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On the relevance of locus equations for
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Weexamined the possible relevance of locus equations to human production and perception of stop
consonants. The orderly output constraint (OOC)of Sussman, Fruchter, and Cable (1995) claims that
humans have evolved to produce speech such that F2 at consonant release and F2 at vowel midpoint
are linearly related for consonants so that developing perceptual systems can form representations in
an F2 0 ns-by-F2vowel space. The theory claims that this relationship described by locus equations can dis
tinguish consonants, and that the linearity oflocus equations is captured in neural representations and
is thus perceptually relevant. Weinvestigated these claims by testing how closely locus equations re
flect the production and perception of stop consonants. In Experiment 1, we induced speakers to
change their locus equation slope and intercept parameters systematically, but found that consonants
remained distinctive in slope-by-intercept space. In Experiment 2, we presented stop-consonant sylla
bles with their bursts removed to listeners, and compared their classification error matrices with the
predictions of a model using locus equation prototypes and with those of an exemplar-based model that
uses F2 0 ns and F2vowelJ but not locus equations. Both models failed to account for a large proportion
of the variance in listeners' responses; the locus equation model was no better in its predictions than
the exemplar model. These findings are discussed in the context of the OOC.

It is well known among speech scientists that formant
transitions provide listeners with important information
for identifying the stop consonants Ib/, Id/, and 191 in
syllable-initial position. However, it is a matter ofdebate
how such transition information is used. In particular, the
importance of these highly context-sensitive transitions
to perceivers provides a challenge for theorists who
claim that listeners use invariant information to identify
stops (e.g., Fowler, 1986; Stevens & Blumstein, 1981).
One early hypothesized invariant was a locus to which all
second-formant transitions ofa given consonant pointed
back in time by extrapolation (Delattre, Liberman, &
Cooper, 1955). Locus points were found for Ibl and Id/,
but 191 required two loci; and even the loci for Ibl and Idl
proved controversial. For example, Ohman (1966) found
that the locus points were not invariant, and that they
changed, depending on the identity ofa preceding vowel.
Later, Kewley-Port (1982) made extensive acoustic mea
surements of formant transitions for the stop consonants
in various vocalic contexts and concluded against any in
variant in the transition. Transitions, therefore, appear to
be inherently context sensitive. As a result, theories as
suming both the importance of invariance for perception
and a role for formant transitions have taken different di
rections. One is to assume, as motor theorists have, that
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invariance is found only at the level of production, and
that specialized algorithms are needed to go from context
sensitive acoustic signals to invariant articulatory gestures
(Liberman, Cooper, Shankweiler, & Studdert-Kennedy,
1967; Liberman & Mattingly, 1985). Another is to assume
that perception is of invariant articulatory gestures, which
are specified in the acoustic signal, and that either there
is invariant information in the signal that has not yet been
discovered, or the specification of the gesture in a signal
differs in different contexts, but specifies nonetheless
(Fowler, 1994). A third approach is to look for invariance
not in the acoustic signals of individual utterances, but
rather as a higher order property found when appropriate
context-sensitive acoustic signals are related to one an
other (Sussman, 1989; Sussman, McCaffrey, & Matthews,
1991). This approach will be our main focus. A final so
lution is to abandon the notion of invariance altogether.
In this approach, phonemes are considered to be abstract,
acoustically (and optically) defined categories. Transitions
are cues to be matched to templates, and any notion ofin
variance is unnecessary (see, e.g., Massaro, 1987).

Locus Equations
Sussman proposed a partial solution to the invariance

problem that involves the derivation of locus equations
based on second-formant transitions (e.g., Sussman, 1989;
Sussman et al., 1991)\ To derive locus equations, second
formant (F2) values at the midpoints ofa variety ofvow
els (F2vowel) are plotted on the horizontal axis of a two
dimensional space, andF2 at the onset ofvoicing (F2 )

I f a zi onsfollowing the re ease 0 a grven consonant is plotted on
the vertical axis (see also Klatt, 1987; Lindblom, 1963;
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Nearey & Shammass, 1987). Regression line fits to these
plots reveal a linear relationship between F2yowel and
F2 ons' The regression lines for different consonants, or
the locus equations that represent them, may be charac
terized by their slopes and intercepts. It has been found
that the locus equation lines for different stop consonants
occupy distinct regions in slope-by-intercept space (at
least, if they are based on productions of speakers of a
single language; Sussman, Hoemeke, & Ahmed, 1993).

Locus equations represent an invariant that is not found
in a particular token utterance, but rather over sets of
consonant-vowel (CV) syllables that share their initial
consonant. Thus, locus equation slopes represent rela
tional invariants (Sussman et aI., 1991) rather than abso
lute invariants ofthe sort that Stevens and Blumstein (e.g.,
1981) and others have sought (in which a single invari
ant cue for a consonant is found in all vocalic contexts).

The relational invariance approach has implications for
construction of a locus-equation-based model of con
sonant perception. Because the systematicity captured
by a locus equation is not explicitly contained within a
single token, which is all that listeners hear at a given time,
some sort of representational system is required so that
a stimulus token may be related to other (nonpresent) to
kens in order to uncover the relevant property. Sussman
has proposed that the speech perception system has a
neurally instantiated "2-D map ofa bivariateacoustic space
in which linear functions represent categories" (Suss
man, Fruchter, Hilbert, & Sirosh, in press). In this space,
F2 0ns and F2yowel are the mapped acoustic parameters.
In earlier papers, Sussman (1989; Sussman et aI., 1991)
proposed that within this array there are combination
sensitive neurons that respond to particular pairs of F2
at transition onset and F2 at vowel midpoint, extracted
from the incoming speech signal. These combination
sensitive neurons specific to particular CV syllables are
arranged in columns so that a set of neurons in a column
all correspond to the same consonant. The F2 0ns and
F2yowel pairs represented in the array correspond to the
region in F2 space captured by the locus equation for the
particular consonant. The output of neurons in the array
activates a higher level neuron representing the consonant;
these higher level neurons may receive input from other
systems as well, possibly ones processing burst and F3
information.

This proposed system was inspired by evidence ofanal
ogously operating mechanisms in the auditory systems
of the bat, for echolocation (Olsen & Suga, 1991; Suga,
O'Neill, Kujirai, & Manabe, 1983), and of the barn owl,
for sound-source azimuth (Wagner,Takahashi, & Konishi,
1987). In both of these systems, combination-sensitive
neurons have been isolated that respond to frequency pairs
(in the bat) and frequency-phase-difference pairs (in the
barn owl). The bat's combination-sensitive neurons map
the relative velocity of a moving object according to the
Doppler shift of a frequency pair-the outgoing sonar
pulse frequency and the returning pulse frequency. Rela
tive velocity is a linear function of the Doppler shift; that
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is, for a given relative object velocity, all pulse frequen
cies plotted against their echoes form a straight line. In
the barn owl, frequency-specific neurons in the inferior
colliculus have been found to respond to a particular
phase between the sine waves ofa common frequency at
the two ears. These frequency-phase pairings correspond
to interaural time difference, and thus, to location of the
sound source in space (Wagner et aI., 1987). Moreover,
these neurons appear to be arranged by frequency on one
axis and by phase difference on another axis, so that a
third axis can be drawn that represents the emergent prop
erty of interaural time difference, thus forming the ana
logical basis for Sussman's neural model of consonant
perception, in which locus equation slope is an emergent
property (Sussman, 1989; Sussman et aI., in press).

In addition to developing his locus-equation-inspired
model of speech perception, Sussman and colleagues
(Sussman, Fruchter, & Cable, 1995; Sussman et aI., in
press) have offered a related account ofwhy good regres
sion fits to locus equations are found. They claim that
there is a general preference of auditory systems for lin
early related input parameters (as evidenced by the barn
owl and bat systems). Perhaps in humans the organiza
tion ofthe speech perception system (which forms an au
ditory map of F2 0ns and F2yowel space) is facilitated by
such an orderly signal, and talkers have therefore evolved
to coarticulate so as to produce the linear relation cap
tured by locus equations. In other words, talkers are con
strained to produce linearly ordered F2 0ns and F2 Yowelval
ues in CVs to allow an efficient representational system
to develop and function (Sussman et aI., in press). This
hypothesized constraint has been termed the orderly out
put constraint (OOC).

Purpose ofthe Present Research
The linear relation between F2 0ns and F2yowel ofCVs

that share their initial consonant but differ in their vow
els may be interesting both for what it may tell us about
speech production and for what it may imply about speech
perception. Accordingly, we focused in Experiment 1 on
production issues, generating stimuli that we presented
to listeners in Experiment 2, in which we focused on per
ception issues.

Regarding production, one question concerns the de
gree to which the slopes of the locus equations are, in
fact, free to vary. Locus equation slopes are assumed to
reflect the degree of coarticulatory overlap between a
consonant and following vowel (Fowler, 1994; Krull,
1989; Sussman et aI., 1991). An increase in F2yowel is as
sociated with an increase in F2 0ns because ofanticipatory
coarticulation of the vowel during consonant production.
At the moment ofconsonant release, the vocal tract's con
figuration will already reflect movement toward the vow
el's target configuration; thus, the acoustic signal at re
lease will differ according to the vowel target.

The slope differences associated with lines for different
consonants may be understood in terms of consonants'
having different degrees ofcoarticulation resistance (see,
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e.g., Bladon & Al-Bamemi, 1976; Recasens, 1985, 1991;
cf. Fowler, 1994) to following vowels. In general, con
sonants resist coarticulatory overlap by a vowel to the ex
tent that the vowel and consonant compete for use of the
tongue. If a consonant is highly resistant to vowel influ
ences (when production of the consonant gesture re
quires movement of articulators that are used in produc
ing the vowel gesture), F2 0ns will vary little over vowel
context (Recasens, 1985). Fowler (1994) has argued that
locus equation slope is correlated with place ofarticula
tion (because consonants having different places of ar
ticulation differ in degree of coarticulation resistance)
but is not a property ofconsonant place. This would sug
gest that any conditions that should increase or decrease
a consonant's coarticulation resistance might change the
slope of its locus equation. Research by Browman and
Goldstein (1990) and Engstrand (1988), among others,
shows that increases in speaking rate, or in the casual
ness of speech, are associated with increases in coartic
ulatory overlap and, by implication, decreases in coar
ticulation resistance. Compatibly, it has been found in a
number of studies that manipulations of speech styles re
sult in locus equation slope changes within a given place
of articulation (Bakran & Mildner, 1995; Crowther,
1994; Duez, 1992; Krull, 1989). Experiment I was de
signed to explore the relationship between variability in
slope and variability of speaking style. We also used it to
explore the questions ofwhether slopes for different con
sonants remain distinctive under manipulations of speak
ing style, and whether different consonants always fall
in distinct regions in slope-by-intercept space, as claimed
by Sussman and colleagues (e.g., Sussman et aI., in press;
Sussman et aI., 1991).

A second production issue concerns a finding from
Chennoukh, Carre, and Lindblom (1995), who used the
slopes and intercepts of locus equations produced by
their production model as they varied coarticulatory
overlap of a consonant with a variety of vowels. When
locus equation slopes are plotted against their correspond
ing intercepts, the regression of intercept on slope within
a given place of articulation reveals a good linear fit, and
Chennoukh et aI. have termed this regression equation a
second-order locus equation, or SOLE. This linearity has
also been observed by Crowther (1994) and Bakran and
Mildner (1995) in natural productions. Linearity ofSOLEs
is of interest because we believe that it is not an outcome
that the OOC would predict (as we wiIl argue later), and
it will lead us to ask whether an OOC account is required
in order to explain first-order linearity. In Experiment I,
we sought to determine whether our speaking style ma
nipulations would also result in good-fitting SOLEs.

