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Recently,quantitative models based on signaldetection theory have been successfully applied to the pre­
diction of human accuracy in visual search for a target that differs from distractors along a single attribute
(feature search). The present paper extends these models for visual search accuracy to multidimen­
sional search displays in which the target differs from the distractors along more than one feature dimen­
sion (conjunction, disjunction, and triple conjunction displays). The model assumes that each element in
the display elicits a noisy representation for each of the relevant feature dimensions. The observer
combines the representations across feature dimensions to obtain a single decision variable, and the
stimulus with the maximum value determines the response. The model accurately predicts human ex­
perimental data on visual search accuracy in conjunctions and disjunctions of contrast and orientation.
The model accounts for performance degradation without resorting to a limited-capacity spatially lo­
calized and temporally serial mechanism by which to bind information across feature dimensions.

Visual search for a target among a set of distractors
has been extensively studied by a large number of investi­
gators, Typically, the observer's reaction time for finding
the target is measured as a function of the number ofdis­
tractors (set size) in the display. When the target and the
distractors differ along one physical dimension or stim­
ulus attribute (e.g., length, orientation, color, brightness,
etc.), the search task is known as a feature search. A com-
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mon finding for feature search is that reaction times are
independent of the number of distractors (small set-size
effect) in the display, which is commonly interpreted as ev­
idence for unlimited capacity parallel processing ofall the
items in the display. On the other hand, when the target/
distractors discriminability is defined along two feature
dimensions, so that the target differs from two types ofdis­
tractors by a different feature dimension (e.g., a tilted long
line among tilted short lines and vertical long lines), the
search task is known as a conjunction search. In this case,
a common finding is that reaction times increase as the
number of distractors in the display increases (large set­
size effect), which is taken as evidence of serial processing
(e.g., Treisman & Gelade, 1980; Treisman & Gormican,
1988).

The dichotomy in results between feature (parallel pro­
cessing) and conjunction (serial processing) search was
interpreted by Treisman (feature integration theory; Treis­
man & Gelade, 1980) as evidence that integration or bind­
ing of information across features can only be accom­
plished through a spatially localized mechanism (visual
attention) that operates in serial fashion. In feature inte­
gration theory, the visual field is first analyzed by a series
of spatiotopically organized maps, called feature maps,
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encoding the presence of a stimulus attribute or feature
(e.g., color, motion, orientation, etc.). Each feature map
independently signals the presence of a specific feature
(redness, tilted, long, etc.) in parallel across the visual
field. Therefore, ifthe visual search task is defined by a
feature (presence oftiltedness), the time to find the target
is independent of the number of elements in the display.

On the other hand, in order to combine activity or in­
formation across different feature maps, visual attention
must focus on a localized region of the feature maps. Vi­
sual attention is inherently spatially localized and tem­
porally serial.

Further experiments (Duncan & Humphreys, 1989)
showed that when the similarity of the target and the dis­
tractors is high, the set-size effect is large even with feature
displays. Treisman explained such findings by stating
that when the target/distractor similarity is high, visual
attention is needed to perform fine discrimination (Treis­
man & Gormican, 1988).

Recently, other studies have shown that other lower
level factors affect visual search performance. Increasing
element retinal eccentricity has been shown to increase
set-size effects (Carrasco, Evert, Chang, & Katz, 1995;
Geisler & Chou, 1995). Increasing element density has
been shown to increase set-size effects, because ofan in­
crease in lateral masking (Carrasco et aI., 1995). Experi­
ments have also shown that the number ofeye movements
increases with increasing target/distractor similarity
(Zelinsky, Sheinberg, & Bulthoff, 1993). These results
suggest that, under free viewing (eye movements al­
lowed), it becomes hard to separate set-size effects that
are due to the increasing number ofeye movements from
those that are due to the serial allocation of visual atten­
tion. Many of the search time studies have not carefully
controlled for all these low-level factors that may be con­
founded with any possible set-size effects that are due to
the capacity limitations ofattentional nature. An additional
limitation ofresponse time studies is that it is difficult to
keep observers' accuracy levels constant, so as not to have
differential speed/accuracy tradeoffs across set-size con­
ditions. The inability to keep performance at a constant
level across set-size conditions might obscure any inter­
pretations about capacity limitations.

In order to control for some ofthese lower level factors
and for differential speed/accuracy tradeoffs, many au­
thors have chosen to use a visual search accuracy study
(Bergen & Julesz, 1983a, 1983b; Palmer, 1994a; Palmer,
Ames, & Lindsey, 1993). In this type of study, the display
is briefly presented. The briefpresentation precludes eye
movements by the observer during the trials. The ability
to correctly determine whether the target is present
(yes/no design) or which ofM displays contains the tar­
get (alternative forced-choice [AFC] design) is mea­
sured. The investigator manipulates the number of dis­
tractors in the display for the different experimental
conditions. The rationale for the accuracy study is that
performance degradation with increasing set size may be
used to draw conclusions about capacity limitations. The
serial model makes explicit predictions for set-size effects

in visual search accuracy studies. Bergen and Julesz (1983a,
1983b) used this method to study search for an L among
Ts. Their results were consistent with a temporally ser­
ial mechanism.

More recently, investigators have taken into considera­
tion the inherent noise in visual processing. The presence
ofnoise in the encoding ofvisual properties is supported
by physiological studies measuring the statistical reliabil­
ity ofthe responses ofcells (Tolhurst, Movshson, & Dean,
1982). As will be discussed in detail, the inclusion of
noise in the encoding of each element will produce set­
size effects in visual search accuracy.

Palmer et al. (1993; Palmer, 1994a) have shown that per­
formance degradation as a function of the number ofdis­
tractors in feature displays can be predicted by a simple
model (decision integration hypothesis) that assumes
that the observer has noisy representations of the target
and the distractors (Palmer, 1994a; Palmer et aI., 1993;
Shaw, 1980) and uses the maximum response as the de­
cision variable. This model is based on the widely used
signal detection theory (SDT; Green & Swets, 1966;
Swets, 1964) first applied by Tanner and Swets(l954)
and Tanner (1961). The model does not assume any change
in the quality of the representation ofeach individual el­
ement as a function of target/distractor similarity or in­
creasing number ofdistractors. The model has been suc­
cessfully applied in predicting the effect of number of
distractors on performance in search tasks in which the
target was defined by a variety of properties-disk lumi­
nance, blob luminance, blob color, disk size, ellipse orien­
tation (Palmer, 1994a), letter type (Bennett & Jaye, 1995),
target speed (Verghese & Stone, 1995)-and in tasks in­
volving the detection ofcontrast-defined targets on a va­
riety of backgrounds (Burgess & Ghandeharian, 1984;
Eckstein & Whiting, 1996; Swensson & Judy, 1981).

The purpose ofthis study is to extend the principles of
SDT to visual search accuracy in multidimensional search
displays and to report quantitative predictions for per­
formance degradation as a function of target/distractor
similarity for three commonly used multidimensional
search displays: conjunction, triple conjunction, and dis­
junction (two-dimensional [2-D] feature) displays. The
model is used to fit data on human visual search accuracy
for conjunction and disjunction (2-D feature) displays
collected by Aiken and Palmer (1992). The methodology
and quantitative predictions that are presented can be used
to rigorously test whether the results of visual search ac­
curacy studies can be accounted for by the inherent noise
in the visual system or whether capacity limitations (e.g.,
serial processing) need to be invoked. Before presenting
of the theory for multidimensional displays, we discuss
the theory for single-dimension (feature) displays.

ONE-DIMENSIONAL (FEATURE) DISPLAYS

Stimuli and Experimental Tasks
One important aspect of the work presented in this

study is that the predictions of the model are indepen­
dent of the dimension manipulated in the experiment.
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Target Present Display Target Absent Display

Figure I. Feature search task for a two-alternative forced­
choice defined with respect to contrast. One alternative contains
the target (brighter ellipse) and n - I distractors (dimmer el­
lipse); the other alternative contains n distractors. The observers'
task is to correctly identify the alternative with the target. Ex­
amples for n = I and n = 7.

presented either simultaneously or sequentially through
time. In the design used by Palmer and in the studies pre­
sented in this paper, the observer responds without a re­
sponse deadline. However, in order to control the response
time, one might include a response deadline.

The number of distractors is manipulated so that the
target-present alternative contains the target and n - I
distractors and the target-absent alternative contains the
n distractors. Figure I illustrates the task of searching for
a bright ellipse (target) among dimmer ellipses (distrac­
tors) for set sizes n = I and n = 7 and for two alternatives
(M= 2).

Theoretical Principles
The basic assumption of SDT is that each element in

the display elicits an internal response in the observer.
The internal response to the same element will vary from
trial to trial, owing to the internal noise. Possible sources
of internal noise include fluctuations in the firing of the
cells (Barlow, 1957; Tolhurst et al., 1982) and variabil­
ity in the decision criterion (Wickelgren, 1968). On av­
erage, the target elicits a different internal response than
do the distractors. For example, if the target is brighter
than the distractors, the internal response to the target
will be, on average, larger than that to the distractor. How­
ever, owing to the internal noise, the distractor might
elicit a larger response than the target in some trials. On
each trial, the observer is assumed to monitor n internal
responses to the n distractors in the target-absent display
and another n internal responses corresponding to the
n - I distractors and the target in the target-present dis­
play. The observer then uses the maximum response
among the n internal responses for each display as the de­
cision variable. If the maximum response for Display I is
larger than the maximum response for Display 2, then
choose Display I; otherwise, choose Display 2 (Fig­
ure 2). Although the maximum response rule is not the
ideal Bayesian strategy (Pelli, 1985), it has been shown
to predict human results for a number of visual tasks
(Palmer, 1994a; Palmer et al., 1993; Swensson & Judy,
1981), and it sometimes approximates the optimal deci­
sion rule (Nolte & Jaarsma, 1966).

If we define t(x) as the probability of the target re­
sponse taking a value x, d(x) as the probability ofthe dis­
tractor taking a value x, T(x) as the cumulative probability
of the target taking a value less than x, D(x) as the cu­
mulative probability of the distractor taking a value less
than x, n as the number ofdistractors in the target-absent
display (set size), and M as the number of response alter­
natives or intervals, the probability ofcorrect identifica­
tion of the display containing the target (for derivation,
see Appendix A) can be written as

?c(n,M) = r:[ t(x)Dn-J(x)+(n -1)d(x)D n-2 (x)T(X)]

. [Dn(X)r-Jd x. (1)

With the assumptions that the internal noise of the ob­
server is Gaussian distributed and that the target distrib-

n= 7

n=1

The dimensions could be luminance, orientation, length,
hue, motion, speed, and so forth. The important param­
eter that will quantitatively determine the effect of the
number of distractors is performance (Pc' proportion
correct) in identifying a single target from a single dis­
tractor along the relevant dimension. As will be dis­
cussed later, an underlying internal target/distractor dis­
criminability is associated with the ?C. The observer's
internal target/distractor discriminability can be changed
by using different experimental manipulations. For ex­
ample, one can change the physical appearance ofthe dis­
tractor to make it more discriminable from the target. On
the other hand, one could shorten the time of presenta­
tion of the display, which might reduce performance in
discriminating a single target from the distractors, effec­
tively reducing the internal target/distractor discrim­
inability. The essential point is that the feature attribute
that distinguishes the distractors from the target and the
method ofmanipulating the discriminability are irrelevant
to the model's predictions ofperformance degradation as
a function of set size. The derived results apply to any at­
tributes and to any methods of manipulating disc rim­
inability. The only restriction is that, as the number of
distractors is increased, any factors affecting discrimina­
tion ofa single item (such as presentation time) must be
kept constant.

