
called the "residual latency." Let f denote
the observable reaction-time density. Since
f is, by assumption, the sum of two
independent latencies, call them s for the
sensory-decision process and r for the
residual process, we may write f as a
convolution of sand r.

The Fourier transform of f is defined by

Results
Figure 3 presents the plots of J.I. vs v for

the three Ss, If our new assumption is
correct, these should be linear with a slope
of one, which is approximately so. The
estimated values of pare 0.25, 0.24, and
0.20.

We cannot be sure how generally true
our new hypothesis is. Certainly it is
conceivable that were the mean wait for
the signal much greater than the 4 sec of
this experiment, an 5 might find it
impossible to generate an appropriate
Poisson process. We shall not worry about
it, however, since later results suggest that
we have not yet achieved an appropriate
decomposition into sensory and decision
processes, in which case the relation
J.I. =v + P is but an approximation to
something else.

(we write the lower limit of integration as
o rather than _00 because all of our
densities are 0 to t ,;;; 0). If Sand R denote,
respectively, the Fourier transforms of s
and r, it is easy to show that

(Various other classical transformations,
including the LaPlace, have this important
property of converting a convolution into a
multiplication.)

A particular theory of the
sensory-decision process allows one to
describe s and, hence, S. If the parameters
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temporal events that formerly were
distinct. The question is: Just how high is
the price, in terms of loss of resolution, of
reducing oscillations in the estimate of r by
smoothing the data? To gain some idea, we
analyze carefully the simplest temporal
event and the simplest of discontinuities,
the impulse .

Smoothing an Impulse
Suppose that all response latencies have

the same value to, which is equivalent to
saying that all of the density r is
concentrated at a single time, namely to. It
is easy to see from Eq.36 in Luce and
Green (1970) that

fig. S. The estimate of ret), based on the data given in fig. 4, and a straightforward
application of fourier transforms, Eq. 5, and inverting R(w) to find ret).

200 400 600 BOO 1000 1200 1400 1600 1800 2000

TIME (MSEC)

where, as before,

TIME (MSEC)

Fig. 6. Expected form for the distribution of reaction times if r(t) were an impulse
occurring at 240 msec. We assume 11 = 8.0 sec- I, V = 0.05 sec-I, R_ A = 0.88, and
A=0.5 sec' I .

P. '8.0

R..). =.887

Figure 6 shows an approximation to this
density when to is 240 msec and v, u, and
R~A have the values indicated in the figure
(these were chosen to be roughly those
estimated in the data of the two Ss whose
data we will present). As one can see, fR~s

has all abrupl jump in the region of to.
Taking this as our "data," and using 5-msec
intervals for the width of our histogram,
we use Eq. 5 to recover our estimate of an
impulse. The results are shown in Fig. 7. As

010

UJ
o
=>
l- 020
::::;
c,
:::IE
<

030

040

transients. that is. of abrupt changes in the
waveform where the derivative is extremely
large. Of course, an empirical histogram is
t he quintessence of a discontinuous
function since each interval of the
distribution may produce an abrupt change
in the function. Perhaps, then. we should
attempt to smooth our data in some
fashion so as to minimize the irrelevant.
but noticeable, effects of random
discontinuities. Of course, any smoothing
oft he d a t a necessarily induces a
corresponding blur in our estimate of r
because averaging renders indistinct some

to calculate the transform; however, a
certain trick of rewriting can be exploited
to reduce the number to the order of
N log, 0 N. The savings arc enormous.
namely, N/logl oN, which for N = 103 is a
factor of about 300. This discovery. made
a few years ago, has made the numerical
calculation of Fourier transforms practical
on contemporary computers. The program
to do so is called the Fast Fourier
Transform, or FFT. All of our calculations
use this method.

