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Can accuracy and response bias in two-stimulus, two-response recognition or detection experi
ments be measured nonparametrically? Pollack and Norman (1964) answered this question affirma
tively for sensitivity, Hodos (1970) for bias: Both proposed measures based on triangular areas in
receiver-operating characteristic space. Their papers, and especially a paper by Grier (1971)that pro
vided computing formulas for the measures, continue to be heavily cited in a wide range of content
areas. In our sample of articles, most authors described triangle-based measures as making fewer as
sumptions than measures associated with detection theory. However, we show that statistics based
on products or ratios of right triangle areas, including a recently proposed bias index and a not-yet
proposed but apparently plausible sensitivity index, are consistent with a decision process based
on logistic distributions. Even the Pollack and Norman measure, which is based on non-right tri
angles, is approximately logistic for low values of sensitivity. Simple geometric models for sensitiv
ity and bias are not nonparametric, even if their implications are not acknowledged in the defining
publications.

In many experiments in cognitive science, observers
try to assign distinct labels to stimuli chosen from dif
ferent classes. In the simplest case, there are two stimu
lus classes (signal and noise in a detection experiment,
old and new items in a recognition memory study) and
two corresponding responses. The experimenter wishes
to abstract from the results a measure ofaccuracy, or sen
sitivity, that reflects the subject's ability to distinguish the
stimulus classes, as well as a measure of response bias,
that is, the tendency to choose one response over the other.

Signal detection theory (SDT; Green & Swets, 1966;
Macmillan & Creelman, 1991) is a framework for gener
ating and evaluating both kinds ofindices. The best known
SDT measures, d' (for sensitivity) and f3 (for bias), are
consistent with a decision model in which stimulus classes
lead to equal-variance normal distributions of a decision
variable. This model can be tested by examining receiver
operating characteristic (ROC) curves-functions that re
late the proportion ofhits (yes responses to signal presen
tations) to the proportion offalse alarms (yes responses to
noise presentations) as response bias is either manipulated
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(usually through instructions or payoffs) or measured (by
a confidence rating judgment). Early work in auditory de
tection, much of it summarized by Green and Swets, found
that empirical ROC curves yielded constant values ofd' in
many cases. In other cases, ROCs were consistent with a
model in which the underlying distributions were normal,
but had unequal variance. By collecting an ROC curve, the
investigator who is willing to assume normality can esti
mate the ratio of the variances of the underlying distribu
tions, as well as their mean separation.

An important result that avoids any assumption about
distributions is due to Green (1964): The area under the
yes-no ROC equals the predicted proportion correct by
an unbiased observer in a two-alternative forced-choice
(2AFC) task. Because unbiased performance in 2AFC
can be defined and measured without any theoretical as
sumptions, yes-no ROC area is also assumption free.
Thus detection theory justifies two distinct types ofsensi
tivity measures, those (like d') that can be calculated from
a single hit/false-alarm pair but that require an assump
tion about distributions; and area under the ROC, which
requires a full ROC curve, but makes no assumptions.

The ideal measure, it appears, would require a single
ROC point and be assumption free. Pollack and Norman
(1964), building on Green's (1964) finding, proposed
just such a measure. Their area measure, later dubbed A',
is calculated from triangular areas in ROC space, as
shown in Figure 1. The figure shows a single hit/false
alarm pair! (H,F). Because ROC curves are expected to
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false-alarm rate
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APPLICATIONS OF TRIANGLE-BASED
MEASURES, 1970-1994

tive areas in which they have most often been applied,
and the justifications offered by experimenters for
choosing them over alternative measures. Many authors
choose these measures because they believe them to be
free ofassumptions entailed by other, competing indices.
The most common rationale is that A' and B" make no
"distributional" assumptions, as do measures derived from
detection theory.

In fact, however, the statistic E" can be derived from a
detection-theory model in which the underlying distri
butions are logistic in form (Macmillan & Creelman,
1990). In the theoretical section of the present paper, we
show that logistic distributions arise naturally for indices
based on triangular areas, in particular for a recently pro
posed bias measure (Donaldson, 1992) and a novel but
plausible sensitivity measure. The Pollack and Norman
(1964) sensitivity measure A' entails distributions that
morph from the logistic (when accuracy is low) to the
rectangular (when accuracy is high).
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Figure 2. Number of citations for Pollack and Norman (1964),
Hodos (1970), and Grier (1971) from 1970 through 1994.