In this paper, we consider results for an AFC accuracy
design; however, the results can be generalized to yes/no
(Palmer et al., 1993) and rating type designs. In an M-AFC
design, M displays or alternatives are presented to the
observer: one alternative containing the target and M - I
alternatives with nontargets. The task of the observer is
to correctly identify the display or the alternative contain­
ing the target. In this paper, we consider studies in which
the observer knows the target a priori. The alternatives are
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DISPLAY 1 DISPLAY 2

OBSERVER

CHOOSE MAX

~
CHOOSE MAX

~
IF MAX(display 1) > MAX(display 2)

SELECT display 1, else SELECT display 2

Figure 2. Decision strategy for observer with maximum response rule
(Palmer, Ames, & Lindsey, 1993; Swensson & Judy, 1981). Each element
in the two alternatives elicits an internal response in the observer. The
responses are subject to random fluctuations owing to internal neural
noise. The observer chooses the maximum response per alternative to
use as the decision variable and selects the alternative associated with
the highest maximum response.

ution has the same variance as the distractor distribution
but a higher mean (uo) ' the probability distibutions ofthe
internal responses can be parameterized as a function of
d~, defined as the distance between the center of the two
distributions divided by the standard deviation «(To)' For
the case of two response intervals or alternatives (M = 2)
investigated in this paper, Pc is given by

Pe(n,M =2,d~)

= r:[g(x-d~)Gn-l(X)

+(n -1)g(x)G n-2(x)G(x -d~)]Gn(x)dx, (2)

where

a: «;
o=a-'

o

g(x) is the Gaussian probability that the element value
takes a value x and G(x) is the cumulative Gaussian prob­
ability that the element distribution takes a value less
than x.

The observers' internal discriminability between the
target and the distractor is described by d~. In practice, Pc
for a given number ofalternatives and distractors is mea­
sured, and a corresponding d~ is inferred from Equation 2.

Representing Target/Distractor Similarity
A large number of experiments have shown that in­

creasing the similarity between the target and the dis-

tractor will reduce search efficiency, producing steeper
slopes in search time studies. These experiments have
manipulated color (Farmer & Taylor, 1980; Nagy
& Sanchez, 1990), curvature of lines (Treisman &
Gormican, 1988), letters (Bergen & Julesz, 1983a,
1983b; Duncan & Humphreys, 1989; Estes, 1972; Pash­
ler, 1987; Pavel, Econopouly, & Landy, 1992; Treisman
& Gelade, 1980; Verghese & Nakayama, 1994; von Grii­
nau, DuM, & Galera, 1994), and so forth. Palmer (1995)
has performed search accuracy studies in which the target
was a disk with a higher luminance value than the dis­
tractors. His results show larger set-size effects (perfor­
mance degradation from one and seven distractors) for
the conditions with smaller target/distractor differences
in luminance.

In the context ofSDT, changing the physical difference
between the target and the distractors along the relevant
feature dimensions will change the internal discrim­
inability between the target and the distractor (d~). The
exact relationship between the change in physical differ­
ence (e.g., percentage oforientation difference or contrast
difference) and the internal discriminability between tar­
get and distractor will depend on the feature dimension
manipulated. For example d~ might be a linear function,
a power function, a log function, or some other function
of the physical difference between the target and the dis­
tractor along the relevant feature dimension. However,
given a certain level of target/distractor internal dis­
criminability (d~), the effect of the number ofdistractors
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on performance can be obtained by evaluating Equa­
tion 2 for the value of d~.

Figure 3 (left panels) shows the probability distribu­
tions for the maximum response of all elements in the
target-present display (target and n - I distractors) and
the maximum response ofall elements in the target-absent
display (n distractors) for I, 5, and 30 distractors. The
target!distractor discriminability, d~, is 2.0.

Overlap between these two distributions is indirectly re­
lated to the probability ofcorrectly identifying the target­
present display and might give the reader some intuition
as to how performance is affected by increasing the set
size.

Figure 3 (left panels) illustrates how, as the number of
distractors increases, the overlap ofthe probability distrib­
utions increases, effectively reducing the Pc for discrim­
inating the target-present from the target-absent display.
Although both the target-absent and the target-present
displays contain distractors, the net effect of adding dis­
tractors is to increase the probability that the maximum
response in the target-absent display will exceed the max­
imum response in the target-present display. This behav­
ior is a consequence of the internal noise and of the max­
imum response decision strategy and not ofany reduction
in the underlying internal discriminability (d~) between
a single target and distractor.

Figure 3 (right panels) shows the probability distribu­
tions of the maximum response for a case in which the
target/distractor discriminability is high (d~ = 4.5). In­
creasing the set size for the high target/distractor dis­
criminability results in a smaller increase in the distrib­
utions' overlap than was the case for the lower target!
distractor discriminability (d~ = 2.0). Therefore, the net
effect of increasing the number of distractors interacts
with the discriminability between the target and a single
distractor.

Figure 4 shows Pc as a function of the number of dis­
tractors in the display for five different levels of internal
target!distractor discriminability (d~). For very high levels
of discriminability (d~ = 4.5), Pc remains approximately
constant as a function of number of distractors. When
target/distractor discriminability (d~) is decreased, the
change in Pc with number of distractors increases. I

Table I lists the obtained values of P; as a function of
number of distractors (n) for different levels of target!
distractor discriminability (d~), based on the numerical
evaluation of Equation 2.

MULTIDIMENSIONAL SEARCH DISPLAYS:
BASIC THEORY

The SDT model can be extended to displays in which
the target differs from the distractors along more than
one physical attribute or feature dimension (multidi­
mensional; Eckstein, Thomas, Palmer, & Shimozaki,
1996; Eckstein, Thomas, Shimozaki, & Whiting, 1995;
Pavel et aI., 1992). In the context ofSDT, we assume that
each of the feature dimensions of interest elicits an in-

dependent noisy internal value in the observer. In this way,
each element in the display elicits f internal responses
corresponding to the f feature dimensions. For the case
of two feature dimensions, we can represent the distrib­
utions of internal responses associated with the target
and distractors by plotting a probability surface in x-y
Cartesian coordinates (Figure 5). The x-axis corresponds
to the probability distribution of the internal response to
the display elements along the first dimension (e.g., ori­
entation), and the y-axis corresponds to the probability
distribution ofthe internal response to the display elements
along the second dimension (e.g., contrast).

The specific distractor configuration corresponds to a
typical conjunction display (Treisman & Gelade, 1980)
in which the target differs from each ofthe two distractors
along one feature dimension. In this paper, we investi­
gate models that combine the information across the
two dimensions to create a new variable Z = f(xl' x 2). In
this way, each element in the display will be associated
with a value along the new decision variable Z. The de­
cision process then remains the same: If the maximum
response to all the elements in Display I is greater
than the maximum response to all the elements in Dis­
play 2, then choose Display I; otherwise, choose Dis­
play 2. Figure 6 illustrates the decision rule for a multi­
dimensional display that includes two relevant feature
dimensions.

The specific mathematical formf(x I' x2)ofthe function
used by human observers to combine information across
dimensions x I and x2 is unknown. In this paper, we con­
sider two possible decision rules: (I) the maximum ofthe
linear combination of the responses along the feature di­
mensions (max-linear) and (2) the maximum response
among the elements' minimum response between/among
the different feature dimensions (max-min).

In order to generate predictions ofthe Pc for the multi­
dimensional displays, two steps are required: (I) to ob­
tain mathematical expressions by which to calculate the
effective target!distractor discriminability along the new
decision variable after the combination of information
across feature dimensions, and (2) to obtain an expres­
sion that takes into account the possibility of different
types of distractors with different associated target/
distractor discriminabilities along the new decision vari­
able. Appendices Band C develop in detail the mathe­
matical foundations for the general framework; however,
with the introduction of a number of assumptions, the
predictions of the model are greatly simplified.

Combining Information
Across Feature Dimensions

The first step required to develop predictions for mul­
tidimensional displays is to be able to calculate the effec­
tive target/distractor discriminability after combination
of information across feature dimensions.

Max-linear decision rule. In the multidimensional
displays, the target and the distractors elicit a number of
noisy responses (x l' x3' ... xI)' The max-linear decision
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Figure 3. Probability distributions for the maximum response ofthe target-present alternative and maximum response of the
target-absent alternative for a feature display. Overlap between the two distributions is a graphic measure of disc riminability be­
tween the two alternatives. The distributions correspond to a d~ = 2.0 for n = I, n = 5, and n = 31. As the number of distractors
increases, the overlapping between the two distributions increases. The left panels correspond to medium targetldistractor dis­
criminability (d~ = 2.0), and the right panels to high targetldistractor discriminability (d~ = 4.5).

rule uses a linear strategy to combine the f feature re­
sponses for each element into a single response, Zi:

where Z, is the result of combining responses along allf
feature dimensions for the ith element, xi) is the internal

J
Zi=I,Wj'Xij'

j=l

(3)

responses along the jth independent feature dimensions
for the ith element in the display, and wj is the weight ap­
plied by the observer to the jth feature dimension when
combining information across feature dimensions.

Ifwe assume that the responses along the individualf
feature dimensions are stochastically independent and
Gaussian distributed, it can be shown (Appendix B) that
the effective target discriminability between the target
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Figure 4. Proportion of correct identification of the target-present alter­
native in a two-alternative forced choice task as a function of number of
distractors and target!distractor discriminability (d~). Performance degra­
dation as a function of number of distractors increases with lower target!
distractor discriminability over a large range of performance levels. Lines
correspond to theoretical results based on numerical evaluation of equations.
Symbols correspond to theoretical results based on Monte Carlo simulations.

and the ith distractor, after combining information across
feature dimensions, is given by

J
I,wj dij

d' = j=l (4)
lZ J

I,wJ
j=l

where d:z is the discriminability between the target and
the ith distractor type along the new decision variable z,

dij is the discriminability between the target and the ith
distractor along the jth feature dimension, and wj is the
weight used for the jth feature dimension for the linear
combination of information across feature dimensions.