Chaos in the Calculations
Were there no problems of convergence

in the series used to approximate the
integral in Eq. 2, the calculations based on
Eqs.4-6 would be routine. But there are
problems, as we now illustrate. The
histogram shown in Fig. 4 is based on
about 10,000 observations grouped into
approximately 5-msec intervals. Using the
tails of this and the corresponding fR and
ts frequency functions. we estimate
v = 0.065 and J..l = 8.16. From the theory,
one finds that the areas in the tails of fR
and fs are functions of v and J..l and the two
constants R_ i\ and Rv. Solving. we
estimate R. i\ = 0.81. Substituting these
estimates in Eq.5, solving for Rand
inverting to estimate r. yields the mess
shown in Fig. 5- hardly a good
approximation to a density function.
Similar computations based on Eqs. 4 and
6 produced even less encouraging results;
the chaos in those cases is badly aggravated
by the fact thai the inverted function lias
to be multiplied by eAI to gel r.

"[.0· anyone familial with Fourier
transforms. the high-frequency fluctuations
in Fig. 5 suggest the presence of rapid
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on what we can learn using this technique.
We are presently exploring ways to
improve our resolution. For example, the
initial grouping of the data into 5-msec
intervals is probably inefficient and it may
be better to take the data as grouped by
OUT recording apparatus in l-msec intervals
and then, if necessary, apply a somewhat
broader hamming window to get the
estimate of r. However, what we report
below, which is adequate for present
purposes, is based on a Zl-point hamming
window applied to 5-msec grouping of the
data. The second Shad 12-msec intervals
(because the program that constructs the
histogram depends on the variability in the
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Fig. 9. Hammed version of the impulse response shown in Fig. 6. The smoothing

function averages over 21 points and thus extends over a 10S·msec interval.
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Fig. 10. The impulse recovered from the "data" of Fig. 9. The parameters are the same
as given in the legend to Fig. 6. The peak of the impulse occurs at 240 msec, as it should,
but is appreciably blurred by the smoothing function.
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the data presented in Fig. 4, trial and error
suggests that averaging over 21 successive
points gives the desired smoothing without
sacrificing too much resolution.2 For
example, "hamming" the impulse in Fig. 6
yields Fig. 9, and that in turn yields the
estimate of the impulse (see Fig. 10).
Observe that the impulse has been
distributed over a considerable band of
times, and so when we apply this technique
to experimental data we must not forget
that only temporal features wider than this
"pulse" width will pass our smoothing
function.

Obviously, such grossly imperfect
temporal resolution imposes serious limits
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Fig. 7. Estimate of r(l) from the "data"
of Fig. 6 using Eq, S. The parameter values
are those given in Fig. 6. Note that we have
scaled in order to show that two pulses are
recovered in the vicinity of 240 msec.

Fig. 8. Same procedure as used in Fig. 7
except that a sliding average is taken of the
"data" in Fig.6 before the transform
procedure is applied to the smoothed data.
Note the expanded time scale.

expected, we do not recover a single
impulse, but a function containing two
large positive values in the vicinity of to
and considerable high-amplitude oscillation
near that point in time. (Note that the time
scale of Figs. 7 and 8 is expanded by a
factor of 4 from Fig. 6 in order to show in
detail what happens.)

Ihrs .poor estimate is improved
dramatically by even the slightest
smoothing. For example, suppose we
simply average adjacent points in the input
histogram. The only visually noticeable
change in the histogram is to interpolate a
single point midway on the discontinuity;
however,' the resulting estimate, shown in
Fig.8, is much improved, both in
definition and stability.

Such a pronounced effect led us to
investigate more extensive running
averages. A family of weighting functions,
called "Hamming windows" (Kaiser,
1966), have. been used successfully by
engineers, so we elected to try them. For
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strongly rejects our present hypothesis
about the sensory-decision process. The
argument is straightforward. The
distribution of what we call the "residual"
process should be independent of signal
strength; indeed, this is the main
motivation for this analysis. With large
signal-to-noise ratios (10 log P/N o
= 54 dB), these same Ss yield
reaction-time distributions with modes of
195 and 240 msec, respectively, and very
low false-alarm rates. For this
signal-to-noise ratio, the value of p. is so
large that, for any reasonable hypothesis
about the nature of the decision process,
there can be little difference between rand
fR -5. This forces us to conclude that our
estimates of r actually are estimates of r
convolved with some aspect of the decision
process which takes about 80-100 msec on
the average, the resultant is probably not
terribly variable, and is certainly bounded.
We are presently exploring another
decision model incorporating many of
these features.