As for perception, the major question we address here
is whether evidence can be found to support the claim of
Sussman and colleagues (e.g., Fruchter & Sussman,
1996; Sussman et aI., in press; Sussman, et aI., 1991) that
the information captured by locus equations is relevant
to perceivers. More specifically, we attempted in Exper
iment 2 to determine the degree to which the description

of second-formant transitions by the locus equation met
ric matches the information exploited by perceivers, by
studying listener identification error patterns. Experi
ment 2 provides a comparison of the predictions of a
speech perception model based on locus equations with
another model that also uses F2 transition endpoints but
not the assumption of a linear relation among syllables
represented by these coordinates. We determined the rel
ative extents to which each model accurately predicts the
CVs in which listeners will correctly identify the conso
nant and those in which they will make errors. When, as
predicted by each model, listeners did make errors, we
asked whether the models correctly predicted the iden
tity of the erroneous response. Generally, we attempted
to determine whether a model in which listeners must be
assumed to appreciate the historical tendency for the re
lation between F20ns and F2vowel of consonant-invariant
CVs to be linear better predicts listeners' data than mod
els in which that assumption is not made.

EXPERIMENT 1

Many studies show that locus equation slopes are as
sociated with degree ofcoarticulatory overlap between a
particular consonant and following vowels. For example,
Krull (1989) and Duez (1992) both found that slopes (for
productions ofa given place ofarticulation) were some
what steeper in spontaneous speech than in list-read
speech, and Bakran and Mildner (1995), Duez (1992),
and Krull (1989) also found somewhat steeper slopes in
unstressed syllables than in stressed syllables. Thus, in
speaking styles in which more coarticulatory overlap is
found (Browman & Goldstein, 1990; Engstrand, 1988),
slopes are steeper. Further, Fowler (1994) demonstrated
that consonants of different manner classes at the same
place ofarticulation differed systematically in their locus
equation slopes. Specifically, a fricative (a more resistant
consonant; see Recasens, 1991) at a given place ofartic
ulation (such as Iz/) had a shallower slope than did a stop
at the same place (zd/);' Thus, with place of articulation
held constant and coarticulation resistance changed,
slope varied with the change in resistance. Likewise, two
consonants that differ in place (/91 and Iv/) had indistin
guishable slopes, perhaps because they were resistant to
the same degree, but for different reasons: 191 because it
uses the tongue body and Ivl because it is a fricative.
Therefore, Fowler argued that locus equations are not in
variants for place ofarticulation; instead, the relation be
tween place of articulation and slope is correlational.

In other studies, researchers have specifically manip
ulated coarticulatory overlap within a consonant category
to observe changes in slope, as we did in the present study.
Crowther (1994) attempted to increase coarticulatory
overlap for the stop consonants by having a speaker pro
duce them in a VCV context where VI = V2 (so that the
tongue position was closer to the vowel configuration
when the consonant was produced), and to decrease over
lap by having a speaker produce palatalized versions of



the consonants so that tongue position was more con
strained. He found small increases in slope from the first
manipulation, and large decreases in slope from the sec
ond. Using the Distinctive Region Model (Carre & Mra
yati, 1990), Chennoukh et al. (1995) synthesized VCV s
with different degrees of coarticulation between VI and
V2 (thus varying the timing ofthe onset ofV2 production
with respect to the consonant closure). They found that
when coarticulatory overlap was greatest, locus equation
slopes were highest.

Our aim in Experiment I was to manipulate coarticu
latory resistance in speakers' productions to cause in
creases and decreases in slope values for different con
sonants. We attempted to increase coarticulatory overlap
(and thus slope) by encouraging speakers to be as far into
the vowel gesture as possible at the release of the conso
nantal closure. We did this with the same technique as did
Crowther (1994, with VI = V2 in VCV productions), and
we further encouraged coarticulatory overlap by having
speakers produce these syllables at a fast rate. As a re
sult, F20nsvalues should be closer to F2vowel values than
in normal productions, and the slope should be steeper.
We attempted to decrease coarticulatory overlap by in
structing the speakers to precede the consonants with a
central vowel (fA/), to attempt to maintain the central
tongue configuration as much as possible up to the point
of consonant release, and to speak at a slower rate (a ne
cessity regardless, given the difficulty of the coarticula
tory demands). The latter instructions were expected to re
sult in less variability in F20ns values for a consonant
across vowel contexts. That is, F20ns should vary less
with changes in F2vowel' and slopes should, therefore, be
shallower.

Our intent was to determine whether we could induce
large enough coarticulatory changes that the slope values
for the different consonants would overlap. That is, we
might find a high-resistance (low-overlap) Ibl slope equal
to or lesser than a low-resistance (high-overlap) Idl slope.
Furthermore, we were interested in exploring whether re
gions in slope-by-intercept space would remain distinct
for the different consonants under the manipulations. Al
though Ibl and 191 are not consistently distinguished by
slope alone, they are distinguished when both slope and
intercept are considered (Sussman et aI., 1991): They oc
cupy distinct spaces in a slope-by-intercept plot. Idl is
distinguished from both Ibl and 191 on the basis of slope
alone, and thus is clearly distinguished by slope and in
tercept. Finally, our manipulations provided an opportu
nity to test whether the second-order locus equations re
ported by Chennoukh et al. (1995) for synthetic speech
can also be found in natural productions.

Method
Subjects. One female and 2 male adult speakers of American

English served as talkers in the experiment. All three were re
searchers at Haskins Laboratories and knew the purposes ofthe ex
periment. One (M I) was a trained phonetician, and the others (M2,
F I) were the first and second authors ofthis paper.?
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Materials and Procedure. The tokens produced by the speak
ers were ofthe form ev or Vev. The consonants used were Ibl, Idl,
and Ig/, and the final vowels were /iY/, III, lest, lad, lal, 1/\1, IJ/, and
lui; these were the vowels used by Fowler (1994). Initial Vs were
the central vowel 1/\1 in one condition and were the same as the post
vocalic vowel in another condition. These were spoken at slow and
fast rates, respectively. Speakers produced the tokens in three
blocks of a single session. In the first block, they were presented
with a list of ev syllables and were asked to produce at least five
tokens ofeach one, spoken at a comfortable rate. In the next block,
subjects were given a list of Vf'V disyllables with VI = V2. They
were instructed to speak these utterances at as fast a rate as possi
ble without flapping the Idls, and to produce five or more tokens of
each one. In the final block, the subjects were given the same list of
disyllables, except that the V I was 1/\1 in all cases. They were in
structed to produce at least five tokens ofeach ofthe utterances, and
to speak them at a slow rate. They were explicitly instructed to at
tempt to maintain the central tongue configuration for the initial
vowel into the closure position and thus to attempt to avoid antici
pating the postconsonantal vowel until the consonant release. The
utterances of MI and M2 were recorded on audiotape in a sound
attenuating chamber; the utterances ofFI were recorded in a quiet,
but not sound-attenuated, room.

The recorded tokens were filtered at 10.4 kHz and digitized at
20.8 kHz in SoundScope (GW Instruments) on a Macintosh
Quadra 950 computer. Five tokens of each subject's productions of
each stimulus were selected. Tokens were dropped if the consonant
was flapped (so that there was no apparent burst or clear onset of
voicing), or if it was spoken at a substantially lower amplitude than
were the other tokens (because the stimuli were intended for use in
a perceptual experiment). Otherwise, the first five tokens were se
lected. Acoustic measurements were made by the first author. They
were taken onF2, following the procedure ofSussman et al. (1991),
at vowel onset and vowel midpoint. The onset measure (F2 ons) was
taken at the first discernible pitch pulse after the release ofthe con
sonant. The vowel midpoint measure was taken at a steady-state
portion if one was present; at a midpoint ofa diphthongal vowel; or
at the maximum or minimum ofa curve-shaped vowel pattern. Be
cause the syllables were open, some of the diphthongs (notably liYI
and leY/) reached high frequencies at low amplitudes and lasted for
fairly long durations. In such cases, the "midpoint" value was taken
earlier than the actual temporal midpoint of the vowel, but still
within the diphthongal glide. Spectral measures were taken from
wide-band spectrographic displays (and narrow-band displays as
well, when F2 and F3 or F I and F2 appeared to be in close prox
imity) and from linear predictive coding (LPC) analysis (20 coeffi
cients, 15-msec analysis window). Direct spectrographic measures
took precedence over LPe measures when discrepancies occurred,
particularly for the F2 0ns measurements.

Results
Effect of manipulations on slopes and intercepts.

The first question that we addressed was whether our at
tempts to manipulate coarticulatory overlap resulted in
changes in slopes and intercepts for the three consonants.
Based on the F20nsand F2vowel measurements, we com
puted locus equations separately for the consonants Ibl,
Id/, and 191 produced in the three conditions (fast with
high overlap, normal, slow with low overlap; for simplic
ity, we will refer to these as high, normal, and low), spo
ken by the 3 subjects. The derivation of the locus equa
tions consisted of regressing F2vowel on F2 0 ilS' using the
raw data points. Figures IA-IC display the mean F2ons
by-F2vowel values ofeach CV spoken under the three con-
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Figure 1. Individual-speaker locus equation plots for Ib/, Id/, and Igl in high-, normal-,
and low-coarticulation-overlap conditions.

ditions, along with the locus equation lines for each
speaker. The slopes and intercepts for the three consonants
spoken under the different conditions by the different
speakers (computed by token) are presented in Table I,
along with two measures of the fit of the regressions, R2
and standard error of estimate.

Table 1 demonstrates that, overall, the high-overlap
condition was effective in raising slopes, whereas the
low-overlap condition was less successful at decreasing
them. The high condition resulted in steeper slopes in all
nine comparisons (although minimally so for speaker
FI's /9/). The low condition resulted in shallower slopes



Table 1
Individual Speaker and Mean Regression Coefficients for

Ibl, Id/, and Igl Locus Equations Under
Different Overlap Conditions

SEof
Speaker Consonant Overlap Slope Intercept R2 Estimates

MI Ibl high .860 53.199 .976 76.08
normal .762 223.330 .979 59.52
low .697 302.285 .978 57.17

Idl high .634 695.753 .990 32.19
normal .474 950.039 .961 43.52
low .475 929.152 .955 50.68

Igl high .956 277.693 .953 114.28
normal .875 361.862 .904 150.12
low .754 580.449 .886 144.20

M2 Ibl high .920 -8.066 .985 55.23
normal .796 175.219 .986 48.49
low .786 208.005 .982 57.32

Idl high .604 778.217 .932 67.15
normal .482 978.564 .908 68.60
low .532 901.782 .945 59.59

Igl high .968 225.107 .917 133.55
normal .720 632.346 .852 132.60
low .828 467.844 .916 114.51

FI Ibl high .914 -11.910 .985 66.52
normal .887 37.803 .972 88.60
low .784 146.519 .970 81.04

Idl high .587 938.561 .906 99.53
normal .490 1121.385 .936 63.89
low .360 1389.631 .893 62.30

Igi high 1.055 3.568 .983 78.83
normal 1.049 26.650 .953 135.64
low 1.024 116.665 .919 191.55

Means Ibl high .898 11.074 .982 65.94
normal .815 145.451 .979 64.87
low .756 218.936 .977 65.18

Idl high .608 804.177 .943 66.29
normal .482 1016.663 .935 58.69
low .456 1073.522 .931 57.52

Igi high .993 168.799 .951 108.89
normal .881 340.286 .903 139.45
low .869 388.319 .907 150.09

for two of the three consonants for Speaker M I, for only
one consonant for M2, and for al1 three for FI (although
the effect was minimal for 19/). The slopes were submit-
ted to a 3 (consonant) X 3 (degree of overlap) repeated
measures analysis ofvariance (ANOVA). There were sig-
nificant main effects ofboth consonant identity [F(2,4) =
23.65,p < .01] and degree ofoverlap [F(2,4) = 9.74,p <
.05] on slope, but no interaction [F( 4,8) < I]. Contrast
tests on consonant (col1apsing over degree of overlap)
revealed that Ibl slopes were significantly greater than
Idl slopes [F(1,4) = 25.60,p < .01], as were 191 slopes
[F(1,4) = 43.09, P < .01]; however, 191 slopes were not
significantly greater than Ibl slopes [F(1,4) = 2.26, p >
.1]. Contrast tests on degree ofoverlap revealed that high
productions resulted in significantly steeper slopes than
did both normal [F(1,4) = 10.44, P < .05] and low pro-
ductions [F(I,4) = 17.81,p < .05]. Slopes for low pro-
ductions were not significantly shallower than those for
normal productions [F( 1,4) < I], despite a numerical trend
in that direction (means for normal and low slopes were
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.73 and .69, respectively). The slopes for Ibl and 191 over
lapped across the different conditions; compatibly, slopes
for these consonants have been shown not to be reliably
distinct in the literature, with some studies yielding steeper
slopes for Ibl and some, steeper slopes for 191 (e.g., Fow
ler, 1994; Lindblom, 1963; Nearey & Shammass, 1987;
Sussman et aI., 1991). However, the slopes for Idl were
distinct from al1 other slopes, with low Ibl fal1ing the clos
est to any Idl production (high Id/): their mean slopes
were .697 and .634, respectively.