Max-min decision rule. An observer who uses the
max-min decision rule first chooses for each element in
the display the feature dimension that elicits the smallest re­
sponse and then chooses the alternative that contains the
maximum among these responses (Figure 6). The purpose
of this minimum operation is to choose for each distractor
the feature dimension that has the highest target/

Dimension 2

Distractor 2

Target

Dimension 1

Distractor 1
Figure 5. Two-dimensional (2-D) representation of a noisy response along

two independent dimensions. Concentric circles represent 2-D Gaussian dis­
tributions in which the central areas have a higher probability of occurrence
than do the peripheral areas. The distributions are centered on the mean val­
ues along both dimensions. The shown graph representation corresponds to a
typical conjunction display in which the target differs from each distractor
along one feature dimension. Target distribution has a high mean response
value along both feature dimensions. The distractor distributions have high
mean response values along only one feature dimension.
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Table 1
Proportion Correct for a Feature Display as a Function of Number of Distractors

for Different Levels of TargetlDistractor Discriminability (d~)

Number of Distractors

d' I 2 3 4 5 6 7 9 II 16 21 26 31
0

.1 .5282 .5176 .5132 .5107 .5090 .5079 .5070 .5057 .5049 .5036 .5029 .5024 .5021

.2 .5562 .5361 .5274 .5224 .5190 .5167 .5149 .5123 .5106 .5079 .5064 .5054 .5047

.3 .5840 .5553 .5425 .5351 .5301 .5265 .5237 .5198 .5171 .5129 .5105 .5089 .5077

.4 .6114 .5751 .5586 .5487 .5421 .5372 .5335 .5282 .5244 .5186 .5152 .5130 .5114

.5 .6382 .5955 .5755 .5634 .5551 .5490 .5443 .5375 .5327 .5252 .5208 .5178 .5156

.6 .6643 .6164 .5932 .5790 .5691 .5618 .5562 .5479 .5420 .5327 .5271 .5234 .5206

.7 .6897 .6375 .6116 .5954 .5841 .5756 .5690 .5592 .5523 .5411 .5344 .5298 .5264

.8 .7142 .6588 .6305 .6126 .5999 .5903 .5828 .5716 .5636 .5506 .5426 .5371 .5331

.9 .7377 .6801 .6499 .6304 .6165 .6060 .5976 .5850 .5759 .5610 .5517 .5454 .5406
1.0 .7602 .7014 .6696 .6488 .6339 .6224 .6132 .5993 .5892 .5724 .5619 .5546 .5491
1.1 .7817 .7223 .6895 .6677 .6518 .6395 .6296 .6145 .6034 .5849 .5731 .5649 .5586
1.2 .8019 .7429 .7094 .6869 .6702 .6572 .6467 .6306 .6186 .5983 .5854 .5762 .5692
1.3 .8210 .7630 .7293 .7062 .6890 .6754 .6644 .6474 .6346 .6128 .5986 .5885 .5808
1.4 .8389 .7825 .7489 .7255 .7080 .6940 .6826 .6648 .6513 .6281 .6128 .6018 .5934
1.5 .8556 .8012 .7681 .7448 .7270 .7128 .7011 .6827 .6687 .6442 .6279 .6161 .6070
1.6 .8711 .8192 .7869 .7638 .7460 .7317 .7198 .7010 .6865 .6610 .6439 .6313 .6215
1.7 .8853 .8363 .8051 .7824 .7648 .7505 .7386 .7196 .7048 .6785 .6606 .6474 .6370
1.8 .8985 .8525 .8225 .8005 .7833 .7692 .7573 .7382 .7232 .6964 .6779 .6641 .6533
1.9 .9104 .8677 .8392 .8181 .8013 .7875 .7758 .7568 .7418 .7146 .6957 .6815 .6702
2.0 .9213 .8819 .8551 .8349 .8187 .8053 .7938 .7752 .7603 .7331 .7139 .6994 .6878
2.1 .9312 .8950 .8700 .8509 .8354 .8225 .8115 .7932 .7786 .7516 .7324 .7176 .7058
2.2 .9401 .9072 .8840 .8660 .8514 .8391 .8284 .8108 .7966 .7700 .7508 .7361 .7241
2.3 .9481 .9183 .8970 .8802 .8665 .8548 .8447 .8279 .8141 .7881 .7693 .7546 .7426
2.4 .9552 .9285 .9090 .8935 .8807 .8698 .8602 .8442 .8310 .8059 .7874 .7729 .7611
2.5 .9615 .9377 .9200 .9058 .8940 .8838 .8749 .8597 .8472 .8231 .8052 .7911 .7794
2.6 .9670 .9460 .9300 .9172 .9063 .8969 .8886 .8744 .8626 .8397 .8225 .8088 .7974
2.7 .9719 .9534 .9391 .9275 .9176 .9090 .9013 .8882 .8772 .8556 .8392 .8260 .8150
2.8 .9761 .9600 .9473 .9369 .9280 .9201 .9131 .9010 .8908 .8706 .8551 .8426 .8321
2.9 .9798 .9658 .9547 .9454 .9374 .9303 .9239 .9129 .9035 .8848 .8702 .8584 .8484
3.0 .9831 .9709 .9612 .9530 .9458 .9395 .9338 .9238 .9152 .8980 .8845 .8734 .8640
3.1 .9858 .9754 .9669 .9597 .9534 .9478 .9427 .9337 .9259 .9102 .8977 .8874 .8786
3.2 .9882 .9793 .9720 .9657 .9602 .9552 .9507 .9426 .9357 .9214 .9100 .9005 .8924
3.3 .9902 .9827 .9764 .9709 .9661 .9618 .9578 .9507 .9445 .9316 .9213 .9126 .9052
3.4 .9919 .9856 .9802 .9755 .9713 .9676 .9641 .9578 .9523 .9409 .9316 .9238 .9169
3.5 .9933 .9880 .9835 .9795 .9759 .9726 .9696 .9642 .9593 .9492 .9409 .9339 .9277
3.6 .9945 .9901 .9863 .9829 .9798 .9770 .9744 .9697 .9655 .9566 .9493 .9430 .9375
3.7 .9956 .9919 .9887 .9858 .9832 .9808 .9786 .9746 .9709 .9632 .9567 .9512 .9462
3.8 .9964 .9934 .9907 .9883 .9861 .9841 .9822 .9788 .9757 .9689 .9633 .9584 .9541
3.9 .9971 .9946 .9924 .9904 .9886 .9869 .9853 .9824 .9797 .9740 .9691 .9648 .9610
4.0 .9977 .9956 .9938 .9922 .9907 .9893 .9879 .9855 .9832 .9783 .9741 .9704 .9671
4.1 .9981 .9965 .9950 .9937 .9924 .9912 .9901 .9881 .9862 .9820 .9785 .9753 .9725
4.2 .9985 .9972 .9960 .9949 .9939 .9929 .9920 .9903 .9887 .9852 .9822 .9795 .9771
4.3 .9988 .9978 .9968 .9959 .9951 .9943 .9935 .9921 .9908 .9879 .9854 .9831 .9810
4.4 .9991 .9982 .9975 .9967 .9961 .9954 .9948 .9936 .9926 .9902 .9881 .9861 .9844
4.5 .9993 .9986 .9980 .9974 .9969 .9963 .9958 .9949 .9940 .9921 .9903 .9887 .9873
4.6 .9994 .9989 .9984 .9980 .9975 .9971 .9967 .9959 .9952 .9936 .9922 .9909 .9897
4.7 .9996 .9991 .9988 .9984 .9980 .9977 .9974 .9968 .9962 .9949 .9937 .9927 .9917
4.8 .9997 .9993 .9990 .9987 .9985 .9982 .9980 .9975 .9970 .9960 .9950 .9941 .9933
4.9 .9997 .9995 .9993 .9990 .9988 .9986 .9984 .9980 .9977 .9968 .9960 .9953 .9947

distractor discriminability.? In order to obtain a general ex- where ei,min(X) is the probability that the minimum
pression for the performance of the max-min observer, we among the ith element's f feature responses will take a
need to first obtain the probability distribution of the min- value x, ei/x) is the probability of the ith element's elic-
imum response among f feature dimensions. The distribu- iting a response of value x, along the jth feature dimen-
tion of the minimum response among f feature dimension sion, Eik(>X) is the cumulative probability of the ith el-
responses for each individual element is given by ement's eliciting a value greater than x along the kth

ei,min (x) =Min{xij,j =l, ... ,f}
feature dimension, and ~k is the Kronecker delta, which
is 1 for j = k and 0 otherwise. Equation 5 can be used to
calculate, for each element (target and different distrac-

J f (I-Ojd tors), the probability functions for the minimum re-
=Leij(x).Il [Eik(>x)] , (5) sponse among all the individual feature responses. These

j=\ k=! minimum responses are used as the decision variable, and
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Figure 6. Max-linear and max-min decision rules for a conjunction of con­
trast and orientation search task for a two-alternative forced choice. The tar­
get is a vertical high-contrast ellipse among vertical low-contrast ellipses and a
horizontal high-contrast ellipse. The observers' task is to correctly identify the
alternative with the target. The observer is assumed to monitor two indepen­
dent noisy responses per element, corresponding to the two feature dimensions.
For each element, the two responses are combined through a linear combina­
tion rule or a minimum rule, resulting in a single decision variable. The ob­
server then chooses the alternative eliciting the highest response along the de­
cision variable.

the observer is assumed to choose the response alternative
containing the maximum response among all the elements'
minimum feature responses.

Multiple Distractor Types Along the
New Decision Variable (Distractor Variability)

Ifthere are different types ofdistractors in the display,
the target/distractor discriminability along the new deci­
sion variable, after combining information across feature
dimensions, might be different for different distractors.
For the case in which there are different distractors with
different associated target/distractor discriminabilities
along the new decision variable, we assume that different
distractors elicit noisy values with different means.

For the case ofmultiple distractors, the decision rule re­
mains the same as the case with a single distractor type,
where the observer monitors all internal responses in the
target-present and target-absent displays and selects on
each trial the display containing the maximum response.
The Pc in identifying the target-present display for the
case of multiple distractor types can be calculated by
computing the probability that the maximum response in
the target-present display will exceed the maximum re­
sponse in the target-absent display. A general purpose
mathematical expression can be derived to predict Pc for
a given target, a set of distractors (N = {n\, nZ, n3' ... ,
nd, with k different distractor types having nj number of

distractors), and number of response alternatives M (see
Appendix C for derivationj.'

SIMPLIFIED FORMULATION FOR
MULTIDIMENSIONAL SEARCH DISPLAYS

In the previous two sections, we developed the general
framework of SDT for multidimensional displays. How­
ever, with the additional assumption that the target/dis­
tractor discriminabilities along the different individual
feature dimensions are approximately equal, the predic­
tions of the SDT model for multidimensional displays
are greatly simplified.

Combining Information
Across Feature Dimensions

Max-linear decision rule. For the case in which the
internal target/distractor discriminability is approximately
the same across the different feature dimensions.t one
might assume that the observer might equally weight in­
formation across different dimensions (averaging or
straight summation). For this special case, a simple rule
(feature combination rule) can be used to calculate the
effective target/distractor discriminability (see Appen­
dix B for derivation).

The feature combination rule states that, iff is the
number of relevant feature dimensions across which the
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(6)

internal responses are combined, r is the number of fea­
ture dimensions along which the distractor and the target
differ, and d~ the target!distractor discriminability along
each of the the r feature dimensions, the effective target!
distractor discriminability is given by

a: _rd~
r,f - ! ...

,jl
The probability function for the target, after combination
across feature dimensions, is then given by tf(x) = g(x ­
d'r,f), and that for the distractor is given by dr,f(x) = g(x).

Max-min decision rule. For the special case in which
the target/distractor similarity is the same along the in­
dividual feature dimensions and the individual internal
responses are Gaussian distributed, the target probabil­
ity function for the max-min observer is given by

tminf(X) = Ig(x - d~)G(>x - d~)f-l, (7)

where the notation is as previously defined.
Similarly, for the distractors, we obtain

dminr,f(x) = (f - r)g(x - d~)G(>x - d~)f-r-lG(>x)'

+ rg(x)G(>xy-lG(>x - d~)f-r. (8)

APPLICATION TO COMMON DESIGNS

Conjunction Displays
In the typical conjunction search task (Treisman,

1991; Treisman & Gelade, 1980), half the distractors are
different from the target along a dimension or stimulus
attribute xl' and the other half of the distractors are dif­
ferent from the target along another dimension or stimu­
lus attribute X2' For example, Figure 7 (row 2, column 1)
shows a possible task in which the two relevant dimen­
sions are contrast and orientation. The target is a vertical
high-contrast ellipse. Half the distractors are horizon­
tally oriented and have high contrast, and the other half
of the distractors are vertically oriented and have low
contrast. In order to generate quantitative predictions for
the SDT model for conjunction displays, we apply the
two decision rules (max-linear and max-min).