We examined every citation of Pollack and Norman
(1964), Hodos (1970), and Grier (1971) listed in either
the Science Citation Index or the Social Science Citation
Index for the 25-year period 1970 through 1994. Figure 2
shows the pattern of citations over this period. For the
first decade, each paper was cited with about equal fre
quency (5 articles per year); since then, the Pollack and
Norman and the Hodos articles have maintained that
pace, but the Grier article has been cited in about 15 ar
ticles per year.

One or another of these papers has been cited in 403
articles; of course, some papers cite more than one, so
the total number of citations is greater. Table 1 gives a
Venn diagram analysis of the citations, and can be used
to show the relative impact of the Grier (1971) article in
another way: Of290 articles citing the Grier paper, only
74 cited either of the others.

(I)

(2)

1
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Pollack and Norman (1964) asserted that A' measured
sensitivity nonparametrically.' and their analysis soon
inspired a triangle-based response bias measure claiming
the same status (Hodos, 1970). 4 The statistic E" is a
function ofthe areas ofthe right triangles in Figure 1 that
include Al and A2 and contain the ROC point (1,0).
These areas are A I + 8 and Az + 8, and E" is the differ
ence between them divided by their sum:

Al - Az
Al + Az + 28

Figure 1. Geometric derivation of A' and B" for a single (hit,
false-alarm) pair in ROC space. Pollack and Norman (1964) es
timated the area under the receiver-operating characteristic
(ROC) by subarea [plus half of Al plus A z• Hodos's (1970) and
Donaldson's (1992) bias measures depend on the difference be
tween Al andAz.

be monotonic increasing with nonincreasing slope, Z the
area under the curve includes the subarea marked I. For
the same reason, it cannot include any of the subarea
marked 8. The triangles A I and Azmay lie under the curve
(in whole or in part), depending on the ROC's shape.
Pragmatically, Pollack and Norman proposed to estimate
the area under the ROC containing (H, F) by I plus one
half of the ambiguous triangular area:

This index varies from -1 to + 1 as response bias varies
from all yes to all no responses.

The new measures did not immediately catch on.
From 1964 to 1969, Pollack and Norman's paper was
cited only twice, once by Pollack himself. But in 1971,
Grier published computing formulas for both A' and E",
making these indices much more accessible, and their
use soared. The popularity ofA' and E", which has con
tinued unabated for 25 years, led us to undertake both a
survey of their use and an evaluation of their theoretical
status.

In the next section, we review the history of applica
tion of triangle-based sensitivity and bias measures, doc
umenting the extent to which they are used, the substan-

1 -r-----.,-------..,"'"
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Table 1
Venn Diagram of Citations

Cited Grier
Yes 33 24 17 216
No 19 55 39

Cited Pollack

Yes

Cited Hodos

Yes No

No

Cited Hodos

Yes No

ioral scientists in a wide variety of content areas. Users
choose these measures because they believe them to
make few assumptions, particularly about underlying
distributions. Theoretical evaluation has been less enthu
siastic, for reasons we consider next.

TRIANGLE-BASED MEASURES,
ODDS RATIOS, AND

THE LOGISTIC DISTRIBUTION

Adding the area of S to the areas of the small triangles
gives the areas of the large triangles:

1 (1 - H) (H _ F) (3)Al =-
2 H

1 F (H - F). (4)A 2 =-
2 (1 - F)

It is convenient to know the area ofS, the region in which
the ROC cannot fall:

S = 1 F (1 - H) (H + 1 - F). (5)
2 (1-F) H

(7)

(6)Al + S = 1 (I - H)
2 (1-F)

The Algebra of Triangular Areas
One of the appeals of triangle-based indices is their

geometric simplicity. Unsurprisingly, such measures are
also simple algebraically, and expressing them in terms
ofthe coordinates ofROC space reveals similarities among
the indices that might lead us to expect similarities in
their entailments. Consider first the small triangles in
Figure 1, with areas Al and A2. These areas are as fol
lows:"

Note-Pollack, Pollack & Norman (1964); Hodos, Hodos (1970);
Grier, Grier (1971). Citations tabulated are all those listed in the Sci
ence Citation Index or the Social Science Citation Index from 1970
through 1994.