Effects of the coarticulatory overlap manipulations on
intercept were closely tied to the effects on slope. As
Table I shows, every instance of a change in slope was
accompanied by a proportionate change in intercept in
the opposite direction. A 3 (consonant) X 3 (degree of
overlap) repeated measures ANOVA was performed on
the intercepts, revealing significant main effects of con
sonant [F(2,4) = 16.07, P < .05] and degree of overlap
[F(2,4) = 11.57,p < .05], but no interaction [F(4,8) < I).
Contrast tests revealed, for consonant, differences be
tween Ibl and Idl [F(1,4) = 28.85, p < .01] and 191 and
Idl [F(I,4) = 18.13,p < .05], but no difference between
Ibl and 191 [F(1,4) = 1.24,p > .1]. The intercepts for Idl
were greater than al1 intercepts for Ibl and 19/. Despite
the absence of a significant difference, intercepts for 191
were generally greater than intercepts for Ibl, with some
overlap. Tests on degree of overlap revealed differences
between high-overlap and normal productions [F(1,4) =
11.87, P < .05] and high-overlap and low-overlap pro
ductions [F(1,4) = 21.44,p < .01], with smal1erintercepts
for the high-overlap productions in both cases but no sig
nificant differences between normal and low-overlap pro
ductions [F(1,4) = 1.41, P > .1], although the mean in
tercept for the low-overlap productions was numerical1y
greater than that for the normal productions.

To summarize, we found that our speech manipula
tions, as expected, did result in steeper slopes and smal1er
intercepts in the high-overlap condition, and we found a
nonsignificant trend in the opposite direction for the
low-overlap manipulation.' The magnitudes ofal1 of the
slope and intercept changes were modest, and we did not
find any overlap between Idl slopes and intercepts and
those ofIbl and 19/. Final1y, the manipulations resulted in
no reduction in linearity. Table I reveals that the R2S are
no lower, and the standard error of estimates no higher,
under the high and low manipulations than in the normal
condition.

Examination of slope-by-intercept space and
"second-order locus equations." Although neither slope
nor intercept considered independently successful1y dis
tinguishes all three stop consonants from one another,
when plotted against one another they have been shown
to reveal nonoverlapping regions for each consonant
(Sussman, 1994; Sussman, et aI., 1991; Sussman & Shore,
1996). We examined whether our manipulations also re
sulted in distinct slope-by-intercept regions for the three
consonants. Furthermore, we examined whether there
were good-fitting second-order locus equations (Chen-
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Figure 3. Individual-speaker second-order locus equation lines.

equations), the slope of the new line is the F2Yowei (mul
tiplied by -1) of the point at which the two first-order
locus equation lines intersect and the intercept is the
F2 0ns of the same point." Therefore, the extent to which
three or more locus equation lines fall directly on a line
in slope-by-intercept space reflects the degree to which
they all rotate about a single point; this may be observed
in Figures lA-Ie.
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Figure 2. Plot of slope-by-interceptspace for consonants under
different overlap conditions spoken by all speakers. Regression
lines are second-order locus equations.

noukh et aI., 1995) for the three points (corresponding to
the different coarticulation manipulations) in slope-by
intercept space for each consonant.

The locus equation coefficients of the 3 speakers' pro
ductions are presented in slope-by-intercept space in
Figure 2. As the figure demonstrates, there is consider
able variability in slopes and intercepts for each conso
nant; however, the consonants do fall within distinct re
gions. Thus, although slopes and intercepts considered
individually did not reliably distinguish Ibl and 19/, to
gether they do separate the consonants. When Ibl and 191
have similar slopes, 191 has a greater intercept; when they
have similar intercepts, 191 has a steeper slope.

The productions of each consonant appear to fall
roughly on a line, consistent with the findings of Chen
noukh et aI. (1995). We computed SOLEs for each con
sonant by regressing the three intercept values for each
consonant with the corresponding slope values from the
different manipulations. The SOLEs and their coefficients
are presented in Figure 2. The fits for Ibl and 191 are
quite good (R2 for Ibl is .972; for 19/, .984); the fit for Idl
is more modest (R2 = .796). When the regressions are
performed separately for each speaker, the fits are im
proved (see Figures 3A-3C). Furthermore, interesting
patterns emerge in these plots. The plots for Speakers
Ml and M2 are nearly identical: The three lines are nearly
parallel (more so for Ml than for M2), with the intercept
for 191 slightly greater than that for Idl, and the intercept
for Ibl considerably smaller. This parallelism of second
order lines is not found for Speaker Fl, however, but the
regression lines still provide good fits to her productions.

There is a direct interpretation of the slopes and inter
cepts of these second-order equations. If the second
order locus equation lines each are formed by a pair of
coordinates (slopes and intercepts oftwo first-order locus



For Speakers M1and M2, the F2Yowel value at the point
of rotation was essentially the same for all three conso
nants (hence the parallel second-order locus equation
lines); this point of rotation was in the range ofa central
vowel (generally between the F2yowel values for IAI and
lre/). In contrast, Speaker Fl 's Ibl lines intersect at a
back-vowelposition. Her Igl lines appear to intersect close
to 3600 Hz; however,the slopes and intercepts ofthe three
Igl lines hardly vary from one another, so the rate and
V l-context manipulations were not effective for them.

Locus equations for I'i/ in front and back vowel con
texts. Table 1 shows higher standard errors of estimate
for Igl than for Ibl and Id/, in every comparison but one.
Indeed, Igl is generally better fit by two regression lines
than by one line. The better fit ofseparate lines for Igl with
front and with back vowels has been attributed to allo
phonic variation in Igl productions, such that the tongue
contact positions tend to be more palatal followed by
front vowels and more velar followed by back vowels
(Sussman et aI., 1991). Thus, Sussman et aI. (1991) sug
gest that it may be more appropriate to use the separate
locus equations for the allophones (front, back) ofIg/. Ac
cordingly, we computed separate front-/gl and back-/gl
locus equations for the present data set. The coefficients
and measures of fit for each subject are presented in
Table 2. Although there is a general trend toward steeper
slopes and smaller intercepts in the high-overlap condi
tions and a trend in the opposite direction in the low
overlap conditions, these effects are not consistent across
speakers and allophones (front, back) of Ig/. Two 2 (al-

Table 2
Individual Speaker and Mean Regression Coefficients for
/g/ Locus Equations Computed Separately for Front and

Back Vowels, Under Different Overlap Conditions

SEof
Speaker Vowel Overlap Slope Intercept R2 Estimates

MI back high 1.271 -84.118 .955 78.345
normal 1.285 -109.732 .948 90.216
low 1.332 -11.363 .971 63.883

front high .572 1065.913 .946 38.608
normal .349 1417.392 .903 33.059
low .326 1404.582 .85 35.525

M2 back high 1.224 - 135.407 .891 56.327
normal 1.353 -185.617 .473 86.982
low .842 409.843 .825 36.820

front high .195 1875.182 .735 26.052
normal .107 1909.562 .392 33.194
low .245 1672.46 .894 21.488

FI back high 1.366 -417.209 .975 54.346
normal 1.163 -150.963 .689 120.567
low 1.106 -49.109 .834 72.347

front high 1.054 -10.738 .942 59.281
normal .535 1296.789 .714 83.019
low .255 2071.598 .413 93.656

Means back high 1.287 - 212.245 .940 63.01
normal 1.267 -148.771 .703 99.26
low 1.093 116.457 .876 57.68

front high .607 976.786 .874 41.31
normal .330 1541.248 .670 49.76
low .275 1716.213 .719 50.22
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lophone) X 3 (degree of overlap) repeated measures
ANOVAs performed on the slopes and the intercepts re
vealed significant main effects of allophone on slopes
[F(1,2) = 54.87,p < .05] and intercepts [F(1,2) = 100.80,
P < .01], with shallower slopes and greater intercepts for
the front-vowel allophones. However, effects of degree of
overlap on slopes and intercepts and interactions between
allophone and degree of overlap were nonsignificant.

In the previous section, we found that Ibl, Idl, and Igl
do occupy distinct regions in slope-by-intercept space,
and that different production styles of each consonant
fall on lines in this space. Here we examine whether dis
tinctive regions among different production styles are
found when the Igl allophones are considered separately.
Figure 4 presents the slopes and intercepts of Ibl, Idl, and
the two allophones of Igl spoken under the different con
ditions by all 3 speakers. The figure shows that the re
gions for the different categories overlap somewhat; for
example, some front-/gl points fall among Idl points.
However, most of this overlap is cross-speaker. In Fig
ures 5A-5C, the slopes and intercepts for the 3 speakers
are plotted separately, showing that there is no overlap
ofslope-by-intercept regions within the productions ofa
given speaker. Although there is no overlap among re
gions, a consonant produced under one manipulation may
fall closer to productions of another consonantal cate
gory than to other members of its own category. For ex
ample, Speaker Ml 's fast front-/gl and Speaker Fl 's nor
mal front-/gl fall closer to Idl productions than to other
front-/g/s. Thus, when Igl is divided into two separate cate
gories, nonoverlapping regions may be drawn around the
consonants' coordinates in slope-by-intercept space, but
these regions will be more diffuse and less distinctive than
when Igl is treated as a single class.

Discussion
In Experiment 1, we attempted to manipulate degree

ofcoarticulatory overlap for each consonant, to increase
and decrease the locus equation slopes and intercepts,
with the intention of dissociating slope and intercept val
ues from place of articulation distinctions. Our manipu
lations did cause the slopes and intercepts for each con
sonant to shift in the expected directions, supporting the
view that slope is related to degree ofcoarticulatory resis
tance. However, the magnitudes ofthese shifts were mod
est. (The high manipulation caused somewhat smaller
shifts in slope and intercept from the normal condition
than those found by Crowther, 1994, who used a very
similar manipulation.) Idl remained distinct from Ibl and
Igl on the basis of slope alone, and all three consonants
fell in distinct regions in slope-by-intercept space (al
though less clearly so when Igl was divided into front- and
back-context allophones). These findings and those of
others (Bakran & Mildner, 1995; Crowther, 1994; Duez,
1992; Krull, 1989) show that although slope and inter
cept may well be distinctive with respect to place of ar
ticulation, because they are affected by factors indepen
dent of place, they are not invariant. Nonetheless, our
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Figure 5. Individual-speaker second-order locus equation lines,
with Igl separated into front- and back-vowel allophones.

of the variability created by the manipulations). More
significantly, we similarly see no basis in the theory for
the finding that variations in speaking rate result in
good-fitting SOLEs, indicating a systematic relationship
between changes in slope and intercept due to these
variations, again because the OOC does not make predic-
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Figure 4. Plot of slope-by-intercept space for all speakers, with
191 separated into front- and back-vowel allophones.

findings are consistent with the claims of Sussman and
colleagues (e.g., Sussman et aI., 1991; Sussman & Shore,
1996) that different consonants can be distinguished in
slope-by-intercept space.

Our data raise the possibility that this distinctiveness
in slope-by-intercept space is due to a higher order sys
tematicity in which locus equations are embedded
namely, that captured by second-order locus equations.
We found good linear fits of the slopes and intercepts
from the different manipulations, as had Chennoukh
et al. (1995) using synthetic speech. We additionally
found interesting patterns in the SOLEs of2 of our sub
jects: Their SOLEs were parallel to one another, indicat
ing that the rotation points for their locus equation lines
from the different manipulations (one rotation point per
consonant) fell at approximately the same F2yowel posi
tions. This pattern was not found by Chennoukh et aI.,
however, and it may have been an artifact of our partic
ular manipulations.