Max-linear decision rule. For the conjunction display,
the information is combined across two feature dimen­
sions (I = 2), and each distractor differs from the target
along one feature dimension. Using the feature combina­
tion rule (Equation 6), we find that the effective target!dis­
tractor discriminability for both distractors is given by

, , d~ (9)
dconjunction = dr;I,f;2 = ---r;:'

'12
The effective target/distractor discriminability can then
be used with Equation 2 to obtain Pc for increasing set
size. Performance predictions in a conjunction display
are identical to those in a feature display (Equation 2),
except for an additional factor ofV2 dividing d~. This ob­
servation leads to the prediction that, if Pc in a conjunc­
tion display is transformed to a d' value, using Equa-

tion 2, the max-linear model predicts a d' that is lower
by a factor of V2 than the d' found for performance for
the corresponding feature display (where the target/dis­
tractor discriminability along the feature dimension is
kept the same as that for the conjunction display). This
prediction holds for all levels of target!distractor dis­
criminability (d~) and number of distractors (n).

Max-min decision rule. The purpose of the initial
minimum operation among feature dimensions in the
max-min decision rule is to select the feature dimension
in the distractors that differs from the target the most.
Since for the conjunction displays, the target has a higher
mean response along both dimensions and the distrac­
tors have a higher mean along one dimension, the mini­
mum operation will tend to select in the distractors the
dimension that has the lowest mean response (and, there­
fore, the dimension that differs in mean response from
the target).

The maximum operation will then tend to select the
target over the distractors. In order to obtain an expres­
sion for the max-min decision rule for conjunction dis­
plays, we replace the1= 2 and r = I in Equations 7 and
8 to obtain the probability functions for the minimum
among 1 feature responses:

tminl~ i x ) = 2g(x - d~) . G(>x - d~) (10)

and

dminr~1,f~2(X)=g(x - d~)

. G(>x) + g(x) . G(>x - d~). (II)

Replacing these expressions into Equation I, one can ob­
tain an expression for Pc as a function of number of dis­
tractors (n), number ofresponse alternatives (M), and in­
ternal target!distractor discriminability (d~).

Theoretical results. Figure 8 shows that, for both
models for a given level of target!distractor discrim­
inability (d~) along an individual feature dimension,
overall performance is reduced in a conjunction versus a
feature display. In the present comparison, the feature
and conjunction displays have the same target!distractor
difference along one feature dimension, and in the con­
junction display, the target!distractor internal discrim­
inability has been matched along both feature dimensions
(Treisman, 1991). The results show that degradation as
a function of number of distractors increases in the con­
junction condition for both models (Figure 8), although
the increase in performance degradation is larger for the
max-linear model.

Discussion. Our theoretical results show that the SDT
model predicts larger set-size effects for conjunction dis­
plays than for feature displays for any given level of tar­
get/distractor discriminability (d~). In the SDT model,
the lower search efficiency in conjunction displays is a
consequence of the combination of noisy activity across
the two independent feature dimensions, given the spe­
cific task configuration. Since, for each type of distrac­
tor, there is only one feature dimension that provides in­
formation by which to discriminate it from the target, the
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Figure 7. Summary of definitions, properties, and predictions of the search displays investigated in this paper. From top to bottom:
feature, conjunction, disjunction, and triple conjunction displays. The left panels show examples of the corresponding search displays.
The middle panels show two-dimensional (2-D) representations of the noisy internal responses for target and distractors for the dif­
ferent search displays. The concentric circles represent 2-D Gaussian distributions. The right panels are the performance predictions
for the max-linear observers for the different displays, given that the experimentally obtained proportions correct are transformed
to d' using Equation 2. Predictions for the max-min observers are more complex and are not summarized in the diagram.
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Figure 8. Performance (proportion correct) in identifying the alternative containing
the target for the max-linear (ML) observer and the max-min (MM) observer in a two­
alternative forced choice task as a function of number of distractors for feature, conjunc­
tion, triple conjunction, and disjunction displays for d~ = 3.0. Lines correspond to theo­
retical results based on numerical evaluation of equations. Symbols correspond to
theoretical results based on Monte Carlo simulations.

effect of combining information across an informative
noisy encoder and another, noninformative noisy en­
coder is to reduce the discriminability between target
and distractors along the new decision variable. The re­
duction in the effective target/distractor discriminability
along the new decision variable is what causes the con­
junction displays to have larger set-size effects.

Triple Conjunctions
Wolfe, Cave, and Franzel (1989) used a display that

included three types of distractors and each three dis­
tractors shared a different feature with the target (see,
e.g., row 4, column I in Figure 7, where the target is a large
vertical high-contrast ellipse and the distractors are a
small vertical low-contrast ellipse, a small diagonal high­
contrast ellipse, and a large diagonal low-contrast el­
lipse). He called this display a triple conjunction display.
Results showed that set-size effects in search time stud­
ies were larger for regular conjunctions than for triple
conjunctions. This finding was not predicted by standard
feature integration theory and led to a modification ofthat
model (guided search model; Wolfe, 1994; Wolfe et aI.,
1989) in order to account for the findings.

We will develop the predictions of the SDT model and
compare them with simple conjunctions and feature dis­
plays for the case in which the internal target/distractor
discriminability (d~) is matched across the three feature
dimensions and is kept constant across displays.

Max-linear decision rule. For triple conjunctions, in­
formation is combined across three feature dimensions
(f= 3), and each distractor differs from the target along
two feature dimensions (r = 2). Using Equation 6, we
then obtain

2d'a: a: 0 (12)triple conjunction = r=2,f=3 = ~.

The prediction of the SDT model with a max-linear de­
cision rule is that, if performance is obtained in a triple
conjunction display and converted to d', using Equation 2,
the resulting d' will be larger by a factor of 2/\/3 than
that obtained for the corresponding feature condition
(along any of the three feature dimensions in the task).
Figure 7 summarizes the model predictions for the max­
linear model in a triple conjunction display.

Max-min decision rule. Since the target has a high
mean along three feature dimensions and the distractors
have a high mean along one feature dimension, the mini­
mum operation will tend to select in the distractors one of
the two feature dimensions with the lowest mean. The
maximum operation will tend to select the target over the
distractors. In order to obtain an expression for the
max-min decision rule for conjunction displays, we re­
place the/= 3 and r = 2 in Equations 7 and 8 to obtain the
probability functions for the minimum among/feature
responses:

tminf~3(X) = 3· g(x - d~)' G2(>x - d~) (13)

and

dmin r = 2,f~ ix) = g(x - d~) . G2(>x) + 2

. g(x) . G(x) . G(>x - d~). (14)

Replacing the probability functions for the target and the
distractor in Equation 1, one can obtain an expression for
Pc for triple conjunctions.

Theoretical results. Comparison ofthe results in Fig­
ure 8 shows that performance for the max-min model is
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slightly better than that for the max-linear model. Figure 8
shows that, for both models at a given level of target/
distractor discriminability (d~) along an individual fea­
ture dimension, overall performance is higher for the triple
conjunction than for the conjunction and feature displays.
In the present comparison, the target/distractor physical
differences for the conjunction and triple conjunction dis­
plays are matched.

Discussion. In the SDT formulation, the improvement
in performance from the conjunction display to the triple
conjunction display is due to the fact that the target differs
from each distractor along two feature dimensions. The
effect of combining information across two informative
and a noninformative noisy feature responses is a nois­
ier decision variable (by a factor ofY3), but one that dis­
criminates target responses from distractor responses
better (by a factor of2). In this way, SDT predicts higher
set-size effects for conjunctions versus triple conjunctions
without resorting to a two-stage model consisting ofa par­
allel stage guiding a serial processor (Wolfe et aI., 1989).

Disjunction (Two-Dimensional Feature)
Treisman (1991) measured search response times for

a display in which the target differed from the distractors
along two feature dimensions (disjunctions). In order to
match distractor variability with respect to conjunction
displays, two distractors were used in the disjunction dis­
play. The results showed that, even when target/distractor
physical difference and distractor variability are matched
across displays, disjunctions result in smaller set-size ef­
fects than do conjunction displays. In this section, we
apply SDT to a disjunction display similar to that used by
Treisman. Unlike Treisman's disjunction display, which
consisted of two type ofdistractors, we generated model
predictions for a disjunction display with one type ofdis­
tractor. However, our results could be easily generalized
to any number of distractor types. Figure 7 (row 3, col­
umn 1) shows the disjunction display in which the target
differs from the distractor along two feature dimensions.

Max-linear decision rule. Noting that, for the case of
our disjunction displays, information is combined across
two feature dimensions (f= 2) and that the target differs
from the distractor along the two feature dimensions
(r = 2), we obtain from Equation 6

, , 2d~ (15)
ddisjunction = dr=2,[=2 = --;::=-.

~2

The equation reduces to an expression that is identical to
the equation describing the feature search, exctJ't for the
fact that a d~ is multiplied by a factor of 2/yl2 (target/
distractor discriminability along the individual feature
dimensions). The prediction of the SDT model with
the max-linear decision rule is that, if performance in
a disjunction display is converted to d', using Equa­
tion 2, the resulting d' will be larger by a factor of2/\/2
than that obtained for the corresponding feature condi­
tion (along any ofthe two feature dimensions in the task).

Max-min decision rule. Since the target has a high
mean response along both dimensions and the distractors
have a low mean response along both dimensions, the
minimum operation will tend to select any of the two tar­
get and distractor feature dimensions. The maximum op­
eration will then tend to select the target response over
the distractors.> In order to obtain an expression for the
max-min decision rule for disjunction displays, we use
Equations 7 and 8 to obtain

tminf~ 2(X) = 2 . g(X - d~) . G(>X - d~)

and

dmin r> 2,[~ 2(X) = 2 . g(X) . G(>x). (16)

Replacing the probability functions for target and dis­
tractor into Equation 1, one can obtain an expression for
P; as a function of number of distractors (n) for disjunc­
tion displays.

Theoretical results. Figure 8 shows that performance
in disjunction displays for the max-linear model is some­
what superior than that for the max-min model (the op­
posite of what was found for conjunction displays) for a
fixed level of target distractor discriminability (d~) and
number of distractors (n). Figure 8 shows that, for both
models for a given level oftarget/distractor discriminabil­
ity (d~) along an individual feature dimension, overall
performance is higher for the disjunction displays than
for the triple conjunction, feature, and conjunction dis­
plays. For the present comparison, the target/distractor
physical differences are kept constant across displays.

Discussion. Although our results agree qualitatively
with the finding in search time studies ofa higher search
efficiency for disjunction than for conjunction displays
(Treisman, 1991), our particular disjunction display is
not identical to the one used for Treisman's search time
study, where the target was a vertical blue bar, half the
distractors were right oriented 27° and violet, and halfthe
distractors were left oriented 27° and turquoise. A main
difference is that, in Treisman's display, the target's value
lies in between the mean values of the distractors (along
the hue and orientation dimensions). Although the max­
linear decision rule does not apply directly to this dis­
play, it can be shown that, with a change of variables, the
two displays become identical and that the max-linear
model makes identical predictions for the disjunction
display addressed in this paper and the disjunction dis­
play investigated by Treisman.s In summary, the SDT
model predicts performance improvement from con­
junction to disjunction displays.