Pollack and Norman (1964) presented their original
measure as useful in recognition memory experiments
and referred also to simple detection tasks. Their mea
sure and Hodos's (1970) continue to be used in memory
and perception research, and have also been popular with
workers in many other fields. Table 2 shows that jour
nals in which articles using these area measures are pub
lished divide into three approximately equal categories:
physiological/animal, perception/cognition, and a pot
pourri of other subdisciplines.

We sampled the 403 papers to find out why authors
used triangle-based measures. 5 To do this, we listed all the
articles in chronological order, then randomly selected 1
article of every successive set of 10. Table 3 summarizes
these appearances. Most articles (28, or 70%) reported
data that were analyzed using A' or B"; of these, 89%
cited the supposed distribution-free or nonparametric
nature ofthese statistics as the reason for using them. Six
papers (15%) mentioned the measures in passing, for ex
ample, to note use by another investigator. Only one of
these references was at all critical. The final 6 articles
(15%) were theoretical, and 4 ofthese were critical, ques
tioning the nonparametric status of the measures.

According to our survey, then, triangle-based mea
sures of sensitivity and bias are heavily used by behav-

Table 2
Journals in Which Target Articles Were Cited

Content Area No. Citations No. Journals Journal With Most Citations (No.)

Journal ofMemory & Language (7)*
Perception & Psychophysics (16)
Bulletin ofthe Psychonomic Society (13)t

Journal ofthe Experimental Analysis ofBehavior (21)
(four with 2 each)
Neuropsychology (8)
Psychopharmacology (13)

Physiological/animal 141 55
Animal learning, behavior 41 9
Medical 15 II
Neuroscience 60 28
Pharmacology 25 7

Perception/cognition 143 44
Cognition 26 10
Perception 51 12
General" 66 22

Other 119 53
Personality/clinical 41 19 Journal ofAbnormal Psychology (6)
Developmental 23 6 Journal ofGerontology (9)
Applied 36 23 Human Factors (8)
Quantitative 19 5 Psychological Bulletin (II)

*Includes articles in journal under previous name, Journal of Verbal Learning & Verbal Behavior. "General category
includes many psychology journals, and probably contains more perception and cognition articles than anything else. Ci
tations in five books were also placed in this category. tInciudes articles in journal under previous name, Psychonomic
Science.
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Table 3
Reasons for Citation of Target Articles in the Sample

2 log(a) = [log(a) - log(b)] - [- log(a) - log(b)]

Reasons for Citations Frequency

Empirical use
No distributional assumptions
Nonparametric
No rationale

Passing reference (all but one positive)
Theoretical analysis (all but two negative)

Total

12
13
3
6
6

40

= 10 H -10 F
g (1 - H) g (1 - F)

Expressed in nonlogarithmic terms,

H

(1- H)

(8)

(9)

A second measure of response bias is the likelihood
ratio, the ratio of the height of the S2 density to the Sl
density at the criterion value. It can be shown (Macmillan
& Creelman, 1990) that the likelihood ratio fh equals

Response bias can be measured in a number ofways, two
ofwhich turn out to be important here. First, the location
of the criterion is 10g[F/(1 - F)] below the Sl mean:

log(b) = - log(a) - log F
(1- F)

The logistic decision space is implied by Luce's (1963)
choice theory, which is discussed in McNicol (1972) and
Macmillan and Creelman (1990, 1991). Note the impor
tance that odds ratios-which we have seen arise natu
rally from products and ratios of triangle areas-play in
expressions for the parameters of this model.

(12)

(11)

(10)

HF

(1 - H)(1 - F)

f3 = H(1 - H)
L F(1- F) .

1 [H F ]= - - 10 + 10 .
2 g (1 - H) g (1 - F)

In nonlogarithmic terms,

Logistic Model
Figure 3 shows the decision space for the one-interval

experiment, assuming that the underlying distributions
are logistic. The stimuli S1and S2 give rise to distributions
with means of -log(a) and +log(a). The criterion is lo
cated at log(b). The hit rate is the area above the criterion
under the S2 distribution, and the false-alarm rate is the
area above the criterion under the Sl distribution. As the
figure shows, the distance from the criterion to the mean
of the S2 distribution is 10g[H/(1 - H)] and its distance
from the mean of the Sl distribution is 10g[F/(1 - F)].