SIMPLE REACTION TIMES
In the preceding experiments, the signal

was generally difficult to detect and the
reaction times were slow, often a second or
longer. Increasing the signal intensity
converts one of these detection
experiments into something more properly
called a reaction-time experiment with a
random foreperiod. The procedure is,
however, still slightly unorthodox because
the signal is not of fixed, short duration,
but rather is response terminated.

We have yet to devise a satisfactory way
to estimate the sensory parameters p.and v
for loud signals. Large us are difficult to
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Fig. 12. Application of the Fourier transform techniques to the data of Fig. 11 to
estimate ret).

displacement is about 80 msec (400 to
320). While these displacements are
undoubtedly real, their exact values are
highly uncertain since their magnitude is
strongly influenced by the intervals used in
the histogram. A priori, it is difficult to say
what displacement one might expect since
r is unknown. In certain cases-the impulse
analysis is one-there is no displacement in
the modes of the two distributions.

From other data, however, we conclude
that the observed displacemen t is not
sufficient by a factor of about 2, and this

800 1000 1200

TIME (MSEC.)
600400200

.00 1=o=:::L-_....L_-l._---L=_l....-_.l.-_...L-_....._ ......_...I. _

015

.ozo
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S's reaction times), and we reduced the
hamming to 7 points.

Discussion and Conclusions
First, the estimate of r is abruptly

bounded on the right at slightly more than
400 msec for one Sand 450 msec for the
other, which is well inside our guess of
500 msec for T. Second, obviously a
probability density cannot be negative, yet
both Ss exhibit a rather large negative dip
following what appears to be the end of
the .reaction-time distribution. This same
genera! pattern has also been observed in
some other data which we are in the
process of analyzing. We are fairly certain
that it is not an artifact of the
computation, but we cannot suggest any
simple feature of the theory that is at fault.
It probably reflects a rather fundamental
deficiency of the theory. Third. observe
that since fR_ 5 is the convolution of r
with something else, r should be more
peaked and its mode should be to the left
of that of fJ{ _ S' and this is the case. for
the first S (Figs. II and 12) it is about
70 msec (370 mscc to 300 msecj. For the
second S (Figs. 13 and 14\ this

Smoothed Data
Figure 11 is the hammed version of the

data shown in Fig. 4, and Fig. 12 shows the
resulting estimate of r. The only difference
between Figs. 5 and 12 is in the smoothing:
the equations, parameter values, and the
computation of formulas are identical.
Figures 13 and 14 show similar data and
the corresponding estimate for the second
S.

Fig. 11. Hammed version of the data shown in Fig. 4. The smoothing function averages
over 21 points and thus produces the blurring of an impulse, as shown in Fig. 10.
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produce systematic changes in the mean
reaction time. In both experiments, we
determined the mean reaction time
conditional on the actual wait (rather than
on the mean wait) for the signal. It is clear
that this relation depends on the intensity
of the signal, the mean reaction time
increasing with longer waits for high signal
levels and decreasing for weak signal levels.
The data suggest that, in spite of the
complexity, the process can be treated in
first approximation as stationary in time,
which is what is predicted by the model.

Signal Intensity and Mean Reaction Time
The five signal intensities ranged from

10 log P/No =14 dB, which is quite
difficult to detect, to 54 dB, which is
extremely loud but produces neither startle
nor discomfort. We established .three
false-alarm rates-low, 30%, and 50% (see
above for the method). In practice, "low"
meant about I% for all but the lowest
signal level, where it was about 5%; for the
30% condition the range was from 25%
from 33% over Ss and signal levels; and for
the 50% condition the range was from 45%
to 55%. At all rates we emphasized speed,
and in the early practice trials we reported
their mean reaction times to the Ss. For all
conditions, the mean of the exponential
signal wait was 4 sec.