Matching Performance Across Display Types
The SDT predictions in the previous sections corre­

spond to displays in which the physical difference be­
tween target and distractors along the different dimensions
are matched across displays (feature vs. conjunction,
triple conjunction, and disjunction). However, what if
the target/distractor discriminability along the individ-
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Figure 9. Performance (proportion correct) in identifying the alternative contain­
ing the target for the max-min (MM) and the max-linear (ML) observer in a two­
alternative forced choice task as a function of number of distractors for the case where
performance was matched across displays for the case of n = 3. The graph shows fea­
ture, conjunction, triple conjunction, and disjunction displays. Lines correspond to
theoretical results based on numerical evaluation of equations. Symbols correspond
to theoretical results based on Monte Carlo simulations.

ual feature dimensions in the multidimensional display is
increased so that Fe in the n = 2 condition in the feature
and the multidimensional display (e.g., conjunction, dis­
junction, triple conjunction) are equal?"

Figure 9 shows that, if the targetldistractor internal
discriminability (d~) along the individual feature dimen­
sions are adjusted so that performance across both display
types are matched for a given set size (n), the set-size ef­
fects for the max-linear observer become the same for all
three display conditions and approximately the same as
those for the max-min observer.

The Effect of TargetJDistractor
Discriminability in Multidimensional Displays

Manipulating the target/distractor discriminability
along each individual feature dimension will also affect
performance in multidimensional displays. For the max­
linear model and the specific displays investigated in this
paper (where d:,j, the targetldistractor discriminability,
along all r feature dimensions is equal), the effect of
changing the targetldistractor discriminability (d:,j) on
Fe is the same as that for the feature task and is entirely
described by Figure 4. For the max-min observer, a sim­
ilar effect is found.

EXPERIMENT
Testing Set-Size Effects in Disjunctive

and Conjunctive Displays

To illustrate the applicability of SDT to visual search
accuracy in multidimensional displays, we use human
data from experiments performed at the University of
Washington by Aiken and Palmer (1992). They used
conjunction and disjunction displays that were somewhat

different than the ones previously presented in this paper.
The conjunction display had an additional third distractor
that had a smaller mean response than did the target
along both feature dimensions (Figure 10). The disjunc­
tion display had two additional distractors that also dif­
fered along both dimensions from the target (Figure 10).
Thus, the distractors were identical in the conjunction
and disjunction conditions. There were three conditions:
(1) conjunction display, (2) disjunction display, and
(3) disjunction display with reduced target/distractor dis­
criminability.

For each condition, search accuracy was measured for
two and eight distractors (n = 2 and n = 8). We applied
the developed SDT-basedmodel in an attempt to quantita­
tivelypredict human visual search accuracy for the displays
used. The predictions are compared with the predictions
ofa limited capacity serial mechanism previously used by
Bergen and Julesz (1983a, 1983b) to predict search ac­
curacy for a T among Ls. In the temporally serial model,
the observer can perfectly process h items per presenta­
tion time. When the display contains fewer than h items,
the observer performs perfectly (100%). On the other hand,
when there are more than h items in the display, the ob­
server processes h random elements of the total n ele­
ments in the display (without processing the same ele­
ment twice). The Data Analysis section describes the
details about the mathematical fit of the serial model to
the data.

Method
Subjects. Three male young adults (age, 23-28 years) with nor­

mal or corrected acuity participated in the study.
Apparatus. Images were displayed on a 13-in. Apple color mon­

itor driven by a Macintosh Ilcx computer. The monitor had a back­
ground luminance of200 cd/rn- and a resolution of640 by 480 pix-
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Contrast feature dimensions. A second disjunction condition was also stud­
ied, in which the target/distractor discriminability was reduced by
making the target an ellipse with 64.5% contrast and an orientation
of -1.750

•

One additional complication of the design of the displays used by
Aiken and Palmer (1992) was that the appearance of a distractor
was probabilistic. Instead of assigning, from trial to trial, a fixed
number of ith type distractors to the displays, distractors were sam­
pled randomly from the three distractor types with a probability of 13.
This design added the additional complication that the display
could have different distractor configurations from trial to trial. For
example, for the case of n = 3, the alternative containing the target
might have two distractors of Type I, two distractors of Type 2, two
distractors of Type 3, one distractor of Type I and one distractor of
Type 2, and so on. Appendix D develops in detail the application of
the SDT model to this particular design, in order to generate the
quantitative predictions to be compared with the human data.

Procedure. The display was presented to the subjects in the fol­
lowing sequence. A fixation point was first presented for 100 rnsec,
followed by an interstimulus interval of 1,000 msec. The first stim­
ulus display alternative was shown for 100 msec, followed by an­
other interstimulus interval of 1,000 msec. Finally, the second stim­
ulus display alternative was presented for 100 msec. The observers
had unlimited time in which to make their decisions.

Data analysis. ~ for identifications of the alternative display
containing the target was computed for each subject and condition.
Performance for each of the possible display configurations can be
calculated (Appendix D). The probability of occurrence of each
possible display configuration can also be calculated, given that
each distractor has a 13 probability of being sampled. Finally, an
expectation value for ~ can be obtained:

'

Conjunction
target

Disjunction Target

62%

64.5%

Conjunction Target

-3' - 1.75> r---~=--­

Experiment 2~,~'r'
Experiment 1--'"

Disjunction
targets

Orientation

Equation 18 was fit to the human data for the conjunction dis­
plays, with h as the only free parameter.

k

E(~) =PI . ~I + P2 . ~2 + P3 . ~3 + ... + Pk .~k =L Pi' ~i' (17)
i=1

Results
Table 2 summarizes the measured P; for performances

for the different observers in the three different experi­
mental conditions. Figures II A through II C show si­
multaneous fits of the max-linear and the max-min de­
cision rules for each observer to all three conditions. In
order to make these fits, an additional assumption was
made about linearity between the physical difference in

where Pi is the probability of the ith configuration and ~i is the
model prediction for the ith distractor configuration. Equations D6
through DlOin Appendix D were used to iteratively change the
value of d~ to provide the best chi-square fit to the data. In a first
analysis, the fits were independently done for each display type.
The expected variance (denominator) in the chi-square goodness of
fit was based on the statistical variance in ~ based on the binomial
variance. In a second analysis, for each observer, simultaneous fits
were performed for all conditions with one free parameter d~.

Performance for the limited capacity serial mechanism for visual
search accuracy was previously used by Bergen and Julesz (1983b).
Performance as a function of the number of elements in the display
(n) and the number of elements that can be processed serially in the
presentation time (h) is given by

h
~(n,h) = 0.5 + -, for n 2: h,

2n

(18)~(n,h) = 1.0, for n < h.

and

Figure 10. Modified conjunction and disjunction displays used
in the Aiken and Palmer (1992) studies. The top diagram shows
the contrast and orientation values for the ellipsoidal targets and
distractors used in the conjunction and disjunction experiments
by Aiken and Palmer. The bottom diagrams show sample dis­
plays used in the experiments, in which the elements appear
along the circumference of a circle centered on a fixation point.

els. Viewing distance was from 61 ern. resulting in a subtended
angle of 2 min of arc per pixel.

Stimuli. The stimuli for the experiment were ellipses with major
axes of 30 arc min and minor axes of 10 arc min. The ellipses lay
on the perimeter of an imaginary circle with a radius of 6° of arc
centered on the fixation point (Figure 10). Manipulations of the
stimuli were performed along two physical attributes: ellipse con­
trast and orientation. A pilot study was used to determine how to
match changes along both dimensions in order to achieve the same
search accuracy. These pilot studies revealed that, for a standard el­
lipse of vertical orientation and 61% contrast, a 5% change in con­
trast produced approximately the same accuracy as a 3° change in
orientation.

Two displays were investigated. In the conjunction display, the
target ellipse had an orientation of +3° and a contrast of72%. There
were three types of distractors: (I) distractors with 0° orientation
and 67% contrast, (2) distractors with +3° orientation and 67% con­
trast, and (3) distractors with 00 orientation and 72% contrast. In
this way, two of the distractors shared the same value along one of
the feature dimensions with the target. The third distractor differed
from the target along both feature dimensions.

In the disjunction display, the distractors remained the same, but
the target was an ellipse with 62% contrast and an orientation of
- 30. In this way, the target differed from the distractors along both
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Note-Performance is for two set-size levels: n = 2 and n = 8.

Table 2
Proportion Correct for Three Observers for Three

Display Conditions: Conjunction, Disjunction With High
Target/Distractor Discriminability, and Disjunction

With Low Target/Distractor Discriminability

contrast and orientation and the internal target/distractor
discriminability (d~) along the feature dimensions.

In order to compare the performance predictions of
the max-linear model for the Aiken and Palmer (1992)
modified conjunction and disjunction displays with
those for the standard conjunction and disjunction dis­
plays (rows 2 and 4 of Figure 7), P; predictions of the
model were converted to d', using Equation 2 (for feature
displays). As Figure 7 summarizes, the result of such a
transformation for the conjunction display is a d' that is
smaller by a factor ofV2 than the d' for the feature dis­
play (for all levels of target/distractor discriminability
and number of distractors). For the disjunction display,
the transformation results in a d' that is larger by a factor
ofV2 than the d' for the feature display. For the modified
Aiken and Palmer conjunction display, use ofEquation 2
to transform p" to d' results in a d' that is smaller by a
factor of 1.25/\/2 than the d' for the corresponding fea­
ture condition. For the Aiken and Palmer disjunction
condition, the result of the transformation is a d' that is
larger by a factor of 1.25 . 2/V2 than the d' for the fea­
ture condition. Table 3 summarizes the performance pre­
dictions, using Equation 4 for the max-linear observer
for a feature condition, a standard conjunction condition,
a standard disjunction condition, and the Aiken and
Palmer modified conjunction and disjunction conditions.
The max-linear prediction of the model for the ratio be­
tween the d's for the conjunction and disjunction dis­
plays (using Equation 2) is 2.0 for both the standard dis­
plays (Figure 7) and the Aiken and Palmer modified
conjunction and disjunction displays.

The ratios between the d's (using Equation 2) for the
two display conditions for the 3 human observers were
1.78,2.25, and 2.78 for the n =2 condition and 1.77, 1.7,
and 2.50 for the n = 8 condition. Averaging across condi­
tions and observers, the ratio ofd's between the conjunc­
tion and the disjunction displays is 2.13.

Table 4 (upper part), shows the chi-square values for
the simultaneous fits for 3 observers. The model could
not be rejected (p > .01) for Observers 1 and 2 (for both
models) but was rejected for Observer 3 (for both mod­
els). For Observer 1, the max-min model provided a bet­
ter fit, but for Observer 2, the max-linear model provided
a better overall fit. Table 4 (lower part) shows the chi-

Conjunction Disjunction I Disjunction 2

n=2 n=8 n=2 n=8 n=2 n=8

square values for separate fits for each display condition.
These fits do not make any assumptions about the relation
between the physical difference in contrast and orienta­
tion and the internal target/distractor discriminability
(d~). The model could not be rejected (p > .01), except
for the conjunction condition for Observer 2.

Table 4 also shows the chi-square values for the best
fit of the temporally serial model to the conjunction con­
dition for each observer. Figures llA-ll C also show the
best fit for the limited capacity serial model for the con­
junction condition for the 3 observers. For all the ob­
servers, the best fit was for h = 1 (Equation 18), which
corresponds to a processing of 10 items per sec. The lim­
ited capacity serial model could be rejected for all 3 ob­
servers (p < .01).