Sensitivity in detection-theory models is the distance
between the means, which in this case equals

Each of these triangular areas depends on the product
or ratio ofHand F, their complements 1 - Hand 1 - F,
and/or their difference. This dependence arises because
the operating point in ROC space has coordinates Hand
F, and triangle areas involve the product of triangle
sides. These areas combine to produce sensitivity and
bias measures in a natural way: Bias indices depend on
a difference or ratio ofAl andA2, whereas sensitivity in
dices depend on a sum or product. An examination of
Equations 3-7 makes it clear that ratios and products oftri
angular areas contain odds ratios, that is, ratios ofprob
abilities such as F/Hand (1 - H)/( 1 - F). Odds ratios in
turn are closely related to the logistic distribution.

logistic decision model

DISTRIBUTIONAL ANALYSIS OF
"NONPARAMETRIC" MEASURES
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Figure 3. Decision space for the standard one-interval experi
ment, assuming underlying logistic distributions.

We return now to area-based measures of sensitivity
and bias that purport to be nonparametric. One sense in
which this claim is true is that these indices are derived
without any reference to underlying distributions. This is
not a strong foundation on which to build such a claim,
however, because it depends on the intent of the person
presenting the statistic rather than its mathematical prop
erties. For example, it is not hard to imagine someone
proposing Equation 9 as a sensitivity measure on the
heuristic grounds that it is an increasing function of H
and (1 - F), which quantify successful responding, and
a decreasing function of (1 - H) and F, which quantify
unsuccessful responding. This rationale does not men
tion the logistic distribution, but the omission does not
render a2 distribution free.

Detection theory offers a quantitative method for de
termining, or at least delimiting, the underlying distribu-
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Dividing numerator and denominator of Equation 13 by
F(l - F) leads to

Hodos's Bias Measure, B"
Hodes's (1970) measure was defined above (Equa

tion 2) as the normalized difference between the areas of
the larger triangles AI + Sand Az + S. Substituting
Equations 3-7 into Equation 2 leads to a computing for
mula for B":

(15)

(16)

(17)

(19)

B " - (1 - H)(l - F) - HF
D-

(l - H)(l - F) + HF

B " - AI - Az
D-

AI + Az

Substituting Equations 3 and 4 into Equation 15 gives a
computing formula for B D:

It is easy to show that

B" = 1 - b
Z

D l+bz'

which is monotonic with (and thus equivalent to) b, the
logistic criterion location. Donaldson's bias measure
therefore derives from the logistic model.

The New Sensitivity Measure Aright

As a complement to Hodos's (1970) bias measure, we
introduce the product of the larger triangles in Figure 1
as a natural (inverse) measure of sensitivity. For points
near the upper left comer ofROC space, where sensitiv
ity is high, A I + Sand Az + S will be small; near the
ROC diagonal, where sensitivity is low, they will be
large. This index, which we call Aright to indicate its de
pendence on right triangles, can be found from:

A 1 (l - H) F (18)
right = "4 H (1 - F)

Donaldson's Bias Measure, Bi)
Recently, Donaldson (1992) proposed a measure that

is analogous to B". He argued that a nonparametric bias
statistic should use the smaller triangles in Figure 1, not
the larger ones that include the area S. Donaldson sug
gested the statistic

PoUack and Norman's Sensitivity Measure A'
As Pollack and Norman (1964) defined the measure

that was later denoted A', it depends on the sum of the
smaller triangles A I and Az (see Equation 1). The com
puting formula is:

A' + I + I (H - F)(l + H - F) . (20)
2 4 H(l- F)

It is easy to show that

1
Aright = --z '

4a

which is monotonic with a. Our new index, therefore,
derives from the logistic model. Our purpose in suggest
ing this measure is preemptive: Because it is geometri
cally similar to the popular B", we fear that someone may
seriously offer it as a nonparametric measure of sensi
tivity. It is not one.

Unlike the previous three measures, A' is not monotonic
with a parameter of the logistic model. Instead, it de
pends on two different measures ofsensitivity. One is a,

(13)

(14)

B" = H(l - H) - F(l - F) .
H(l - H) + F(l - F)

tions consistent with any measure of sensitivity or bias.
Every sensitivity index has an implied ROC (Swets,
1986b), the relation between the hit rate and the false
alarm rate when sensitivity (as measured by that statis
tic) is constant. For example, the implied ROC for a is
found by solving Equation 9 for H; implied ROCs for A'
were first presented by Pollack and Norman (1964).
Similarly, every bias index has an implied isobias curve,
the relation between Hand F when bias (as measured by
that statistic) is constant. For example, the implied iso
bias curve for b is found by solving Equation 11 for H;
implied isobias curves for B" were first presented by
Hodos (1970).