However, ifthe SOLE patterns are ultimately found to
be robust phenomena, they will have implications for the
OOe. As outlined in the introduction, the OOC claims
that speakers produce CV syllables such that F20ns and
F2yowel values are linearly arranged for each consonant,
in order to facilitate the development ofrepresentational
maps exploiting those acoustic parameters. Because
these representations are for consonant classes, presum
ably independent of production variations (such as rate,
stress, intervocalic context, etc.), it should follow that
the linearity predicted by the OOC should be found even
when all such variations in production are collapsed into
a single consonant group. (In fact, our findings do not
falsify such a prediction; because the slope and intercept
changes due to our manipulations were modest in size,
there is still strong linearity in locus equation fits com
puted across tokens from the different manipulations.)
However, if the OOC-based linearity is indifferent to dif
ferent production styles, then we believe there are no
grounds for expecting strong linearity within a produc
tion style (as we found, although interpretation ofour re
sults in this regard is tempered by the limited magnitude



tion about linearity more specific than at the consonant
class level.

Sussman's basis for the OOC hypothesis stemmed from
an appreciation of the strong and robust linearity be
tween F2 0nsand F2yowel (e.g., Sussman et aI., 1995). He
reasoned that, given the existence of specialized auditory
systems which encode linearly related acoustic param
eters, and given the established relevance of F2 transi
tions for consonant perception, it is therefore possible
that the linearity captured by locus equations is a func
tional adaptation to support an auditory system that takes
F2 transitions as inputs. The strength of this argument,
however, depends on the uniqueness of the linearity of
F2 locus equations; that is, plausibility of the OOC is
weakened by the existence of other linear relationships
that do not plausibly have a role in perception.

SOLEs may be considered one example of linearity
that cannot serve a perceptual function and thus cannot
reflect a perception-based production constraint. The
linearity captured by SOLEs appears to be strong (in the
limited data to date); yet it is not plausibly due to a pro
duction constraint serving a perceptual system that maps
locus equation slopes against locus equation intercepts.
Nor do first-order locus equations and SOLEs exhaust
the linear relations between pairs of speech variables. A
third example is found in first-formant locus equation
plots. We computed locus equations for Fl transitions,
using mean values from the appendix of Kewley-Port
(1982). The regression coefficients, R2, and standard
error of estimate values for FI and F2 locus equations
thus obtained are presented in Table 3. The three Fllocus
equation lines have virtually the same slope, and very sim
ilar intercepts, so it is clear that these parameters are not
distinctive for place ofarticulation. However, the linear
ity is strong; in fact, the standard error values for the Fl
locus equations are actually lower than those for the F2
locus equations.> Klatt (1987) also found good linear fits
for Fl regressions. Thus, there are at least two instances
oflinearity without plausible perceptual relevance.

Thus far, we have argued that our results are consistent
with the view that slopes and intercepts of locus equa
tions, taken in tandem, are distinctive for place of artic
ulation. However, we have challenged the plausibility of
the OOC's explanation for the existence of locus equa
tions-namely, that they are the result of a production
constraint driven by the demands of the speech percep
tion system. If the linearity is not a perception-driven

Table 3
Regression Coefficients for Fl and F2 Locus Equations,

Taking Mean Measurements Reported in Kewley-Port (1982)

Formant Consonant Slope Intercept R2 SE of Estimates

Fl Ibl .272 241.7 .762 20.56
Idl .232 235.7 .943 8.56
Igl .243 221.9 .736 21.37

F2 Ibl .733 327.6 .983 44.39
Idl .299 1284.2 .959 23.17
Igl .803 567.8 .852 161.06
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constraint, though, then what is its source? An alternative
claim is simply that the linearity itself reflects a charac
teristic of coarticulation. An assumption of our work is
that the slope ofa locus equation line indexes the degree
of coarticulation resistance, the extent to which a con
sonant resists coarticulatory overlap by a vowel. As shown
by Recasens (e.g., 1985, 1991) and Farnetani (1990), re
sistance is greatest when the consonant and vowel com
pete for the same articulators, most importantly the tongue
body." That the relation between F2 0ns and F2yowel is
close to linear means that a given change in F2yowel is as
sociated with a magnitude of change in F2 0ns that is
nearly the same everywhere along the function. From the
perspective ofour hypothesis, this implies that coarticu
lation resistance is generally the same between a conso
nant and the set ofall vowels; it does not vary much across
the set of vowels. This is not surprising, because vowels
all use the tongue body, and so coarticulatory overlap by
all of them should be resisted to approximately the same
degree by a given consonant.

The coarticulation resistance account of the linearity
oflocus functions is considerably more economical than
that of the OOc. First, it ascribes the linearity of locus
functions to a theoretical construct that is already required
to explain other data (e.g., Bladon & AI-Bamerni, 1976;
Recasens, 1985). Second, it ascribes the linearity to
behavior that is temporally local. That is, the degree of
coarticulatory overlap of a consonant by a vowel is de
termined by a characteristic ofa consonant-namely, the
degree to which the vowel would compete with its
achievement of its own gestural goals. In contrast, ac
cording to the OOC, speakers must maintain linearity by
having their productions, distributed over time, conform
to one another in F2ons-by-F2yowel space in order to meet
the demands ofan external constraint (the ostensible de
sign oflisteners' perceptual systems).

The coarticulation resistance account has a further ad
vantage over that of the OOc. It can predict which con
sonants will be associated with steeper slopes and which
with shallower ones. The OOC does not. Generally, con
sonants that use the tongue should be more resistant to
coarticulatory overlap by vowels than those that do not.
In addition, because the articulatory requirements for pro
ducing frication noise are more precise than those for
producing stops, fricatives should have shallower slopes
than those for homorganic stops. Both predictions were
borne out in findings of Fowler (1994).

Sussman et al. (1995) provided two challenges to the
coarticulation resistance account oflinearity. The first is
based on evidence that different vowels do coarticulate
differentially with consonants. For example, data by
Amerman (1970) show more anticipatory coarticulation
by lal, III, and lrel than by lid or lui in preceding conso
nants Ip/, Ibl, Itl, Idl, lsi, and /z/. The finding that coar
ticulation resistance is, to a degree, vowel specific would
challenge the coarticulation resistance account oflinear
ity ifmeasured F2 0nsand F2yowel values fit their regres
sion lines perfectly. However, they do not, and when re-
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gressions are performed on subsets of the vowels, the
slopes of the lines can change. A prediction based on
Amerman's data is that slopes for the consonants Ipl, Ibl,
Itl, Id/, lsi, and Izl should be steeper computed over the
vowels lal, III, and lrel than over vowels liyl and lui. This
prediction can be tested on the voiced consonants by using
F20ns and F2vowel measurements from Fowler (1994). The
slopes for Ibl, Id/, and /zl (the subset ofAmerman's con
sonants measured by Fowler) in the context of lid and lui
were .766, .578, and .540, respectively. In the context of
lal, III, and IreI, they were .863, .694, and .653. Likewise,
in the data presented in Experiment 1, the slopes for Ibl
and Idl were shallower when computed for liyl and lui
than for lal, III, and lrel for the normal and low condi
tions, although not for the high condition. In the normal
condition, the slopes for Ibl and Idl in the liyl and lui
contexts were.795 and .529; in the lal, III, and lrel con
texts, they were .922 and .545. In the low condition, the
corresponding values were .715, .502, .820, and .530;
however, in the high condition, they were .909, .689, .892,
and .618. (However, Amerman's observations on the dif
fering degrees of anticipatory coarticulation for the dif
ferent vowels do not necessarily apply to the high-overlap
speaking style. Our manipulation specifically encour
aged anticipatory vowel coarticulation, so the manipula
tion may have preempted intrinsic vowel differences on
this dimension.)

Sussman et al.'s (1995) second objection to the coar
ticulation resistance account derives from the nonlinear
ities in mapping from articulatory activity to the acous
tic signal. Coarticulation resistance is a relation between
articulatory gestures, but the linearity that locus equations
describe is a relation between sets of acoustic variable
pairs. Sussman et al. (1995) argue that the nonlinearities
in the mappings between gestures and acoustic signals
might cause larger departures from acoustic signal lin
earity than fits to locus equations exhibit; thus, a linear
output in the acoustics requires a nonlinear relationship
of coarticulatory overlap and vowel context in the artic
ulatory domain. However, the locus equation regressions
based on Amerman's data lend some support to the no
tion of a strong relationship between coarticulation re
sistance and acoustic linearity; deviations from linearity
appear to be tied to deviations in degree ofcoarticulation
resistance. Additionally, the Distinctive Region Model
(Carre & Mrayati, 1990) produces linear locus equation
functions when the experimenters fix the degree ofvowel
to-consonant overlap (R. Carre, personal communication,
July 1, 1996), further suggesting a link between acoustic
linearity and uniform coarticulation resistance. Although
we cannot yet assert that the construct of coarticulation
resistance has sufficient explanatory power with respect
to locus equations, the account is certainly falsifiable, by
evidence demonstrating that uniform coarticulation re
sistance creates nonlinear acoustic relationships, and that
nonuniform coarticulation resistance is required for acous
tic linearity. However, such evidence has yet to be pre-

sented. Until the coarticulation resistance account is fal
sified, postulation of an OOC is extraneous.

A shortcoming ofour coarticulation resistance account
is that it does not provide an explanation for the finding
ofsecond-order linear fits (although we do not believe the
hypothesis is inconsistent with SOLEs). We propose only
that linearity is linked to uniform coarticulation resis
tance. Thus, we can explain why strong linearity is pre
served separately for productions under each manipulation
with the assumption that manipulations ofcoarticulation
resistance have a uniform effect on the degree ofcoartic
ulatory overlap for each vowel. Our account does not ex
plain why the separate lines for different speaking styles
for a given consonant should all cross at a single "rotation
point," resulting in good-fitting second-order locus equa
tions. This is because the account makes predictions
about locus equation slopes, but not about intercepts.

A last point to be raised from our results has implica
tions for the perceptual study described in Experiment 2.
It concerns whether Igl is described better with one locus
equation line or two. It has been argued from a (first
order) locus equation standpoint that two lines; one for
front vowels and one for back vowels, more appropriately
fit the F2 values for Igl (Sussman et aI., 1991; but see
Fowler, 1994). However, examination of slope and inter
cept together suggests otherwise. First, the second-order
regressions reveal strong regularity in Igl productions
when one line is computed for Igl over all vowels, contin
uous with findings for Ibl and Idl (specifically, the lines
are parallel). Furthermore, in plots ofslope against inter
cept, when a single line for Igl is computed, Ibl, Id/, and
Igl fall in clearly delineated regions. In contrast, when
separate lines for Igl in front and back vowel contexts are
computed, the regions (while still nonoverlapping) are
less clearly distinct, such that a back-vowel Igl point may
fall closer to Idl points than to other back-vowel Igl points.
These observations both suggest that a single locus equa
tion for Ig/, in spite of its poor apparent fit to the F2 val
ues, captures some regularity in production and should
not be rejected in favor of two separate lines. However,
a perceptual map of F2 space using a single-line fit for
Igl will do a pcorer job ofaccurately representing Igl to
kens than would two Igl lines; this apparent tradeoff was
addressed in Experiment 2.

EXPERIMENT 2

So far, we have addressed the issues of whether locus
equations describe relational invariants for place of ar
ticulation, and ofthe basis for the linear relation between
the endpoints ofF2 transitions. We found that locus equa
tion slopes and intercepts vary as a function ofdegree of
coarticulatory overlap, but that they remain distinctive
for place ofarticulation under this variability. We argued
that F20ns and F2vowel coordinates have a strong linear
relation because of coarticulation resistance and not be
cause perceivers require it to be so. In this next section,



we examine the possible relevance of locus equations for
perceivers in identifying stop consonants.

To review, Sussman has claimed that, because of an
auditory-system preference for linearly related input pa
rameters (documented in the auditory systems of the bat
and the barn owl), human perceivers use the linear rela
tionship between F20ns and F2yowel to develop a repre
sentational system for speech perception. He has proposed
that consonant perception uses "an auditory map similar
to locus equation plots" (Sussman et aI., in press). Fur
thermore, he has suggested specific neural mechanisms
by which such a representational system might operate:
combination-sensitive neurons respond to pairs ofF20ns
and F2yowel frequencies that correspond to a particular
consonant (Sussman, 1989; Sussman et aI., 1991). In ad
dition, neurons that fire for a given consonant (and thus
respond to F2 values that fall close to the locus equation
line) are arranged in columns in the neuronal structure.
Sussman et aI. (1991) argue that "in order for an entire
stop consonantal equivalence class to be functionally tied
together an acoustic/phonetically based constancy must
exist. ... For place of articulation, slope and y-intercept
ofthe regression function can serve [as the emergent prop
erty that binds the members of a class]" (p. 1323). Thus,
the fact that the input parameters to the neural system,
F20ns and F2yowel' are linearly related within a stop con
sonant class is a significant feature of the theory.