Discussion
For Observer 1, the set-size effects were larger for the

conjunction type displays than for the disjunction type
displays. However, for Observer 2, the set-size effect was
larger for the disjunction than for the conjunctions. This is
due to the fact that Observer 2 was operating at lower per­
formance levels (low target!distractor discriminability),
where the performance is closer to the 50% floor level.
At these low levels of performance, set-size effects de­
crease with decreasing target!distractor discriminability.

The separate fits to each condition show that the SDT
model with two possible decision strategies (max-linear
or max-min) can be used to predict performance degra­
dation in visual search accuracy as a function of the num­
ber of distractors for conjunctions and disjunctions of
contrast and orientation. On the other hand, the specific
temporally serial model previously successfully used by
Bergen and Julesz (1983a, 1983b) failed to predict human
visual search accuracy for the conjunction displays (see
Table 4B).

Our results are in disagreement with the results of
Bergen and Julesz (1983a, 1983b) where the serial model
predicted visual search accuracy for a T among Ls. An­
other disadvantage is that the serial model makes the
same set-size prediction at all levels of target/distractor
discriminability, unless one assumes that the number of
items processed per second somehow depends on target!
distractor discriminability.

Figures llA-llC show that the SOT model can be
used to successfully make predictions across display types.
The ability to simultaneously predict performance for
the conjunction and the disjunction displays shows that
the difference in performance across displays can be ac­
counted for by the model without assuming any qualita­
tive or quantitative changes in the processing. Compari­
son between max-linear d' predictions for the modified
Aiken and Palmer (1992) conjunction and disjunction
displays and those for the standard conjunction and dis­
junction displays (see Table 3) show that d' in the former
is larger by a factor of 1.25 for both displays. This find-
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Figure 11. Proportion correct as a function of number of distractors in the display for three
display conditions: conjunction, disjunction high target/distractor discriminability, and dis­
junction low target/distractor discriminability. There were two number-of-distractor condi­
tions: n = 2 and n = 8. Solid lines correspond to the max-linear model used to fit the display
conditions simultaneously. Dashed lines correspond to the max-min model used to fit all the
display conditions simultaneously. Different figures (A, 8, C) correspond to the 3 different
observers.

ing is consistent with the fact that the Aiken and Palmer
displays included additional distractors (see Figure 10)
that had higher target/distractor discriminability than did
the original distractors in the standard conjunction and
disjunction displays (see Figure 8). As a result, the group
ofdistractors in the Aiken and Palmer displays degraded

performance with respect to a feature display but less than
did those in the standard conjunction and disjunction
displays.

The ability to predict performance across the two dis­
junction conditions shows that the model can predict
changes in set size with different levels oftarget/distractor
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Table 3
Predictions of the Max-Linear Model for the Standard Conjunction and

Disjunction Displays and for the Modified Conjunction and Disjunction Displays
Used by Aiken and Palmer (1992), Which Included an Additional Third Distractor Type

Feature Conjunction Modified Conjunction Disjunction Modified Disjunction

d~ d~/V2 1.25 d~/V2 2d~/V2 1.25 2d~/V2

Chi-Square Fit

Model Subject I Subject 2 Subject 3

Note-Values with an asterisk (*) indicate that the model could be re­
jected at a .0 I significance level.

2.46
0.267
0.56

6.1*
10*

2.23
2.61

6.48
1.16
0.97

1.10
0.34

Separate Fit

0.358
0.832
0.516

Simultaneous Fit
Max-Linear
Max-Min

Max-Linear
Conjunction
Disjunction I
Disjunction 2

Serial
Conjunction 58.98' 41.93' 14.94'

ever, the model needs to be generalized to the case in which
the target/distractor discriminability is not approximately
equal along the individual feature dimensions. We have
also assumed that each feature dimension elicits a statis­
tically independent response. Model predictions should
be extended to the case in which there are possible corre­
lations (nonindependent) between the feature responses.

Table 4
Reduced Chi-Square Goodness of Fit [X~= (x2/df)1
for Separate and Simultaneous Fits to the Different

Display Conditions for the Two Signal Detection
Theory Based Models and the Limited Capacity

Serial Model of Bergen and Julesz (1983a, 1983b)

Feature Versus Conjunction
There have been numerous studies finding larger set­

size effects in search times for conjunction versus fea­
ture displays (Treisman & Gelade, 1980; Wolfe et aI.,
1989). Duncan and Humphreys (1989) performed visual
search time studies and showed that visual search effi­
ciency increased with increasing target/distractor dis­
criminability and decreased with increasing distractor
variability. In their view, the feature/conjunction di­
chotomy was due to the lower target/distractor discrim­
inability and the higher distractor variability in the con­
junction displays. To determine whether target/distractor
discriminability could explain all of the difference in
performance, Treisman (1991) performed an experiment
in which the discriminability between the target and the
distractor was kept constant from the conjunction to the
feature display. Starting with a conjunction display, this
was achieved by eliminating the differences between tar­
get and distractors along one of the two feature dimen­
sions and keeping the difference along the other dimen-

discriminability (d~) without assuming quantitative or
qualitative changes in processing at the different levels
of target/distractor discriminability. In the present treat­
ment, we made the assumption that the internal discrim­
inability between target and distractor was linear with
the physical difference (contrast and orientation) between
the target and distractor. The model fit might be improved
if we were to explicitly measure the relationship between
percentage ofcontrast difference or percentage oforien­
tation difference and d~. Interestingly, the present results
cannot be used to decide between the two decision strate­
gies, max-linear or max-min. Further experiments need
to be performed to decide which decision strategy best
models human visual search accuracy.

GENERAL DISCUSSION

Multidimensional Extension
of the Signal Detection Theory Model

We have presented an extension of an SOT based
model that has been previously used to predict visual
search accuracy in feature displays (Palmer, 1994a). Un­
like most current theories of visual search, the SOT
model provides a quantitative framework that can be
used to rigorously test whether set-size effects are ac­
counted for by the model. The model can be applied to
predict the effects on visual search accuracy of target/
distractor similarity and distractor variability, number of
distractors, and number of response alternatives, and it
can be applied to a variety ofmultidimensional displays,
including conjunction, disjunction, and triple conjunction
displays (among others). Performance degradation is
predicted with relatively few and well-established as­
sumptions: internal noise, maximum response decision
rule, independent processing of features, and for multi­
dimensional displays, linear combination ofresponses or
minimum response across feature dimensions.

Application of the model to data collected at the Uni­
versity of Washington showed how the model can be suc­
cessfully used to predict performance in conjunctions
and disjunctions ofcontrast and orientation. Wehave gen­
erated predictions for two different decision strategies
for combining information across feature dimensions:
the max-linear and max-min models. Throughout our
theoretical treatment, we have assumed that the target/
distractor discriminabilities were matched across feature
dimensions. This assumption guaranteed that the equal
weighting in the linear combination was optimal. How-
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sion constant. Treisman still found larger set-size effects
of conjunction displays versus feature displays where the
target/discriminability (d~) along the feature dimensions
in both displays were matched. Feature integration the­
ory attributes the larger set-set size effect in conjunctions
to the serial allocation of visual attention needed to bind
information across feature dimensions.

Geisler and Chou (1995) have done experiments show­
ing that the feature versus conjunction dichotomy could
be explained, in part, by low-level factors. They con­
ducted carefully controlled 2AFC search accuracy tasks
and used the same target and background in a search
time study. They showed that the rank order ofthe search
times in feature and conjunction displays could be pre­
dicted from the size ofan accuracy window. An accuracy
window is defined as the accuracy (Pc) in a 2AFC as a
function of target position eccentricity. They concluded
that the feature/conjunction dichotomy can, in part, be
accounted for by the low-level factors, such as stimulus
information. Geisler and Chou did not manipulate set
size, nor did they propose a mathematical model that
generates visual search accuracy results as a function of
number ofdistractors (set size). Their focus was on mul­
tiple fixation search tasks in which observers were al­
lowed to move their eyes during the search. Their work
also showed the effect of eccentricity on visual search
accuracy.

The work presented in this paper specifically attempted
to isolate set-size effects of an attentional nature from
set-size effects from element eccentricity, element den­
sity, and eye movements. Therefore, we focused on an
experimental paradigm that tried to neutralize other
sources of set size.

Unlike previous treatments (e.g., Geisler & Chou,
1995), our model explicitly attributes the feature/con­
junction dichotomy to a specific neural computation.
Our model predicts larger set-size effects for conjunction
than for feature displays, even when the target!distractor
discriminability along the individual feature dimensions
are matched in the feature and conjunction displays (Treis­
man, 1991). In our model, the larger set-size effects for
conjunctions are an emerging property of the system,
given the existence ofnoise within the visual system, the
independent processing of the features in the display, and
an assumed decision rule for combining information
across feature dimensions. Our results for disjunction
(2-D feature) versus conjunction displays were well pre­
dicted by the SDT model and were not predicted by a se­
rial attentional mechanism. Therefore, our findings with
visual search accuracy are not consistent with a tempo­
rally serial mechanism that binds information across fea­
ture dimensions. These results agree with recent results
(Eckstein, 1998) showing that the one-dimensional fea­
ture versus conjunction dichotomy is also predicted by
the SDT-based model and not by a temporally serial
mechanism.

The main assumption in the SDT model is that the two
relevant search dimensions or features have independent
noise. On the other hand, if the two features were pro­
cessed by the same encoder and the observer had direct
access to such an encoder, one might not expect the ad­
ditional performance degradation in the conjunction dis­
play. This might be the case for conjunctions of stereo and
motion. Nakayama and Silverman (1986) obtained exper­
imental results for conjunction visual search efficiency
no lower than that for the typical feature display and re­
lated the results to physiological evidence for cells in the
visual cortex area MT that respond to motion and stereo
disparity (Ballard, Hinton, & Sejnowski '983). The SDT
model predicts that performance degradation from con­
junctions can still be overcome by increasing the target!
distractor discriminability to higher levels. This obser­
vation seems to agree with results that found very shallow
slopes (high search efficiency) for conjunction displays
with high target/distractor discnminability (Duncan &
Humphreys, 1989; McLeod, Driver, & Crisp, 1988).

Conjunction Versus Triple Conjunctions
Wolfe et al. (1989) and also Quinlan and Humphreys

(1987) found larger set-size effects In search time Studies
for conjunctions than for triple conjunctions where the
target/distractor discriminabilities were kept constant
across displays. Wolfe et al. interpreted the findings as
supporting the idea of guided search where the parallel
processes guide the serial-attention-mediated process
(Wolfe, 1994; Wolfe et aI., 1989), In this view, set-size
effects are smaller in triple conjunctions, because in this
case, the target differs from the distractors along two di­
mensions (vs. one dimension in standard conjunctions),
providing more information by which the parallel pro­
cess may guide attention. The proposed SDT model also
predicts overall performance improvement and smaller
set-size effects for visual search accuracy in the triple con­
junction displays without resorting to a parallel mecha­
nism's guiding of a serial mechanism.