The connection between ROC and isobias curves on
the one hand and underlying distributions on the other is
not one-to-one. Suppose that Figure 3 were drawn on a
sheet ofrubber. If this sheet were stretched horizontally,
more in some regions than in others, the distributions
would no longer have a logistic shape, but the hit and
false-alarm rates, which correspond to relative areas
abovethe criterion, wouldbe unchanged. ROC curves, iso
bias curves, and sensitivity and bias statistics, all ofwhich
depend on Hand F, would also remain the same. Thus
although aZ is consistent with a logistic-distributions
model, it is also consistent with models obtained by
stretching the logistic decision sface horizontally.
Detection-theory statistics such as a and d' are derived
from distributional assumptions, but do not uniquely
imply them.7

ROC and isobias data cannot distinguish between two
measures that are monotonically related. Thus if ROC
data are consistent with a constant value of a, they are
also consistent with a constant value of a Z or log(a). To
stress this connection, we call twomeasures that are mono
tonically related equivalent. In the following paragraphs,
we demonstrate equivalence between triangle-based
measures of sensitivity and bias on the one hand, and lo
gistic parameters on the other.

B" = f3L - 1 .

f3L + 1

This relation is monotonic because the slope, 2/(f3L + 1f,
is always positive, and B" is thus equivalent to the logis
tic likelihood ratio f3L. Hodes's measure therefore de
rives from the logistic model.
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At low sensitivity, Equation 21 is dominated by the logis
tic term a, whereas at high sensitivities p(c) is more im
portant. This shift is illustrated in Figure 4, which shows

the logistic measure; the other isp(c), the proportion cor
rect by an unbiased observer, which equals \12' [H +
(l - F)]. The relation is:

A' = 1. + 1.p(c) (1 - a-2
) . (21)

2 2

Figure 4. Each panel shows a family of receiver-operating
characteristic (ROC) curves implied by A'. In the upper panel,
ROC curves for two levels of a (logistic sensitivity) are also
shown; in the lower panel, ROC curves for two levels of p(c)
(rectangular sensitivity) are shown. The comparison shows that
A'is approximately consistent with logistic distributions at low
levels, and rectangular distributions at high levels.

CONCLUSIONS AND IMPLICATIONS

a family of ROC curves implied by A', together with
those for a and p(c). The upper panel shows that at low
levels, but not high levels, a constant-a ROC is very sim
ilar to a constant-A' curve. The lower panel shows that at
high levels, but not at low levels, a constant-p(c) ROC is
very similar to a constant-A' curve. The statistic p(c) is
the sensitivity index of a decision model in which the
underlying distributions are rectangular (Macmillan &
Creelman, 1991). Area under the one-point ROC, as esti
mated by Pollack and Norman's (1964) method, is con
sistent with logistic distributions for low sensitivities and
rectangular distributions at high levels; in neither case
does it deserve the label "nonparametric,'

Table 4 summarizes our findings about the distribu
tional implications of "nonparametric" measures based
on triangles in ROC space. Two bias measures are equiv
alent to natural bias indices of the logistic model. A new
measure of accuracy constructed by a rationale typical
of area measures is equivalent to logistic sensitivity. The
accuracy measure of Pollack and Norman (1964) is ap
proximately equivalent to either a logistic or a rectangu
lar index, depending on performance level.

These measures have been characterized as "nonpara
metric" for 25 or 30 years because no theory was used in
their construction. This history cannot, of course, guar
antee that no theory is entailed in applying them. A pitcher
who develops a curve ball without knowledge of aero
dynamics has not come up with a pitch outside the realm
of physics. An implication of this observation is that fu
ture indices claiming nonparametric status need to pro
vide positive support for such a claim, not merely the ab
sence of explicit theoretical foundation. New measures
based on triangular areas should be treated with particu
lar suspicion: Like the measures we have examined, they
are very likely to entail logistic distributions.