A number of predictions about consonant perception
can be derived from a model of the sort that Sussman has
proposed. First, a locus-equation-based model ofpercep
tion makes the uncontroversial claim that F2 transitions
have strong perceptual relevance. This is well grounded
in the literature, dating back to the demonstrations of
Liberman, Delattre, Cooper, and Gerstman (1954) that
burstless two-formant stimuli can support stop place iden
tification fairly well (although Liberman et aI., 1954,
and more recently, Ohde, 1988, have pointed out limita
tions of the informativeness of synthesized two-formant
stimuli, particularly for velars).

In addition, a locus-equation-based model makes two
other, more distinguishing assumptions. One is that the
relevant information for consonant identification in F2
transitions can be sufficiently captured in two values, F2
at the onset of voicing and F2 at vowel midpoint (or
transition offset; both have been used in locus equation
measurement with similar outcomes; Nearey & Sham
mass, 1987), that the human perceptual system extracts
in order to identify the consonant. In other words, the tra
jectory of an F2 transition is irrelevant as long as it has
a particular onset and offset (Sussman et aI., 1995).

The other distinguishing, and most crucial, assumption
of a locus-equation-based theory of perception is that
the linearity of CV tokens of a given consonant in F2
space is perceptually relevant. It is relevant because the
neural representations are presumed to develop by capi
talizing on the linear relationship, as outlined in the OOC,
and further because the columnar-arrangement neural
structure discussed by Sussman (1989) and Sussman et aI.
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(1991) uses the regression slopes and intercepts to bind
neurons signaling members of a single consonant class.
Sussman et aI. (1991) suggest that the linear locus equa
tion functions may be considered as "representing 'CV
prototypes' conceptually similar to vowel category 'pro
totypes' (Grieser & Kuhl, 1989) in infant categorization"
(p. 1321), and the authors illustrate these hypothesized
prototypes as lines in F2ons-by-F2yowel space in their
Figure 7. Fruchter and Sussman (1997; see also Fruchter,
1994, and Sussman et aI., in press) claimed to support the
perceptual relevance of locus equations with a study in
which synthetic syllables with systematically manipu
lated F20ns and F2yowel values were presented to listen
ers for classification. They found that the regions in F2
space that elicited the greatest proportion of Ib/, Id/, and
Igl responses tended to overlap with the regions where
productions ofthe respective consonants fell (which were
linear). However, these results do not provide strong ev
idence in favor of the view that linearity is perceptually
relevant. Only three levels ofF3 transition were used for
each vowel, each corresponding to Ib/, Id/, and Igl tran
sitions, respectively; the authors focused on responses
to tokens with the "appropriate" F3 transitions for that
response (i.e., "b" responses to tokens with Ib/-like F3
transitions). Even under these favorable conditions, the
correspondence of response patterns to locus equation
patterns in productions was modest: Although there was
overlap between the perception and production patterns,
there was also considerable distinctiveness between the
two. Indeed, Eek and Meister (1995) conducted a similar
study, in which they manipulated F2 transitions in syn
thesized IpV/, ItV/, and IkVI syllables, and also found
partial overlap between production-based locus equation
space and listener response patterns, but they interpreted
their results as evidence against a role oflocus equations
in perception. However, neither of these studies provides
a quantitative test of whether the linearity oflocus equa
tions has perceptual relevance.

A formal model that we believe would be consistent
with the locus equation view would use locus equation
lines to stand for the neural representations described in
the theory. Each novel token would be matched against
the lines in F2 space; whichever line the token falls on
or closest to would "win." Such a prototype model (see
Sussman et aI., 1991, Figure 7) appears to capture the in
tent of the research questions raised by Sussman et aI.
(1991). They asked: "Are tokens lying closest to the re
gression line better exemplars of the stop place category
than tokens further off the line? Similarly, how far can
F2 onset frequencies deviate around the locus equation
function with tokens perceptually retaining their stop
place affiliation?" (p. 1322). In our study, we quantified
the locus equation model by computing the Euclidean
distance in F2 space between tokens and locus equation
lines for Ib/, Id/, and Ig/. According to the model, to the
extent that a token is closer to one line than the others, it
should be identified more often as the consonant corre
sponding to the line.
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We will contrast this model with an alternative one in
which only the first distinguishing assumption of the
locus equation view (that F2 0nsand F2yowel are sufficient
to describe F2 transitions), and not the second (that
locus equations are perceptually relevant) is made. We
introduce the model solely to contrast it with the locus
equation model. (That is, we do not propose it as a real
istic model ofspeech perception.) Comparison ofthe two
models isolates the assumption of perceptual relevance
of linearity. In this second exemplar or token-based
model, all ofa listener's experience with stop consonants
is stored, with each token syllable encoded in memory
by its consonant identity and its F2 0ns and F2yowel val
ues. When a new syllable is presented to a listener, the
token is matched in parallel to each of the stored traces
of consonants in memory. The outcome is a composite for
each consonant type, with the contribution ofeach stored
consonant (memory trace) to the composite weighted by
its proximity in F2 space to the input token. (This ap
proach is based loosely on the exemplar memory model
ofHintzman, 1986, 1988.) Ifmore memory traces coded
as a particular consonant are closer to the new token than
traces coded as other consonants, the token is identified
as that consonant.

In the exemplar model, the information coded and
used for identification is exactly that used by the locus
equation model-namely, the onset and offset of F2
transitions. In this model, however, in contrast to the
model based on locus equations, the linearity of the to
kens in F2ons-by-F2yowel space does not factor into con
sonant identification. Rather, variability in production
(i.e., deviations from linearity) plays a direct role for this
model. If a token is presented that falls some distance
from the locus equation line for its consonant, it may be
correctly identified to the extent that the listener has en
countered numerous other tokens that fall off the line
more or less to the same extent. In fact, the model may
correctly identify a token that is closer to the locus equa
tion line for a different consonant than it is to its own line,
if enough tokens of the same consonant have been pre
sented that fall in the same region in F2 space. Thus, vari
ability in production is exploited by the exemplar model.
In contrast, our implementation of the locus equation
model does not benefit from this variability. (The linear
based representation, even if it has a critical bandwidth
about it, is still linear.)

Wetested these models in Experiment 2 by comparing
their classifications of CV tokens (based on their F2 0ns
and F2yowel values) with the classifications of the same
tokens by listeners. We addressed two questions. First,
we asked how effective a model can be if it takes as its
inputs F2 0ns and F2yowel .7 To the extent that both mod
els (linear prototype and exemplar) are effective or inef
fective in predicting subjects' responses, we might find
evidence concerning the appropriateness of the F2 ons
F2yowel metric. Second, we asked whether there is any
predictive advantage to the locus equation account's use
of linear representations.

Method
Subjects. Thirty-two students from an introductory psychology

class at the University of Connecticut served as subjects in the ex
periment. They received course credit for their participation. All re
ported normal hearing and were native speakers of English.

Stimulus materials. The speech stimuli presented to the sub
jects were the normal and high-overlap tokens of Ibl, Idl, and 191 in
the contexts of liYI, III, levl, lrel, lal, IAI, hI, and luI produced by
speaker M2.8 The five tokens ofeach CV analyzed in Experiment I
were used, resulting in a total of 240 stimuli. The high-overlap to
kens, having been produced as VCV syllables, were excised from
their V I context in SoundScope, resulting in CV syllables.

Pilot work for this experiment (Brancazio & Mitra, 1994)revealed
that subjects were close to ceiling in their identification of these
syllables, with overall accuracy of95.7%. This provided few errors
to compare with the models' predictions. In the present study, we re
moved the bursts from the tokens. This served two functions. It low
ered performance, and it removed a source of information, the
burst, that is extraneous from the perspective ofboth models we are
testing. Because we used natural stimuli, it was impossible to isolate
another extraneous source of information, F3, without resorting to
variable filters or to resynthesis ofthe natural speech, omitting F3.

The bursts were removed in SoundScope. In cases in which the
burst was temporally independent of the onset of voicing (as visu
ally determined in the acoustic waveform), a cut wasmade at a
zero-crossing just before the onset of voicing. However, when the
burst itself was voiced, the cut was made at a zero-crossing in an
early pitch period so that as much of the burst was removed as pos
sible while preserving the onset frequency of the transition.

We found that there were considerable differences in amplitude
among the tokens. Accordingly, we amplified some of the tokens
digitally; for fear ofdistortion, however, tokens were not amplified
more than 200%. Even with this modification, some differences in
amplitude remained.

After burst removal and amplification, the stimuli were output to
audiotape. Four random sequence files were created, with each stim
ulus included once in each sequence. The stimuli were recorded on
tape in these sequences.

Procedure. Subjects, run in groups ofone to four, heard all 240
tokens over headphones in one of the four sequences, preceded by
5 practice tokens (selected from the 240). Eight subjects heard one
sequence, 10 heard a second sequence, and 7 heard each ofthe other
two sequences. The subjects were given response sheets numbered
I to 245 with the selections "B," "D," and "G" and the numbers 1-5
next to each one. They were instructed to identify the consonant in
each syllable. We explained to them that the syllables had been "al
tered" on a computer, so that it would be hard to hear the consonant
in some cases, but that they should attempt to identify each one
nonetheless, guessing if necessary. They were instructed to use the
number scale to indicate their confidence in their response, with 5
for high confidence and I for guessing; however, analyses of the
confidence judgments are not reported in the results.

Derivation of predicted responses. Predicted classifications of
the speech tokens by the models were computed using Euclidean
distance metrics. A number ofstudies have taken this approach to use
acoustic parameters to predict listener confusions on stop conso
nants, as summarized by Krull (1990). For example, Krull (1990)
found considerable success in predicting listener confusions of
Swedish voiced stops by using F2, F3, and F4 at voicing onset,
supplemented by burst duration, as acoustic parameters. However,
to our knowledge, no study has applied the acoustic parameters to
be used here-namely, F2 0ns and F2YOWe1-in computing Euclidean
distances.

For each ofthe models, distances from each consonant were com
puted for each token. The database for these computations con
sisted ofthe F2 values ofCV productions by the five male speakers
presented in Fowler (I 994), and of Speaker MI 's normal-overlap
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CV tokens. This database was intended as a rough approximation
to the subjects' perceptual history. All six speakers were from the
northeastern United States, as were most of the listeners.

For the locus equation model, all the tokens in the database (720
tokens in all) were used to compute locus equations for Ib/, Id/, and
Ig/. The Euclidean distances between a token and the nearest point
on each consonant's line were computed by finding a perpendicu
lar to each line that connected to the token's coordinates. A second
locus equation model was formed as well, in which locus equation
lines were computed separately for Igl in the context of front and
back vowels.

For the exemplar model, distances were computed between the
token and each token in the database. These distances were trans
formed, so that small distances would have a proportionately
greater effect than longer distances. This was done in two ways.
First, any distance greater than 999 Hz was recoded as 999, and then
all distances were converted by the equation

(I)

This method is derived from that used by Hintzman (1986) in his
exemplar memory model MINERVA.9In Figure 6, the transformed
proportional distance scores are plotted against Euclidean distance.
Equation 2 resulted in three separate composite distance scores
(composite matches to Ib/, Id/, and Igl tokens) for each test token.
Because ofthe subtraction in Equation 1, a high composite score re
sulting from Equation 2 corresponds to a good degree of match for
a test token. Therefore, each of the three distances for each token
was scaled so that zero represented the largest D; c score of all the
test tokens across the three consonants, and 1.0 represented the
smallest possible D; c score.

In all four models (locus equation, locus equation with two Igl
lines, exemplar with exponent 5, and exemplar with exponent 10),
each token is assigned three distance scores, one for each conso
nant. In the locus equation models, these are actual Euclidean dis
tances, whereas in the exemplar models, it is a derived score based
on Euclidean distances. In all of the models, however, the smallest
score represents the best match. The predicted response (fbi, Id/, or
Ig/) by each model for each token is the consonant with the best
match.

where dorig is the Euclidean distance (in hertz), if less than 999; if
the distance is greater than or equal to 999, then dorig = 999.