It is also interesting to note that Wolfe et al. (1989)
also performed experiments for a cecond kind of .riple
conjunctions in which the target differed from each of the
distractors along a single feature dimension instead oftwo
(e.g., a large, vertical, high-contrast ellipse target among
large vertical, low-contrast ellipses, large, diagonal, high­
contrast ellipses, and small vertical, high-contrast el­
lipses). His results showed that, for triple conjunctions in
which targets and distractors differ along a single feature
dimension, the set sizes are about the same size as those for
conjunctions. Although we did not develop our model in
detail for this display, it is interesting to observe that, for
the max-linear model, if performance for such a display
is transformed to d~, using Equation 2, we obtain a d'
that is smaller by a factor V3 than that for feature dis­
plays and about the same as the one obtained for conjunc­
tion displays (a factor of~ smaller than the conjunc-
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Table 5
Comparison Between Predictions of the Signal Detection Theory (SDT)

Model for Set-Size Effects in Visual Search Accuracy Experiments
and Experimental Results for Search Accuracy and Search Time Studies

Predictions of the Experiments
SDT Model for Set-Size Effects Search Accuracy Search Times

Palmer (I 996)

Geisler & Chou (1995);
Eckstein (1998)

Treisman & Gelade (I 980);
Duncan & Humpheys (I 989);
Geisler & Chou (I995)

Conjunction> triple conjunction Bartroff & Eckstein (1999) Wolfe, Cave, & Franzel (1989)
Conjunction> disjunction (2-D feature) Results in this paper Treisman (I 991)

< Target/distractor discriminability Palmer (1996)
> Set size effect
Conjunction> feature

Note-The SDT predictions in this table are for high performance levels. At low performance levels, these
model predictions do not hold, because performance cannot degrade below chance level (50%) for a two­
alternative forced-choice task that leads to violations of the given predictions.

tion d'). These results again seem to qualitatively agree
with the findings of Wolfe et al.

Search Accuracy Versus Search Times
The presented SDT-based model makes predictions

for visual search accuracy and makes no explicit predic­
tions for reaction time search studies. In different parts
of this paper, we compared the set-size effects predicted
by the model in search accuracy studies with previous
search time results in the literature. We found that, for
high performance levels in the search accuracy studies,
the rank order of set-size effects predicted by our model
agreed closely with the results in search time studies.
These comparisons included feature, conjunction, triple
conjunction, and disjunction displays. Table 5 summarizes
some of the set-size effects predicted by the presented
SDT model for visual search accuracy with experimental
results for visual search accuracy and visual search times.

The validity of the comparisons between search accu­
racy and search times is based on the assumption that
larger set sizes in visual search accuracy studies lead to
larger set sizes in visual search time studies. This assump­
tion is supported by the experiments in Palmer (1995),
where the target was a disk with a higher luminance than
the distractors.

His results show larger set-size effects for the condi­
tions in which the target/distractor difference in lumi­
nance is smaller. In a subsequent experiment with the
same stimuli, the results show that the conditions with a
smaller target/distractor luminance difference also lead
to larger set-size effects in search time studies (with ac­
curacy kept approximately constant; Palmer, 1996). This
finding suggests that, within certain performance ranges,
larger set-size effects in search accuracy studies lead to
larger set-size effects in search time studies. Geisler and
Chou (1995) presented experiments in which accuracy
in a 2AFC and search times for the same stimuli as a
function ofeccentricity were measured. Their results also
showed that lower performance in search accuracy stud­
ies led to larger response times in search time studies.

Even though these studies support the preservation of
rank order of set sizes across displays, there is still a need

for a model that can mathematically map accuracy mea­
sures to reaction times. Work extending the validity of
the SDT theory from accuracy studies to reaction time
studies has been recently reported (Palmer, 1994b, 1995,
1996; Palmer & McLean, 1996).

CONCLUSIONS

We have extended and applied a model based on SDT
to predict set-size effects on visual search accuracy for
displays in which the target differs from the distractors
along more than one dimension (multidimensional search
displays). The model accounts for many findings in vi­
sual search without resorting to a temporally serial mech­
anism that binds information across feature dimensions.
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NOTES

I. The statement does not hold for low discriminability (d~ = 1.0 and
0.5), where performance levels cannot decrease below the 50% chance
leve!.

2. However, for the minimum operation to be general, a common
scale is needed to compare values across feature dimensions. In order
to guarantee the generality and effectiveness of the max-min decision
rule described, one has to take three steps. (I) We adjust the sign of the
scale along the feature dimensions so that the target always elicits that
larger response. (2) From each element's individual feature response, we
subtract the mean response of the distractor type with the smallest mean
feature response. (3) We divide the feature responses by the internal
noise in that feature dimension. This step transforms the responses along
different feature dimensions to a common scale, signal-to-noise ratio.

3. The derived equation can also be applied to one-dimensional dis­
plays with distractor variability, such as those studied by others (Cahill
& Carter, 1976; Indow & Kanazawa, 1960).

4. This can be achieved by performing individual feature search ex­
periments (high-contrast vertical ellipse among low-contrast ellipses
and a vertically oriented high-contrast ellipse among nonvertically ori­
ented high-contrast ellipses) and adjusting the target/distractor physical
difference along the relevant feature dimension in order to achieve ap-
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proximately the same performance across all feature conditions (e.g.,
orientation feature search, contrast feature search).

5. Note that, for the disjunction display, a max-min rule results in the
same predictions as a max-max rule (an observer who, for each ele­
ment, takes the maximum response among the two feature dimension
responses and then chooses the display containing the maximum re­
sponse among the maximum feature responses).

6. The mean and variance for the two distractors and the target in
Treisman's (1991) 2-D feature display can be written to be: Target:
xl ,xl,lT~; Distractor I: XI + uo,xl + Uo,lT~; Distractor 2: xl - uo,xl ­
Uo,lT~. Given that the target does not have the larger response value, the
max-linear and the max-min decision rules are not directly applicable
to this task. However, one can apply a transformation to the responses
by subtracting from all responses by the expected mean responses for

the target, then taking the absolute value ofthe responses and finally the
negative of the responses. After this transformation the mean and vari­
ance of the responses for target and distractors become Target:
-lxI-xII =0, -lx2-x21 = O,lT~; Distractor I: -uo'-Uo,lT~; Distractor 2:
-uo'-Uo,lT~. With the transformation, the expected responses for the
two distractors become the same, and the Treisman (1991) 2-D feature
display is equivalent to the 2-D feature disjunction display presented in
this paper. The model predictions for both 2-D feature cases are identical.

7. For the max-linear model, matching performance between the fea­
ture condition and the multidimensional display would involve increas­
ing the target/distractor discriminability (d~) along each feature di­
mension by a factor of 0 for the conjunction display and V3/2for the
triple conjunction display and reducing it by a factor of 0/2 for the dis­
junction display.

(A3)

(A7)

APPENDIX A
Feature Displays

The probability of correct identification of the target-present display (Pc) is the probability that the
maximum response to the target-present display is larger than the maximum response to the target-ab­
sent display. Assuming that each element elicits a statistically independent internal response, Pccan be
expressed as the product ofthe probability that the maximum response to the target-present display will
take a value x and the probability that the maximum response to the M - I target-absent displays will
take a value less than x:

Pc = P[max(T, D tI , Df2, ... ,Dtn- 1) =x] P[max(Ddl, Dd2, ... , D dn) < x], for all x. (AI)

The probability that the maximum response to elements in the target-present display will take a value
x can be expressed as the sum of t(x) Dn-l(x) (the first term in Equation A2; the probability that the
target will take a value x and that the n - I distractors will take values less than x), (n - I) d(x) (the prob­
ability that any one ofthe n - I distractors [n - I permutations] will take a value x), and T(x) Dn-Z (x)
(second term in Equation A2; the probability that the target and the remaining n - 2 distractors will take
values less than x):

P[max(T, D t l, D tZ' ... , D tn- I ) = x] = t(x)Dn-I (x) + (n - I) . d(x)Dn-Z(x) T(x). (A2)

The probability that the maximum response in the target-absent display will take a value less than x can
be guaranteed if all the distractors take a value less than x:

n

P[max(Ddl,DdZ, ... ,Ddn)<X]= I1D(x)=D
n(x).

I

Replacing expressions A2 and A3 into Equation Al and integrating over all possible values ofx, we
obtain

p.,r:[ t(x)D n-l(x)+(n -1)d(x)D n-z(x)T(x)]D n(x)d x. (A4)

The equation can be generalized from a 2AFC to any M-AFC by noting that, in an M-AFC, there are
M - I target-absent displays containing n distractors that cannot exceed the maximum response to the
target-present display:

p"(M,n) = r: [t(x)D n-l(x)+(n -1)d(x)D n-z(X)T(X)][D n(X)r-
1
d x. (A5)

With the assumption of equal Gaussian internal noise for the target and distractors, the target and dis­
tractor density functions are described with equal Gaussian variance distributions, and Equation A5 can
be written as

p"(M,n,d~) = r: [g(x -d~)Gn-l(x)+(n -1)g(x)G n-z(x)G(x -d~)] [G n(x)] M-l d x, (A6)

where M is the number ofalternatives, n the number of distractors per alternative, d~ is the distance be­
tween the target and the distractor distribution in standard deviation units, g(x) is the probability ofthe
Gaussian distribution's taking a value x,

g(x) = R exp( _~Z ),

and G(x) is the cumulative probability of the Gaussian distribution taking a value less than

( Z)x rrr: -y
G(x) = L~ I)li'1r exp -2- dy. (A8)
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APPENDIX A (Continued)

When there are no distractors in the target-present display (n = I), Equation A4 reduces to the familiar
2AFC expression, with one display containing one nontarget and the other the target (Green & Swets,
1966):

M~I

~(M) = f== t (x)[D(x)] d x.

A mathematical expression by which to calculate ~ in the feature condition was first derived by Shaw
(1980) and is mathematically equivalent to Equation A I.

-'----------------------

APPENDIXB
Combining Information Across Feature Dimensions

.~---------

Max-Linear Decision Rule
In order to calculate the effective target/distractor discriminability along the new decision variable,

we must find the expected value of the mean response and standard deviation to the target and distrac­
tors after the linear combination of responses across feature dimensions. The mean response to an el­
ement along the new decision variable will be the linear combination of the mean responses of that el­
ement along the individual feature dimensions:

I

Zi = I wi' x,j. (BI)
j~l

The variance of an element's response along the new decision variable, O'L is given by (Taylor, 1982)

(B2)

where

la~J
is the partial derivatives of Z with respect to xii and a~i is the variance of the responses along the jth
dimension. For the case of a linear combination of responses across feature dimensions, the variance
of the new decision variable, o'~, reduces to

(B3)

(B4)

The internal discriminability between a single target and the ith distractor along the new decision vari­
able can then be described by the distance between the means of the target distribution (2 1 ) and dis­
tractor distribution (2d i ) divided by the standard deviation of the distributions:

d' = Z, -Zdi
1:: .

: 2
\0'=

For the case in which the standard deviation for internal noise is the same along the different feature
dimensions and for the different elements, and replacing B I and B3 into B4, the effective target/distractor
discriminability reduces to

where

f
IwAi

, j~1

di-=~---'- /
'I 2: w .

\

' j
'j~l

X'j-Xd
i l

d;j=----

(B5)

is the discriminability between the target and the ith distractor along thejth feature dimension.
For the special case in which the target/distractor discriminabilities along all r feature dimensions

are approximately equal and the observer uses equal weighting (wj = I for alljs) for all/feature di­
mensions, Equation B5 reduces to



(B6)

(B7)
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APPENDIX B (Continued)

, rd~
dr,f = [i

where d~ is the target/distractor discriminability along the individual feature dimensions, r is the num­
ber of features along which the target differs from the distractors, andfis the number of features in­
formation is combined across.