The mean reaction times and the
numbers of observations on which they are
based are shown in Table 2. We note
several features of the data. First, given any
false-alarm rate, and any S, mean reaction
time decreases with increasing signal
intensity. This trend is consistent with
several previous studies (McGill, 1961;
McGill & Gibbon, 1965; Kohfeld, 1968).
However, the pattern as a function of
false-alarm rate is not simple. In particular,
looking only at the 30% and 50% rates, the
mean reaction time is less for the higher
rate, but the magnitude of the decrease
depends both on the signal intensity and
on the S. For example, at 14 dB, S 22
shows a decrease of about 200 msec (1.227
to 1.013), whereas, at 54 dB, his decrease
is only 27 msec (221 to 194). But
comparing the data at the low false-alarm
rate to the 30% condition, Ss 20 and 21
exhibit an increase in mean reaction time
for all signal intensities, save the lowest.
The results for S 22 are very nearly
independent of the false-alarm rate except
for the lowest signal intensity, where the
mean reaction time decreases as false-alarm
rate increases.

To evaluate the significance of these
differences, one really must know
something about the variability of these
data. In Fig. 15, we have plotted the
standard deviation vs the mean reaction
time for all the data reported in this paper.
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R_~ =0.82

N:10016
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1/: 0.079
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the Poisson false-alarm source described
earlier. Thus, we shall have to be satisfied
with examining the data and evaluating
qualitative features of the model that do
not rest upon knowing IJ. and v exactly.

In the following studies, we manipulated
three variables: the signal intensity, the
mean wait for the signal to occur, I/X, and
the false-alarm rate. The interaction of the
false-alarm rate. which we manipulated by
instructions, with each of the other two is
explored. We find that both the signal
intensity and the mean wait for the signal

~ ~ ~ ~ I~ ~ ~ ~ I~ ~ ~
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.12
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.030

.040

TIME (MSEC.l
Fig. 14. Application of the Fourier transform techniques to the data of Fig. 13 to

estimate r(t).

Fig. 13. Hammed data for a second S. Seven points are used in the Hamming window
but the original data were based on 12-rnsec intervals, so the smoothing is roughly
comparable to that used for the first S.

estimate because long reaction times are
infrequent, and thus the tails of the
reaction-time distributions are very slight,
and, without an extremely precise estimate
of T, which we do not have, there is little
hope of estimating IJ. uncontaminated by
the residual distribution r. The problem in
estimating v from fR is different. We
cannot be certain, but we fear (see below),
that this distribution is contaminated by a
number of anticipatory responses-fast
guesses, as they are sometimes
called-which are not properly reflected by
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Table 2
Mean Reaction Time as a Function of Signal-to-Noise Level and False-Alann Rate

S 20 S 21 S 22--_._._---
10 logP/No MRT N MRT N MRT N

14 2.899 409 1.884 271 1.936 410
Low 24 .362 556 .318 549 .319 552

False-Alarm 34 .296 576 .258 451 .253 576
Rate 44 .264 445 .237 446 .244 448

54 .258 453 .223 344 .220 455
14 1.227 302 1.164 288 1.227 371

Probability of 24 .371 317 .374 344 .329 400
False Alarm 34 .298 3J4 .324 350 .262 386
About 33% 44 .291 313 .257 359 .244 327

54 .290 312 .279 359 .221 398
14 1.188 307 .915 232 1.0l3 291

Probability of 24 .318 259 .343 230 .294 286
False Alarm 34 .273 246 .236 295 .251 301
About 50% 44 .268 257 .248 227 .227 280

54 .243 233 .236 206 .194 258

Note-A = 0.25 sec'"; the mean wait for the signal was 4 sec.

10 hJU

MEA~ REACTiO" TIME {5£(1

" ..

05 2 4 8 16

M[AN STIMULUS WAfT, I/~(SECI

SUBJECT 27 /

O~

SU~~~;.;: /
450 20~ /'----

200

400

SUBJECT 26
3~O 100ADDEO

Fig. 16. Mean reaction time as a
function of mean stimulus wait. In order to
keep the data separate, the curves for two
of the three Ss have been displaced on the
graph by adding the indicated constant.