The deonv between a token and all of the stored tokens in the data
base were summed by consonant, by the equation

o 200 400 600 800 1000

EUCLIDEAN DISTANCE (Hz)

Figure 6. Plot of weighted contributions of stored token to an
exemplar distance score, by Euclidean distance of stored token to
test token.

where i is a test token, c is a consonant category (fbi, Id/, or Ig/),je
is a database token of consonant c, s is a squashing parameter, and
D; c is the summed distance score for each test token and the set of
stored tokens of each consonant category.

Thus, distances were converted in Equation I to proportional con
tributions to a composite distance score, whereby a zero Euclidean
distance became a contribution of I, and a distance of 999 Hz or
greater (the largest possible distance, from a Igiyl token to a Ibul
token, would be approximately 2500 Hz) became a near-zero con
tribution. The purpose ofdividing by 1,000, rather than 2,500, was
to help augment the difference in contributions between very small
and relatively small distances. This goal was further achieved by
raising the percent distance score to an exponent (the squashing pa
rameter s); both 5 and 10 were used. (The proportional distances in
Equation I were subtracted from 1.0 so that the squashing parame
ter's effect would be greatest for small, rather than large, distances.)

»;= L (deonv,,), r,
}"

Results
Our main goal was to measure how well the models

predicted subjects' response patterns. Accordingly, the
majority ofthe analyses we will discuss were designed to
address this question. First, however, we will briefly pre
sent data reflecting subjects' and models' response pat-
terns independent of one another. ,

Subject accuracy. Overall, subjects correctly identi
fied 66.2% of the tokens. Their mean percentage re
sponses of Ibl, Idl, and Igl for each CV by rate are pre
sented in Figure 7. Percent correct identification was
submitted to 2 (coarticulatory overlap condition) X 3
(consonant) X 8 (vowel context) ANOVAs, by subjects
(collapsed over five tokens per cell) and by items (col
lapsed over 32 subjects and five tokens per cell). All
analyses are collapsed over the four test orders (the dif
ferent orders did not affect accuracy systematically). In
the analyses, the main effect of coarticulatory overlap
was not significant by subjects or items [F 1(l ,31) = 1.88,
P > .1; F2(l,192) < 1]. However, all other main effects
and interactions were highly significant, at the p < .0001
level. The absence ofa main effect ofcoarticulatory over
lap is important (higher order interactions notwithstand
ing) because it indicates that differences in subject ac
curacy on tokens from the different conditions were not
due to the shorter durations of the high-overlap, fast-rate
syllables or to the fact that the high-overlap syllables
were edited to remove the initial vowel. The significant
higher order interactions indicate that performance var
ied for different CV syllables, spoken with different de
grees of coarticulatory overlap; this is very much appar
ent in Figure 7.

Classification by models. We compared the perfor
mance of the four different models, two using linear
(locus-equation-based) prototypes and two using the
exemplar-matching algorithm. The locus equation mod
els differ in that one uses one line for all IgVl syllables,
whereas the other has separate lines for 191 in front and
back vowel contexts. The model with two /g/ lines should
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Figure 7. Subject accuracy in classification of tokens, by consonant, vowel,
and coarticulatory overlap condition (normal vs. high).

classify tokens better, because it fits the F2 space for Igl
tokens more accurately. However, as discussed in Exper
iment 1, the appropriateness of considering Igl as two
separate allophones is debatable. The exemplar models
differ from one another in the exponent used to increase
the relative contribution of small distances. We expected
that the model with the greater exponent (10) would clas
sify tokens better than the one with the smaller exponent
(5), because the greater exponent dampens to a greater
extent the contributions of stored tokens at greater dis
tances from the input token. These should be less infor
mative for identifying the consonant.

The locus-equation lines against which the test tokens
were matched are presented, along with the test tokens,
in Figure 8. (The exemplar model contains too many data
points to be plotted in usefully.) Figure 8A presents the
locus equation lines for Ibl, Idl, and Ig/, and Figure 8B
shows the lines for the Ibl, Id/, and Ig/-allophone lines.
It is evident that the locus equation model will have trou
ble classifying back-vowel Igl tokens, because the Igl line
does not fit their space effectively. In addition, the fig
ure demonstrates that the space for ICiyl (high F2vowel)
tokens is crowded, so that there should be a number of
misclassifications of those tokens.

Overall, the models' accuracy in classifying the tokens
was slightly better than the subjects' identification scores.
The locus equation model (hereafter, LocEq) and the ex
emplar model with an exponent of 5 (hereafter, Exem-

plar 5) were equally accurate, correctly classifying 71.2%
of the tokens (although their errors did not all occur on
the same tokens). The locus equation model with Igl al
lophones (LocEq+) and the Exemplar 10 model coinci
dentally also accurately classified equal numbers of to
kens (77.1%).

The models' accuracy in classification is graphed in
Figures 9A-9D, by consonant and vowel. Overall, the
models' classification patterns bear some resemblance
to that of the subjects, as can be seen through a visual
comparison of Figures 7 and 9. Moreover, the models'
response patterns were generally similar to one another:
the models' percent agreement on classifications range
from 76.7% (between the LocEq and Exemplar 5 mod
els) to 90.4% (between the LocEq and LocEq+ models).

Models' prediction of subject responses. We exam
ined the models' accuracy in predicting the pattern of
subjects' classifications of the tokens in a number ofdif
ferent ways. First, we looked at the overall agreement in
responses between the models and the subjects (without
regard to the correctness ofthe classifications). Next, we
considered the models' predictive strength with regard
to subject accuracy-that is, how well they predict which
items subjects will misidentify and what they will
misidentify them as. Finally, we performed regression
analyses on subjects' responses with the Euclidean dis
tance scores computed in the models, to analyze the re
sponse patterns at a finer grain.
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Prediction ofresponse patterns. In the first analysis,
we looked at the percentage of subject responses that
matched the response predicted by the models for each
item. The identity of the test token did not enter into this
analysis; it is indifferent to the accuracy of subject clas-

sifications. The results are presented in Table 4. The Ex
emplar 10 model performed the best, followed by the
LocEq+, Exemplar 5, and LocEq models, respectively.
The models all predicted between 55% and 62% of the
subject responses; thus, the models' predictions were well
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TableS
Percent Classifications by Models on

Tokens Misclassified by Subjects

"same error" responses [FI(l,62) = 349.05,p < .0001;
F2( 1,478) = 101.81,p < .0001] and the "different error"
responses [Fl(l,62) = 492.53,p < .0001; F2(1,478) =

143.76,p < .0001]. The difference between "same error"
and "different error" responses, with the former out
numbering the latter, was significant by subjects only
[Fl.(l,62) = 12.32,p < .001; F2,p > .05]. Thus, most
subject errors were incorrectly predicted by the models to
be correctly classified, but in cases in which a model did
predict an error, it was (marginally) more often the case
than not that the erroneous response was that predicted
by the model (i.e., the proportion of "same error" was
greater than the proportion of "different error"). These
trends were compared by model in post hoc tests. For all
four models, the comparisons of percentages ofpredicted
correct to "same error" and to "different error" were
highly signifi~a.nt (p < .000 I) in both items and subjects
analyses. Additionally, for all four models, the compari
son between proportions of "same error" and "different
error" ~ere highly significant (p < .000 I) in the subjects
analysl~. In the more conservative items analysis, the
companson for the Exemplar 5 [F2(1,1434) = 23.03,
P < .0001] and Exemplar 10 [F2(l,1434) = 22.35,p <
.0001] were again highly significant; however, the com
parisons for the LocEq and LocEq+ models did not reach
significance (p > .05 for both). Thus, error prediction
appears to have been weaker in the locus equation mod
els th~n in the exemplar models, although all ofthe mod
els failed to predict the majority of subject errors.

Regr~ssio~ a.nalyses. In the preceding analyses, the
n:~del~ predictions were based on their categorical clas
sifications ofthe tokens, and not on the magnitude of the
distance scores (i.e., the distance to a locus equation line
or composite distance to stored exemplars). Thus, the fore
go~ng analyses did not distinguish, for example, two types
ofInstances in which listeners selected /b/ as a response:
I~ one case, the token /b/ was close to the /b/ line (in the
hnear model) or to a number of /b/ traces in memory (in
the exemplar model) and far from the /d/ and /9/ lines/ex
emplars; in another case, fbi's distance score was only
moderately small and only slightly smaller than /d/ or
/9/'s. scores. ?iven that the models might capture infor
m~tJOn that Influenced (but did not completely deter
mine) su~jects' responses, it was worthwhile to perform
an analysis that could demonstrate a relationship between
degree of competition between two response choices
(based on distance scores) and subjects' response patterns.

Table 4
Percent Agreement on Classifications

Between Subjects and Models

Model Proportion of Agreement

LocEq .555
LocEq+ .589
Exemplar 5 .576
Exemplar 10 .619

above chance (33%), but much ofthe variance in listener
responses was not accounted for by any of the models.

The response prediction scores of the models were
compared in repeated measures ANOVAs on percent re
sponse agreement, by subjects and by items. The main ef
fect of model was significant by both subjects [Fl(3,93) =
53.81,p < .0001] and items [F2(3,717) = 4.79,p < .01].
Post hoc comparisons of the models were also performed
by subjects and by items; alpha was set at .01 to correct
for error inflation. The subjects analysis found that all
differences between models were significant atp < .000 I,
except for the comparison between the Exemplar 5 and
LocEq models, which was marginally significant [F(l,93)
= 6.15,p =.015]. The items analysis, on the other hand,
revealeda significant difference between the Exemplar 10
model and the LocEq model [F(l,717) = 13.69,p <
.001], and a marginal difference between the Exemplar 10
and Exemplar 5 models [F(I,717) = 6.20,p =.013], but
no other significant differences. Thus, the more powerful
ofthe exemplar models did better than the weaker LocEq
model, and more marginally (significant only by subjects)
than th.e stronger LocEq+ model, at predicting the pattern
of subject responses. However, the differences between
the models were small, and the total variance in subject
responses predicted by all the models was modest.

Prediction oferror patterns. In addition to considering
howwell the models predicted subjects' response patterns,
w,e also e~am~ned the ~egree to which the models pre
dlcte~ which Items subjects would misidentify and that
to wh.lc.h they c?rrectly predicted subjects' error patterns.
We divided subject errors according to the responses pre
dict.edby the models. Table 5 presents the percentage of
subject errors on items predicted by each model to be
c?rrectly identified, misidentified with the response
gl~en by the subject ("same error"), and misidentified
WIth the response not given by the subject ("different
error"). A 4 (model) X 3 (prediction: predicted correct,
same error, different error) repeated measures ANOVA
was performed on the subject errors by subjects and items.
There was a significant main effect of prediction in both
analyses [Fl(2,62) = 284.63, P < .0001; F2(2,478) =
83.01,p < .0001], as well as a significant interaction of
model and prediction [Fl(6,186) = 28.85, P < .0001;
F2(6,1434) = 2.99,p < .01]. (There was no main effect
ofm?d~l, because the mean percent error, collapsed across
prediction, was necessarily identical for all four models.)
Post hoc analyses on prediction found that the percentage
of errors predicted to be correct outnumbered both the

Model

LocEq
LocEq+
Exemplar 5
Exemplar 10

Proportion Predicted

Correct Wrong (Same) Wrong (Different)

.660 .194 .146

.707 .167 .126

.647 .242 .111

.677 .226 .097
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Table 6
R2 Values for Regressions of Percent Subject Response

Selections by Relative Distance Scores, With All
Response Choices and Correct Responses Only

One way to do this was to conduct regression analyses
of responses by distance scores. In one of the regression
analyses that we conducted, each test token was repre
sented three times: once by the percentage of subjects re
sponding Ib/, once by the percentage ofId I responses, and
once by the percentage of191 responses. Each percent re
sponse value (for each response choice) was paired with
a distance score for the particular response (fbi, Id/, or
19/) for a given token. Thus, the correctness ofa response
(whether it was the consonant intended by the speaker)
did not figure in the analysis. The difference between the
distance score to the selected response and the smallest of
the distance scores of the nonselected responses was used
as the regressor. In this relative distance measure, if the
selected response was the response predicted by a model,
then the difference score was negative (because all other
distances would be larger than that of the selected re
sponse); the distance score would always be positive if
the selected response was not the predicted response. A
negative coefficient indicated that subjects responded
more often with consonants associated with smaller dis
tances as compared with the distances of the alternative
choices. In addition, we performed regressions using only
the correct response's relative distance score for each
token, along with subjects' rate of selection of the cor
rect response.