Max-Min Decision Rule
A second possible way in which the observer can combine information across feature dimensions for

each element is by choosing the minimum response across feature dimensions. Given that each element
consists of many feature dimensions, the distribution of the minimum is given by the probability that
the ith element will take a value x along thejth feature dimension [e;j(x)] times the probability that all
other responses along the remaining feature dimensions take a value larger than x,

1
II [Eik(> x) r-oJ,) :
k=l

" 1 1 (I-Oj' )
ej.min (x) =Mm{xjj,j =1,... ,f} =Le;j(x), II [Ejk(> x)] .

j=1 k=!

Specializing the equation for the target and distractors, we obtain

1 1
tmin(x)=Min {x; ,i =I, ... .r] =Ltj (x)· II [Tk(> x)r-

o
J,}

j=l k=1

and

(B8)

(B9)
1 1

dmin(x)=Min{x; ,i =I, ... ,f}=Ldj (x)· II [Dk(> x)r-
Oj

,) .
j=l k=l

Assuming that the target differs from the distractors along r of thef distractors (f??: r) and that the targetI
distractor discriminability along all those r feature dimensions is the same, Equations B7 and B8 be­
come

tmin(x) = f· t(x)[T(>X)]U-I)

and

dmin(x)= (f - r)t(x)T(>x) I-r-I D(>x)r + rd(x)D(>x) r-l T(>x)/-r.

With the assumption that the internal responses are Gaussian distributed-t(x) =g(x - d~),d(x) =g(x),T(x) = ft(y)dy,
x

and
+~

D(x)= fd(y)dy.
x

APPENDIXC
Multiple Distractor Types (Distractor Variability)

(B1O)

(BII)

For the case of multiple distractor types with different associated target/distractor discriminability
along the new decision variable, the probability of correct identification of the target-present display
is still the probability that the maximum response to the target-present display will be larger than the
maximum response to the target-absent display (Equation AI). The only difference is that now there
are a total ofk different distractors types, instead ofone type ofdistractors. Each ith distractor type has
ni elements. The probability that the maximum response to elements in the target-present display will
take a value of x can be expressed as the sum of

k

t(x)II D7 i (x)
;=1

(the first term in C1), the probability that the target will take a value of x and that the n i distractors of
all k types will take values less than x, and
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APPENDIX C (Continued)

I k [ I ](I-Oj )

n;d;(x)T(x)Dti- (x)II Dt'- (x)
1=1

(the second term in Cl; also, oij is Kronecker delta, which is I for i = j and 0 otherwise), the probabil­
ity that anyone of the n j distractors [nj permutations] of all k distractor types will take a value of x
[njdj(x)], that the target and all the remaining nj - I distractors ofthe ith type will take a value less than
x [T(x)Djn i - I(x)],and that all the njdistractors of the k- I remaining types will take a value less than x

[

k [n i J(I-o'/)lII n, (x) :
j=l

k k [ k [ ](1-0)1p[maX(T,Dtl,Dt2, ... ,Dtn)=X]=t(X)J]Dti(X)+~ ni-d;(X).T(X).Dti-l(x)~.Dti(x) 'J.

(CI)

The probability that the maximum response in the target-absent displays will take a value less than x
can be guaranteed if all the distractors take a value less than x:

k+1

p[ max(Ddl,Dd2, ... .o.;+ I) < x] = IIDti(x),
j=l

(C2)

where D;"j (x) is the cumulative probability that all the njdistractors of ith type take a value less than x.
Note that the multiplication index runs to k + I, because ofan additional distractor in the target-absent
display that was added so that the target-present and the target-absent displays would contain the same
number of elements.

Replacing expressions C I and C2 into Equation A I and integrating over all possible values ofx, we
obtain

+~ [k k [ k (1-0 )11
Pe(N,M,k)= _~ t(X)J] Dj

n,
(x)+~ nj-d;(X)-T(X).Dti-I(X)~-[DinJ(X)] J

-[DDti(X)r-
1dX.

(C3)

PeeN, M, k) is performance for M alternatives and k distractors types, where the number of distrac­
tors n j of each of the ith type is given by N = {n I' n2' n3' ... nk} and Ojj is Kronecker delta, as defined
above.

If the observers' internal responses to the different elements in the display are assumed to be Gauss­
ian and only different in their mean internal response, the probability distributions of the responses for
the different elements can be parameterized in terms of the distances in standard deviation units be­
tween the target response distribution and each of the distractor response distributions (d!). Equa­
tion C3 then reduces to

P(N,M,k,D')=I [g(X)llCni(x+d;)

>+~ln j .g(x +d;)·C(x)· Cni-I(X+d;)D[cn; (x +dif-
Oi;)

JJ

. [ucni(x+d;)r-ldX, (C4)

where PiN, M, k,D') is the Pe for performance as a function of k (the total number of distractor types),
the number of distractors n j of the ith distractor type as specified by N = {n" n2' n3 , ... nd, the num­
ber of response alternatives M, and d; (the discriminability between the target and the ith distractor type
as specified by the set D' = {d~, d;, d~, ... dk}). The set size is the total number of distractors plus the
target and is given by

k

n= Lnj+l,
i=l

where the summation is over k the total number of distractor types. Also, g(x) and C(x) are defined as
in Equations A7 and A8.
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APPENDIXD
Derivation of Model Predictions for the Aiken and Palmer (1992) Experiment

Max-Linear Decision Rule
The first step needed to calculate~ is to obtain the effective targetldistractor discriminability along

the new decision variable after the linear combination of information across feature dimensions. As­
suming that the observer equally weights the information across feature dimensions and taking into ac­
count that the target/distractor discriminability was matched along the orientation and contrast di­
mensions, we can use Equation B5 to obtain the target/distractor discriminability along the new
decision variable (d:z ) '

Modified conjunction task. For two of the distractors in the modified conjunction, d~z = d~z and is
given by

And for the third distractor,

f

~dij [d'+0]
d' -d' _~__o I. d'.
lz- 2z- Ji - -J2 - \2 O'

(01)

(02)

f

I,d{j [d' +d']

d;z =JIi = o~2 0 2 '2d~,

where d~ is the targetldistractor discriminability between the target and distractors along the individ­
ual feature dimensions (contrast and orientation).

Modified disjunction task. Similarly, we can obtain the effective targetldistractor discriminability
for the modified disjunction display:

and

f

I,d{j [2d' +d']
d; = a: =.L:!..- = 0 0 = 3 d'

lz 2z {f ~2 \ 2 0
(03)

f
~d'
~ Ij [d' +d']

d' =.L:!..- = 0 0 = 2 . d'. (04)
3z r7 t: \2 O''VI '12

Calculation of Proportion Correct. Since the modified conjunctions and disjunction displays con­
tain multiple distractors with different associated target/distractor discriminability along the new de­
cision variable, calculating Pc requires equation C4 (for multiple distractors), rather than Equation A6.
The expressions for d~z, d~z, and d 3z for the conjunction and disjunction displays (Equations 01-04)
might be used with equation C4 in order to predict Pc' However, an additional property of the Aiken
and Palmer (1992) studies was that, on each trial, the selection of a particular distractor was proba­
bilistic. Inthis way,the distractor configuration varied from trial to trial. Inthis way, specializing Equa­
tion C4 for any particular distractor configuration will not correctly describe Pc for the Aiken and
Palmer experiments. The appropriate expected value of Pc for these experiments, in which the distrac­
tor configuration was randomly determined from trial to trial, is calculated by calculating the ~ for each
possible display configuration and multiplying it by the probability ofoccurrence of that particular display:

k

E(~)= PI '~l + P2 '~2 + P3 '~3 + ... + Pk '~k = LP;'~i' (05)
j=l

where E(~) is the expectation value of Pc for the experiment, Pc< is the ~ prediction for the ith display
configuration, and P; is the probability of occurrence of the ith display.

Noting that the probability of occurrence of a given distractor configuration with i Oistractors 1 and
n - I - i Oistractors 2 is given by (Taylor, 1982)

(
n-I); n-l-;

i Psi-P d2 ,

a general equation describing the expectation value of~ as a function of number of distractors and d~

can be derived:
n n-l

E(~(n,2,d~) = I, I, [I(n,i)+ J(n,i) + K(n,i)]. [L(n,})],
j=Oi=O

(06)
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where the summations are over the number of distractors of Type I in the target-present and the target­
absent displays.

Also, the expressions I(n,i), J(n,i), K(n,i), L(n,) are given as follows.

+~ ( I) ()i ( )n-'-i
I(n,i)= J~ n~ g(z) ~ Gi(z+(,) t G

n-'-i(z+d;2)dz
(07)

is the probability that the target will obtain a value ofz and the probability that all the i Distractors I
and the n - I - i distractors will be less than z;

J(n,i) =I (n~ 1) A~ )g(z +d;,)(~r1G i-1(Z +(l)(tf i

- ' Gn-1-i(z +d;2)G(z)dz (08)

is the probability that anyone Distractor I will take a value ofz and that the i-I Distractors I, the n ­
I - i Distractors 2, and the target will be less than z;

+= (I) ( ) ()n-i-2. ( )iK(n,i) = Ln~(n_I_i). t g(z+d;2) t G n-'-2(z+d;2) ~ Gi(z+d;,)G(z)dz (09)

is the probability that anyone Distractor 2 will take a value of z and that the n - i - 2 Distractors 2,
the i Distractors I, and the target will be less than z; and

L(n,j)= T(n)(~JGJ(Z+d;,>(tJ-J G
n-J(Z+d;2)dz (010)

-~ }

is the probability that all the j Distractors I and the n - j Distractors 2 in the target-absent display will
take a value ofless than z (the maximum of the target-present display).

The validity of Equation DlO was verified with Monte Carlo simulations performed in the same fash­
ion as those described previously.

Max-Min Decision Rule
Performance for the max-min observer for the Aiken and Palmer (1992) experiment can be found

by first computing the probability of the minimum responses in the target present and target-absent dis­
plays. Replacing the probability distributions for the responses ofeach element type along both feature
dimensions into Equations 88 and 89 we obtain the following.

Modified conjunction. For the conjunction task, the target minimum response distribution is given by

tmin(x)=g(x-d~) ·G(>x-d~)+g(x-d~) ·G(>x-d~),

d 'mi,(x)=d 2mJx)= g(x-d~) . G(>x)+ g(x) ·G(x-d~),

d 3mJx)= g(x) . G(>x)+ g(x) . G(>x). (011)

Modified disjunction. For the disjunction task, the target minimum response distribution is given by

tmin(x)=g(x-d~) ·G(>x-d~)+g(x-d~) ·G(>x-d~),

d 'mJx) = d2min(x) = g(x +d~) . G(> x)+ g(x) . G(> x +d~),

d 3min(x)=g(x) ·G(>x)+g(x) ·G(>x),

and
x x

Dimin(X)= fdimin(y)dyandTmin(x)= ftmin(y)dy, (Dl2)

where tmin(x) is the probability function of the target's minimum response between the two feature di­
mensions, dimin(x) is the probability function ofthe distractors' minimum response between the two fea­
ture dimensions, Dimin(x) is the cumulative probability that the distractors' minimum response between
the two feature dimensions will take a value less than x, and Tmin(x) is the cumulative probability that the
target's minimum response between the two feature dimensions will take a value ofless than x.

Plugging in the expressions for tmin and dimin, Tmin and Dimin into equations similar to D6~D I0, one
can obtain an expression for Pc as a function of number of distractors (n), number of response alterna­
tives (M), and target/distractor discriminability (d~) for the max-min observer. The equations were
verified with a Monte Carlo simulation in the same fashion as that described previously.
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