In comparing our results with those of
previous studies, the most obvious
difference is that our results show less
change in the mean reaction time as a
function of the mean wait. Over similar
changes in mean wait, Nickerson and
Burnham show changes in mean reaction
time of about 150 msec, from about 270
to 420 msec, rather than the change of
only 100 rnsec displayed by our Ss. In their
experiment, the reaction signal was a light
and the penalty for false alarms was quite
heavy. Thus, their false-alarm rates were
lower than any we observed and this may
account for the somewhat longer response
as well as the greater change in mean
reaction times as a function of average
foreperiods.

Two mechanisms for this effect suggest
themselves. First, the actual experimental
conditions of different mean waits may
underlie it. That is to say, when the S is in
an experimental run with a short mean
wait, he tends to react more rapidly to all
actual waits than when he is in a run with a
long mean wait. For example, if on some
trial of a run with a mean wait of I sec he
waits 5 sec for the signal, he will react, on
the average, more rapidly to that 5-sec wait
than to one embedded in a run with a
mean wait of 8 sec. Another alternative is
that only the actual wait matters, not the
condition within which it is embedded.
The gist of that hypothesis is that, as the
wait for a signal increases, the S becomes
less reactive to its onset; he is at the peak
of his preparation at or near the beginning
uf a trial and, because of fatigue,
inattention, or boredom, this state of
preparation lessens as he experiences longer
and longer waits for the signal onset.
According to this hypothesis, there is a
single function relating speed of reaction to
the duration of the wait until signal onset,

satisfies a condition stated in the appendix.
Most smooth, unimodal, bounded densities
meet the condition. Another reasonable
possibility is that, except possibly with
faint signals, the high rates are produced in
a different way from the low ones. One
plausible hypothesis is that, during
training, Ss first attempted to react to the
warning signal, "fast guess," on the
requisite number of trials. When we
objected to this, as we did, they modified
their strategy and time estimated with
some fairly broad distribution. Those
estimates that occurred before the signal
onset contributed to the false-alarm rate
and those after it to the observed
reaction-time distribution. If the mean of
the latter observations, measured from
signal onset, is greater than the actual mean
reaction time to the signal, which for
intense signals is possible, then we should
anticipate an increase in mean reaction
time as this strategy is introduced. In order
to increase the false-alarm rate, the S could
then reduce the mean of the time
estimation distribution. and that will
almost certainly entail a reduction in the
variance, and so the observed mean
reaction time will drop.
Mean Signal Wait and Mean Reaction Time

In this experiment, we held the signal
intensity at 54 dB, the false-alarm rate at
5% and ~O';;, and varied the mean wait fur
the signal (I IA) by successive factors of ~

from Y2 to 16 sec.
Our results are generalfy consistent with

those of previous studies, e.g.. Nickerson
(1967) and Nickerson and Burnham
(19b9), but there are several differences.
Figure 16 shows the data for th ree Ss. The
means are based un about 600 ubservations
for the shortest waits and abou t 140 lor
the lungest. We have averageduver the two
false-alarm rates since there was little
difference and what there was did not seem
tu exhibit any pattern,

.'g
so

~
s,

"':<
~

os

."."

Fig. I S. Standard deviation of
reaction-time distribution vs the mean for
the various experiments reported in this
paper.

The rule-of-thumb is that at low signal
intensities the ratio of the mean to the
standard deviation is about I, whereas at
high intensities it increases to about 5.
Only the data taken at the lowest
signal-to-noise ratio seems to support the
decrease in mean reaction time with
increase in false-alarm rate. For the higher
signal-to-noise ratios the mean reaction is
either independent of false-alarm rate or
nonmonotonically related. A variety of
sequential models, in which the S is
postulated to accumulate sensory
information until some criterion is reached,
would predict that the mean reaction time
should decrease as the false-alarm rate
increases (Stone, 1960; Grice, 1968:
Lamming, 1968). The exact relation
between false-alarmrate and mean reaction
time is somewhat difficult to assess for the
POisson model discussed earlier. In
Appendix II we show that for any A> 0,
the mean reaction time decreases with
increasing v, that is, MRT decreases as the
false-alarm rate increases. provided r
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It follows immediately that