The R2values for the all-response and correct-response
regressions for each model are presented in Table 6. When
all responses are considered, the models accounted for
only a modest proportion of the variance in responses,
between 36% and 46%. The Exemplar 10 model ac
counted for the greatest amount ofvariance, followed by
the LocEq+ model. The LocEq model was the poorest pre
dictor. When only the correct responses are included in
the regression, the models fare very poorly: they accounted
for less than 10% of the variance in subjects' rate of se
lection ofthe correct response. The same ordering of the
models was found as in the all-response regression.

Plots of the all-response and correct-response regres
sions for the best-performing models, the LocEq+ and
Exemplar 10, are presented in Figure 10. In the all
response regressions for both the locus equation and ex
emplar models, strongly negative and strongly positive
distance scores overall tended to correspond to larger and
smaller proportions of response selections, respectively.
However, for responses with relative scores closer to zero
(both positive and negative), proportions of subjects' re
sponse selections were widely distributed. The latter

Model

LocEq
LocEq+
Exemplar 5
Exemplar 10

All

.367

.436

.388

.459

Responses

Correct Only

.025

.056

.036

.068

finding is demonstrated by the correct-response regres
sion plots in Figure 10, which show the very weak rela
tion between relative distance and response selection for
the correct responses, whose relative distance scores are
mostly negative or positive but small. The poor fit in the
correct-response regressions indicates that the apparent
success ofthe models in the all-response regressions was
due predominantly to their elimination of responses, but
not to their selection of them. That is, responses with very
high relative distance scores were rarely selected by sub
jects, but responses with strongly negative scores were not
necessarily chosen in higher proportions than were those
with weakly negative or weakly positive scores.

Statistical comparisons were made between the rela
tive distance correlation coefficients of the four models,
using a t test for comparing dependent rs (Cohen & Co
hen, 1975, p. 53). In the all-response regressions, the Ex
emplar 10 model explained significantly more of the
variance in the response patterns than did the Exemplar 5
[1(717) = 1O.45,p < .001] and the LocEq model [t(717) =
6.45, p < .01], and the LocEq+ model explained more
variance than did the LocEq model [t(717) = 7.60, P <
.01] and the Exemplar 5 model [1(717) = 2.93,p < .01];
no other differences were significant. In the correct
response regressions, none of the differences between
the models were significant.

Speaker-specificity andF2 models. Figure 8 reveals
that the templates in the locus equation model often do
not match the test tokens very well. Both the single-/gl
and the allophone-/gl lines do not intersect the regions of
the Igl test tokens as well as the Ibl and Idl lines do for
the Ibl and Idl tokens, respectively. Assuming that M2 is
not an atypical speaker, this is merely a chance outcome
of a small database. However, there are considerable
speaker differences in slope and intercept values (cf.
Sussman et aI., 1991), and a realistic model must be able
to overcome such differences. Although mechanisms
have been suggested that normalize vowel spaces (e.g.,
Disner, 1980; Sussman, 1988, proposes a neurally based
normalization model), none have been proposed that
would convert F2 0ns and F2yowel values in such a way
that locus equation slopes and intercepts would be nor
malized. However, if this could be accomplished, a
speaker's own productions could be used to simulate nor
malized linear prototypes (or exemplars) to be used by
the F2-based perception models.

To simulate normalization, we provided the models
with their best opportunity to explain listener identifica
tion patterns, by using M2's normal and fast productions
(i.e., the test tokens) as the "memory" database rather
than the productions of six different male speakers. The
normal and fast productions were pooled to compute the
locus equation coefficients. Distances were computed in
the same way as before, except that in the exemplar mod
els a jackknife technique was used so that a token was
not matched against itself, but only against the other nine
tokens of the syllable. Two other tokens, with the same
vowel and rate as those ofthe test token but with the other
two consonants, were also dropped in each exemplar dis-
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Figure 10. Regression plots of percentage of subjects choosing a particular response by rela
tive distance scores produced by Exemplar 10 and LocEq+ models, with all response choices
(A and B) and only correct responses (C and D) included. See text for description•

tance computation so that equal numbers of tokens of
each consonant were used in each computation.

In classification analyses, the models all performed bet
ter than in the multiple-speaker database analyses, but
they were ordered in their predictions ofsubject responses
in the same way as in the multiple-speaker database, with
the highest performance by the Exemplar 10 model (65%
of the responses) and the lowest by the LocEq model
(60.3% ofthe responses). In the relative distance regres
sion analyses, however, the locus equation models im
proved their standings relative to the exemplar models
(again, all models improved substantially from the earlier
analysis). In the all-response regressions, the LocEq+
and Exemplar 10 models performed similarly (R2S of .507
and .503, respectively), and the LocEq model slightly out
performed the Exemplar 5 model (.477 and .448, respec
tively). In the correct-response regressions, the models
still accounted for a minimal proportion of the variance
in responses. The LocEq+ and LocEq models (R2S of
.124 and .076, respectively) numerically outperformed
the Exemplar 10 and Exemplar 5 models (R2 S of .064 and

.041, respectively); however, the differences between the
LocEq+ model and the Exemplar 10 model was not sig
nificant [t(237) = 1.42, P > .05], and the difference be
tween the LocEq+ and the Exemplar 5 was marginal
[t(237) = 2.11,p < .05]. In summary, all of the models
performed better without the added variability of a
multiple-speaker database, but comparisons among the
models across the different analyses did not consistently
demonstrate superior performance by either (locus equa
tion or exemplar) approach.

Discussion
In Experiment 2, we tested the ability of models using

locus equation prototypes or an exemplar database con
sisting of stored tokens' F2 0ns and F2yowel values to pre
dict subjects' responses on burstless CV syllables. Over
all, the variance in subject responses explained by the
models (taken together) was significant, but modest (up
to 65% of classifications predicted, and up to 51% of
variance in regression analyses explained). Clearly, the
metrics using F2 0ns and F2yowel as parameters do capture
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some systematicity in subjects' response patterns. How
ever, they also fail to account for a large proportion of
the patterning. The results indicate that the locus equa
tions' relative success in classifying tokens (70%-80%,
depending on the size of the database and whether sepa
rate Ig/-allophone lines were used) should not be taken as
evidence in favor of their perceptual relevance because
the models' errors coincided only slightly with subjects'
errors; most ofthe subjects' errors were on tokens that the
models predicted to be correctly identified. The models'
predictive strength (that is, their R2S being as high as they
were in the regressions) appears to lie mostly in the fact
that responses predicted to be extremely unlikely selec
tions (those with large distance scores) were, in fact, rarely
chosen. In contrast, some of the responses predicted to
be more likely selections were chosen on a high propor
tion of decisions, but others were not. Thus, the models
were weak in the sense that they had some success at
eliminating some responses, but they were poor at pre
dicting chosen responses. Our findings thus generally
concur with those ofthe synthetic speech experiments by
Fruchter and Sussman (1997) and Eek and Meister (1995),
who found that the regions in F2 space corresponding to
high-proportion selections of each consonant only par
tially overlapped with their respective locus equation
lines. Thus, in response to the research questions posed
by Sussman et al. (1991), we found that proximity to locus
equation lines bears only a gross relationship to percep
tual consonant classification.

The metrics using F2 0nsand F2yowel are obviously in
sufficient to stand alone in a model; they apparently re
quire supplementation by other sources of information,
such as F3 and burst spectra. (For our experiment, how
ever, burst information would not have helped; recall that
the bursts had been removed from the stimuli.) Of
course, it has not been claimed that F2 transitions alone
are sufficient in a model; Sussman (e.g., Sussman et aI.,
1991) has argued that F2 transitions must be supple
mented by other cues, although he has not made specific
claims about the relative contributions of the various
cues. However, given that the F2 transition is proposed
as a primary cue, and one for which evolution shaped the
auditory perceptual system, it might be expected to have
more predictive strength than was found here. A differ
ent sort of account could be devised in which F2, F3,
and burst information are not treated as independent cues
(Dorman, Studdert-Kennedy, & Raphael, 1977), but
rather are considered together; for example, a model could
be based on prototypes defined in a three-dimensional
space ofF2 ons' F2yowel' and F30ns(Lindblom, 1990; Suss
man, 1991). We believe, however, that the OOC hypoth
esis cannot apply to such a model. According to the OOC,
developing perceptual systems capitalize on linearly re
lated input parameters when organizing representational
maps; speakers produce a linear relation between F2 0ns
and F2Yowel so that the speech perception system can map
them. However, although it has been reliably demon
strated that F2 0nsand F2yowel are consistently highly cor-

related, it is not the case that there is a linear relationship
between F2 ons' F2yowel' and F3 ons' (On the contrary, the
three-dimensional scatterplots presented by Lindblom,
1990, and Sussman, 1991, reveal irregularly shaped re
gions for Ibl, Id/, and Ig/.) If a perceptual system orga
nizes a representational map in the three-dimensional
space ofF2 ons' F2yowel' and F3 ons' it is not exploiting a
linear relationship between its input parameters. The
point here is not that such a representational system is nec
essarily implausible, but rather that it is incompatible
with the 00c. For the OOC to hold, F3 0nswould have to
enter into a higher order representational system that
would take as its inputs the output of the OOC-driven F2
representational subsystem as well as F3 0nsand possibly
other cues such as burst information. (In fact, this type of
model is discussed by Sussman et aI., in press; see their
Figure 17.)

The locus-equation-prototype models were compared
with the exemplar models to determine whether listeners
make specific use of the linearity of points in F2ons-by
F2yowel space. (We stress that the performance of the ex
emplar models should not be taken as a reflection on ex
emplar models as a class; this particular instantiation had
a very restricted input ofonly two variables.) Our results
clearly show no predictive advantage of incorporating
locus equation lines into a model. In fact, the locus equa
tion approach introduces a normalization problem that is
more severe than in the exemplar models. It is notewor
thy that the exemplar model outperformed the locus
equation models when the database included produc
tions ofmultiple speakers, but not when the database in
cluded only the productions of the test speaker. The lines
computed over the productions of six other speakers dif
fered from the test speaker's own locus equation lines,
and thus his tokens did not fit as well to these lines; how
ever, the greater range ofF2 values for tokens ofa given
CV in the larger database apparently compensated for
this somewhat in the exemplar models. For the locus
equation template approach, if an individual speaker's
lines deviate from population lines (as in the case of
Speaker M2), then, for the model to be effective, a pro
cedure must be available that transforms the speaker's
lines to the norms. However, it is not clear that a suffi
ciently powerful normalization procedure could be de
vised. The differences in locus equation line coefficients
among speakers are not simply a consequence of differ
ent vocal tract sizes; as demonstrated in Experiment 1
and elsewhere (e.g., Duez, 1992; Krull, 1989), locus
equation slopes and intercepts are sensitive to a number
of factors that influence degree ofcoarticulatory overlap,
such as rate, stress,and casualness of speaking style. A
normalization procedure would have to correct for all
such factors, even though they may vary within speakers,
even from word to word in continuous speech, as well as
between speakers.

Across all of the analyses, we found the locus equation
model with separate prototypes for the palatal and velar
allophones of Igl (for Igl in the context offront and back



vowels, respectively) to be a consistently better predictor
than the locus equation model with only one 191 tem
plate. This is not at all surprising because the single-line
fit to 191 is relatively poor; many IgV/ tokens fall far off
the regression line while falling close to one of the 191
allophone lines. From a modeling standpoint, having
separate 191 templates is more effective. However, in
Experiment 1, we found higher order systematicity in
second-order locus equations for 19/, and we also found
that the single-category 191 was more clearly distinct from
Ibl and Idl in slope-by-intercept space than were the sep
arate19/-allophonecategories; these findings can be taken
as evidence of19/'s coherence as a unitary category in pro
duction, along with the fact that perceivers hear all 19/s
as members ofone phonological category. Weview this as
an inconsistency in the locus equation model, since it re
quires two lines for 191-allophones in spite ofevidence that
there is regularity captured across all productions of19/.