Our survey uncovered a rather extensive literature that is
based, according to our theoretical analysis, on a miscon
ception. That area measures so often reflect the logistic dis
tribution can be seen as good news, in that ROC data often
support distributions of this sort. The rectangular distribu
tions implied by high values ofA', on the other hand, are not
supported by empirical ROC data, and are therefore espe
cially inappropriate for summarizing performance.

If, as we have argued, performance is not to be sum
marized by triangle-based measures of accuracy, what

1

const8nt p(c)

constant II

---.--------- constant A' --

.2 .4 .6 .8
falsealann rate

.2 .4 .6 .8
falsealann rate

1

.8

~
.6

:t::::
.c .4

.2

0
0

1

.8

S .6
l!!

:t::::.c .4

.2

0
0

Table 4
Summary of Triangle-Based Measures

Type of
Index

"Nonparametric" ROC Triangles
Index Used* Equivalent Parametric Index

Response bias

Sensitivity

B" Large
B;; Small
A right Large
A' Small

Logistic likelihood ratio
Logistic criterion
Logistic mean difference
Logistic mean difference"
Rectangular mean difference!

*"Small" triangles are those with areas A I and A2 in Figure I; "large" triangles are those with
areas AI + Sand A2 + S. tAt low performance levels. !At high performance levels.
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statistics should be used instead? In 1986, Swets found
that detection-theory based indices were most consistent
with available data in a wide range ofdisciplines, and we
are aware of no important change in the database since
then (Swets, 1986a). In particular, Swets urged the use of
an area statistic, Az, the area under the best fitting nor
mal ROC curve. This index has most of the advantages
that Green (1964) originally claimed for ROC area. Of
course, it cannot be computed from a single hit/false
alarm pair, but requires a full ROC. Contrary to the bulk
ofthe literature surveyed in this article, an adequate area
based measure requires this extra effort.
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NOTES

1. The ordering (H,F) is the reverse of the conventional one, in
which the abscissa value is given first. However, in detection and
some other contexts, signal trials (on which H is based) are of more
substantive interest than are noise trials (on which F is based), and we
prefer the unusual ordering. (See also Macmillan and Creelman, 1990,
1991.)

2. The rationale for delimiting the region in which an ROC may fall
was given by Norman (1964), who argued that an observer operating
at point (H,F) could also reach any point on the line segments con
necting this point with (0,0) or (1,1) by guessing. Thus any point
below these segments (and in area I in Figure I) is inferior to (H,F)
and cannot be on the ROC. Analogously, any point in S is superior to
(H,F) and cannot be on the ROC. Norman pointed out that the argu
ment is equivalent to requiring that ROCs be monotonic increasing
with nonincreasing slope.

3. The term nonparametric has been consistently used by the de
velopers and appliers of the measures described in this article, but dis
tribution free may be more appropriate. In the context of statistical
tests, Bradley (1968, p. 15) defined a nonparametric test as one that
takes no stand about the value of a parameter in a distribution and a
distribution-free test as one that takes no stand about the form of the
distribution. In this article, we for the most part use the latter term, but
use nonparametric when referring to the claims of others.

4. Hodos (1970) actually proposed a slightly different measure that
has different formulas above and below the minor diagonal of ROC
space. Grier (1971) proposedB", which is equivalent to Hodes's mea
sure in terms of isobias curves (discussed later). Perhaps because its
single formula makes it easier to use, B" has dominated in application.

5. The search for the articles in the sample was conducted at the li
brary system of the University of Massachusetts, Amherst. A total of
57 articles were chosen to locate the sample of 40, the others being in
journals to which the library did not subscribe. The distribution across
content areas of the sample was quite similar to that of the entire cor
pus: physiological/animal articles totaled 32% (vs. 35% in the corpus),
perception/cognition 38% (vs. 35%), and other areas 30% (vs. 30%).

6. In the following discussion, we consider only the usual case in
which H ~ F. The equations are different for subchance performance;
see Aaronson and Watts (1987).

7. Although underlying distributions are not specified by one ROC
curve, Maloney and Thomas (1991) have shown that they may be
specified by as few as two for models in which the Sj and S2distribu
tions have the same shape. This result (and related findings in the
Maloney and Thomas paper) provides a kind of converse to the
straightforward implication ofan ROC from an underlying model, but
the authors have acknowledged (p. 469) that it is difficult to apply.
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