sizes reasonable, all we can afford is a unanticipated interaction with signal
division into five intervals which are spaced intensity. Figure 18 presen ts the
so that equal numbers of waits are stimulus-wait analysis for the data
expected in each interval. The data are presented in Table 2. The data for the
shown in Fig. 17. There is considerable 14-dB condition are so far off-scale they
variability because the points on the left are not shown in this figure. These data
(IIA =0.5 sec) are based on about 120 have been averaged over Ss and false-alarm
observations, whereas those on the right rates, resulting in about 500 observations
(I/A =16 sec) are based on as few as SO. per point. The trends, although small, are
Despite that, it seems clear that both reliable. Moreover, each S at each
stationary and nonstationary factors are at false-alarm rate exhibited the same trend.
work. The tendency for each curve to rise Also included in Fig. ]8 are the averaged
suggests a nonstationary factor, whereas data for the three Ss shown in Fig. 17
the separation of the curves, their height (4.stlc mean wait at 54-dB intensity; about
increasing with mean wait, suggests a 300 observations per point). The trend,
stationary component. Had stationarity while not so stable because of the smaller
been the only effect, the curves would have sample sizes, is still evident. The
been horizontal and nonoverlapping. comparison of the two sets of data, taken

Having found the trends shown in under identical conditions (solid circle vs
Fig. 17, it is interesting to analyze the open square), gives some idea of the
previous data of this paperIn the same variability over groups of three Ss.
way, particularly since this reveals an We omitted from Fig. 18 the data at the

APPENDIX I
Assumingthat II = v +p, Eq. 38 of Luce and Green (1970) is
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Fig. 17. Mean reaction time given
different intervals of stimulus wait from
the experiment in which the mean stimulus
wait was varied. The mean stimulus wait is
given in the key. The data have been
displaced on the graph by adding the
indicated constant.

Mean Reaction Time Conditional on Signal
Wait

To examine these alternatives, it is clear
that we must group reaction times
according to signal waits. To keep sample

and by varying the mean wait we simply
sample different ranges of that function.
According to the former hypothesis, the
distribution of reaction times is the same
for any wait within a given condition; we
refer to this as the stationarity hypothesis.

According to the latter, the distribution
varies with the actual wait; we refer to it as
the nonstationarity hypothesis.

As is shown in Appendix II our model
predicts the stationarity hypothesis· for
waits in excess of T, which by previous
results must be less than \1 sec.

AVERAGE OF 3 SUBJECTS
120.21,221

then

As is easily seen, this is equivalent to

aMRT
a;-<O.

Next we show that this inequality is valid for all X;;. 0 provided that the density.
r, meets the following condition: For some to > O.50 10005 10 20

AVERAGE Of 3 SUBJECTS • P/No°54
123.26.~

MIDPOINT OF STIMULUS WAIT {SEC)
> 0 for 0 .;; t < to

Fig. 18. Mean reaction time given
different intervals of stimulus wait for the
data reported in Table 2. The data have
been averaged over Ss and false-alarm rates.
The solid points are the averages over Ss
for the data presented in Fig. 17 for the
appropriate mean wait, IIA=4 sec.

ret) +r r'(t)
~ 0 for to " t

Note that if r is a smooth. unimodal. and bounded density. this condition is very
likely to be met because to the left of the mode both rand r' are positive and to the
right r decreases and r' is negative. The only problem is if r' approaches O. which it
will not do if the density is bounded. Weassume this condition.

If we let n~) =(I + ~T)R X, then since nO) = I, it is sufficient to prove
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Observe that
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Fig, 19. Mean reaction time given
different intervals of stimulus wait for the
data taken at low signal-to-noise levels.
(The lowest signal level in Table 2 and the
data concerning false-alarm rate reported
earlier in the paper, Fig. 3.)

Substituting this expression into the equation for the mean and integrating by purt x
yields

SUMMARY
Our studies of the reaction-time task can

be conveniently divided into strong and

lowest signal intensity because it has a
different time scale; it also shows a
different trend and is greatly affected by
false-alarm rate, Figure 19 shows this. Note
first the change in scale along the ordinate;
we now measure reaction time in seconds,
not fractions of a second. In the most
extreme case, the low false-alarm rate, the
mean reaction time decreases from about
6 sec to about 4 sec as a function of signal
wait. In all cases, a decrease is exhibited.
These decrements are, however, small in a
statistical sense. As seen in Fig. 15, for
mean reaction times greater than I sec, the
standard deviation is about the same as the
mean, and so all of the changes in Fig. 19
are considerably less than one standard
deviation. Since the means are based on at
least 200 observations, the change in mean
reaction time is statistically significant but
clearly not a major variable. Note that the
data from another experiment with the
same Ss follows the same trend.

In summary, then, all of the data we
have collected show that the mean reaction
time changes slightly with the length of the
signal wait. For intense signals, where
detection is flat a problem and the reaction
times are fast (<;;; 300 rnsec), the mean
reaction time increases by as much as 30%
from a \!cosec to a 10-sec signal wait. For
difficult-to-detect signals. where the mean
reaction time is heavily affected by the
detection process, the mean reaction time
decreases by about 30%40% over the same
range. In both cases, the effects are not
large compared with the variability of
react ion times, an d hundreds of
observations are required to develop
statistical confidence in the trends.

I
+ ­

Ii

r~e X'tlr(t) + r r'(tj l dt
to

x ~ T,

I I
-(R I) +-
v v Ii

MRT(x)= ---------­
Rv

= O.

<;;e X'of~tlr(t)+rr'(t)!dt
o

=e X'''rl] + r=tr'(t)dtl
, 0

Ptt . x) = Prjt R - S = t) and (t;;, 0) and (S = x j]

APPENDIX II
We wish to calculate the mean reaction time conditional on a signal onset at

time x, i.e.

Recalling that r(t) =0 for t ;;, T, wc s~e that

where

and this is independent of x.
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weak signal cases. For the latter, we find
that the false-alarm process can be modeled
as an independent additive process which
combines with the signal process to cause
the initiation of a response. The mean of
this process appears to decline somewhat
with stimulus wait, but this effect is small
compared with the variability. And the
ratio of mean to standard deviation is, as
one would expect from a Poisson process,
about one.

The analytic separation of the observed
distribution of reaction times appears
interesting and reveals several fundamental
weaknesses of the model. First, although
the "residual" distribution appears
bounded (within 'h sec) as postulated in
the theory, a large anomaly exists at the
bound, namely, the estimated probability
"distribution" goes negative, which is
absurd. Second, and more fundamental,
the distribution determined by analysis of
data obtained using weak signals is not the
same as the one obtained using high
signal-to-noise levels. Thus, the theory does
not yet bridge the gap between the
detection situation and the conventional,
intense-signal, reaction-time task.

For intense signals we find that the
mean reaction time increases systematically
with signal wait. The conditional
signal-wait analysis suggests that the bulk
of this increase is due to stationary factors,
although some is also caused by
nonstationary factors. The size of these

effects is small, however, relative to the
variability. For intense signals, standard
deviation of the reaction time is about 20%
of the mean. This change in the ratio of the
mean to the standard deviation from about
I to 5 suggests quite different processes are
at work, a view which is fundamental to
the analytic model.
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NOTES
I. In our earlier papers and in several talks, WI

spoke of this as the "reaction latency." This wat
inadvertently misleading because it appeared tc
imply that this latency occurred only after the
decision process had concluded and involved
largely, motor delay. In fact, a theory such a,
ours predicts the same distribution of reactior
times if the various stages are reordered. A molal
theory of stages often has no way to specify tht
order in which the various latencies OCCUI

(Sternberg, 1969). We hope the new terminology
will emphasize that r(t) refers to all those aspect:
of the reaction-time distribution no t treated ir
the discussion of the sensory-decision process.

2. A Hamming window is a symmetric positive
function having nonzero values only over a finite
interval.

. D(T) = 0.54 + 0.46 cos mITmiT 1<Tm

where T= kll.t and k = 0, ±I, ±2. -'. ±n ant
ll.t=Tm/n.
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