We conclude our discussion of Experiment 2 by re
turning to the basic premise of the locus-equation-based
model: that the linearity in F2 transitions captured by
locus equations is perceptually relevant. Although our
results are broadly consistent with the possibility that
there are particular regions in F2 space for different con
sonants that are important for perception of consonants,
they do not demonstrate any superiority of a locus equa
tion model over a comparable model that does not use
linear representations. Thus, our findings do not support
the claim that locus equations have perceptual relevance.

GENERAL DISCUSSION

In Experiment 1, we demonstrated that slopes and in
tercepts for a consonant of a given place of articulation
can change systematically under various speech manip
ulations, but that slope and intercept taken together re
main distinctive for place, thus supporting Sussman's
claim (e.g., Sussman et al., in press). However, we found
systematic variability in F2 0ns and F2yowel values for a
given CV under the different manipulations, which is
captured by second-order locus equations, and we ar
gued that such systematicity within a consonant class is
not predicted by the OOc. We also argued that the lin
earity captured by locus equations is not unique, because
other examples of linearity are found in the outputs of
acoustic analyses of stop consonants (such as Fl locus
equations and SOLEs) that do not serve a role in percep
tion. Finally, we presented an account of the source of
linearity in F2 values for stop consonants different from
Sussman's Ooc. We proposed that productions are
roughly linear because coarticulation resistance is
roughly equal for a given consonant in different vocalic
contexts. In Experiment 2, we tested the perceptual rel
evance of locus equations by comparing subjects' clas
sifications ofCV tokens with their bursts removed to the
predictions of a model using locus-equation-derived
prototypes. We found that the locus equation model did
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predict an above-chance proportion ofsubject responses,
but that it left a large amount ofthe variance in responses
unexplained. Furthermore, the model did no better than
an alternative model that used the same F2 information
but did not exploit the linearity of F2 values. Here, we
will further discuss the findings of both experiments in
reference to the OOc.

Sussman et al. (in press; see also Sussman et al., 1995)
propose that, over the course of evolution, humans have
exploited a predisposition of neural auditory systems
(like those found in the bam owl and bat) to encode lin
ear relationships in acoustic signals for the purpose of
consonant perception. In this system, certain neurons re
spond to particular, linearly related, pairings ofF2 0ns and
F2yowel values, extracted from a CV speech signal; when
activated, they send information to a higher order system
for the identification ofa particular consonant. Sussman
et al. (in press) argue that such a system has been able to
develop because linearly related acoustic input param
eters-namely, F2 0ns and F2YOwel-are available to be
mapped. Thus, speakers have been subjected to an evo
lutionary constraint (the OOC) to produce CV syllables
such that F2 0ns and F2yowet are linearly related, in order
to facilitate development of these representational maps.

There are some differences between the proposed con
sonant perception system and the bat and bam owl audi
tory systems motivating it that weaken the proposed
analogy (cf. Pinker & Bloom, 1994). In particular, the
higher order properties captured by the nonhuman sys
tems (sound-source azimuth in the bam owl, object ve
locity in the bat) are continuous functions, not discrete
categories like stop consonants. Secondly, these systems
deal with perfect linear regressions; that is, by the laws
ofphysics, a given Doppler shift for a given frequency in
fallibly signals a particular relative object velocity (at
least in the case of the head-on approach); a particular
phase shift for a particular frequency perfectly signals
one interaural time difference, and thus one object loca
tion. Accordingly, they differ from the good, but far from
perfect, fits of speech tokens to locus equation lines. In
addition, locus equation lines, unlike Doppler-shift and
phase-shift functions, are not parallel; a particular pair
ing ofF2 values will not uniquely correspond to a single
consonant category where the lines cross. Recall that
locus equation metrics fail to classify speech tokens per
fectly, achieving accuracy rates of only up to 80% (if
speaker normalization is allowed). Finally, the multiple
frequency-phase pairs for bam owls and the multiple fre
quency shifts for bats that constitute the linear relation
ships occur simultaneously in a stimulus, unlike in speech,
where only one F2ons-F2yowel pair occurs at a time. That
is, there is linearity in the relation of acoustic variables
that are contemporaneous in the stimulus input to bats
and bam owls, but are historical in the stimulus input to
humans.

Given the lack of parallelism between the proposed
consonant system and the bat and barn owl systems,
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there should be strong independent empirical support for
the hypothesis ofa neurally instantiated locus-equation
based representational system. For example, a finding
that our perceptual data were better fit by the locus equa
tion model than the exemplar model would have pro
vided such support. However, we found that the exem
plar model, which does not assume the presence oflinear
prototypes, predicts subject classifications at least as
well as (and marginally better than) a locus-equation
based account. Furthermore, the results from Experi
ment 2 demonstrate that, if the perceptual system does
have linear representations, their contribution to conso
nant perception is limited. The linear-prototype models
at their most powerful (with separate /g/-allophone lines
and a charitable simulation ofspeaker normalization) ac
counted for only about half of the variance in the re
sponse patterns by distance scores, and they predicted
only about 60% of subjects' responses themselves. Fur
thermore, these results were for syllables with their bursts
removed. If it is acknowledged that burst information
contributes to consonant perception (Sussman et aI.,
1991), then the role of the transition information should
be greater for perception of these stimuli when the bursts
are removed. Thus, the perceptual relevance of locus
equations for intact syllables would be even smaller than
that observed for the burstless stimuli.

To summarize, we have argued that F20ns and F2yowel
differ fundamentally from the input parameters used by
auditory systems documented to utilize linear functions.
F2 0ns and F2yowel are insufficient to distinguish stop
place fully, and, compatibly, we found in Experiment 2
that if listeners use these values as acoustic cues in stop
place categorization, the cues' contributions are moderate
at best. Unlike the linear relationship of the frequencies
of a pulse and its Doppler-shifted echo, which is suffi
cient for the bat to determine object velocity, F20ns and
F2yowel require supplementation from other acoustic pa
rameters, such as burst spectra or F3 ons' We therefore
question the plausibility ofthe OOC, on the grounds that
the perceptual utility of F2 0ns and F2yowel is not great
enough to have merited the imposition of an evolution
ary constraint on speech production. Furthermore, we
believe that the findings of good fits to Fl locus equa
tions and to second-order locus equations weaken the
theoretical motivation for proposing such a constraint,
because they provide examples of linearity that are un
likely to be due to perceiver-driven constraints.

Alternative Accounts
We have claimed that our results cast doubt on the

plausibility of the OOe. We also concluded that the ev
idence for the perceptual relevance of the linearity cap
tured by locus equations is weak; the locus-equation
prototype models' performance accounting for subjects'
response patterns is modest, and it is no better than that
of an alternative model without linearity built in. What
sort of model, then, would be superior? Because we de-

signed our perceptual experiment with the particular aim
of testing the locus equation account, our results do not
offer specific suggestions on how to build a more suc
cessful model. However, given the general acceptance
that F2 transition information is important for stop con
sonant identification, the model's relatively poor perfor
mance using this information is significant. It suggests
that using F20nsand F2yowel as relational cues that have
a privileged processing stage (independent from the con
tributions ofother sources ofinformation) is a flawed ap
proach. There are nonexclusive possible remedies. One
is to take F2 information in the context of other sources
of information, such as F3 and (although it is not relevant
to the results ofour experiment) the burst. Eek and Meis
ter (1995) have suggested that perception is guided by
the relation of the vowel's F2 to the strongest spectral
peak in the burst. Earlier, Kuhn (1975, 1979) claimed that
whichever formant corresponds to the front vocal tract
cavity resonance will have greater perceptual relevance,
and that the burst should be treated as continuous with
the front cavity resonance. Dorman et al. (1977) added
that the burst will be more closely tied to the major spec
tral peak of the vowel when transitions are shorter and,
conversely, more independent of the major spectral peak
when transitions are extensive, and that the relative con
tributions of the burst and transitions to perception vary
according to these relationships. In another vein, Fant
(1973), Lindblom (1990), Krull (1990), and Sussman
(1991) have used static acoustic cues from F2 and F3
(andF4, for a Swedish contrast, in Krull, 1990), to form
acoustic spaces corresponding to listeners' classifica
tions. (As we discussed earlier, the latter set ofapproaches,
which create multidimensional spaces utilizing a number
of acoustic cues, is distinct from approaches in which the
output ofan F2 -processing system is integrated with the
outputs of systems that process other cues, such as the
model schematized by Sussman et al. [in press). We ar
gued that the former class ofmodels is inconsistent with
the premise of the OOe.)

Another remedy is to capture the information in F2
transitions in some other way than by two static values.
It may well be the case that there is relevant information
for consonant identification in the trajectory of the tran
sitions that is lost in the F2ons-F2yowel metric (see, how
ever, Sussman et aI., 1995). It should be borne in mind
that the static F2-parameter models (linear prototype
and exemplar) did capture some variance in subject clas
sifications and were well above chance in predicting sub
jects' responses. In other words, the models' bases for
misclassifying a token corresponded to some extent to
that of the subjects. This may suggest that the models use
a correct source of information but under-sample it. Pols
and Schouten (1978) found that burst removal impaired
identification performance on voiceless stops more than
on voiced stops, and that performance on the voiceless,
but not voiced, stops was improved by having noise pre
cede the onset. They concluded that the abrupt acoustic



onset brought on by burst removal masks the early pitch
periods; furthermore, they offered the interpretation that
the voiced stops are less affected because the transitions
are longer and carry information over a greater temporal
extent. This view runs counter to the assumption that
only the frequency at the onset of voicing is crucial for
place identification.

In opposition to the view that acoustic parameters are
treated as cues to be processed in order to assign cate
gories to the speech signal is the ecological, or direct
realist, theory of speech perception (Best, 1993, 1995;
Fowler, 1986, 1994). In the direct-realist perspective, lis
teners perceive the place of articulation of a consonant
because it is specified by the acoustic signal. That is, the
theory rejects the popular assumption that phonemes are
mental constructs whose representations are accessed by
matching them to cues extracted from an acoustic signal.
Instead, the view argues that phonemes are vocal tract
events, and that these events are the objects ofperception;
information specifying the event is made available to the
perceiver via the acoustics. The approach does not make
reference to mental representations of phonemes, fol
lowing the view that because the proximal stimulation is
sufficient to support perception (a central assumption of
the ecological approach), representations are not neces
sary (Shaw & Bransford, 1977; Shaw & Turvey, 1981).

On the surface, our results may appear to challenge di
rect realism, because they do show a moderate tendency
for subjects to misidentify consonants when a token is
better matched to a different consonant according to an
acoustic "cue" (F2); such findings are generally consis
tent with a representational approach. In fact, if the
acoustic information specifies place of articulation, there
should not be any misidentifications in the direct-realist
view (so long as the relevant information is picked up by
the perceiver). However, the errors occurred on syllables
with their bursts removed. From the realist stance, tran
sitions with burst (i.e., an unaltered acoustic signal)
specify place of articulation, but transitions alone do not
necessarily. Transitions, artificially separated from the
burst, may misleadingly index a different vocal tract
event from the one that produced the signal. In other
words, a different vocal tract event may produce an acous
tic signal more like the (artificially burstless) transitions
from the actual event than the event itself. Perceivers
would thus be expected to misidentify consonants on the
basis of this information.

Although locus equations are associated with repre
sentational approaches to perception, they are relevant
to direct realism and, more broadly, to the class oftheo
ries that claim vocal tract gestures as the objects of
speech perception (e.g., Liberman & Mattingly, 1985;
Whalen, 1989), because ofthe connection between locus
equations and coarticulation resistance. In gestural the
ories of speech perception (Fowler, 1986, 1996; Liber
man & Mattingly, 1985), vocal tract gestures (which
constitute phonetic segments) are units of production
and of perception. For gestures to be perceived, the lis-
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tener must parse the effects of one gesture in the acous
tic signal from that of neighboring gestures, because the
gestures have overlapping acoustic consequences due to
coarticulation (see, e.g., Fowler & Brown, 1997). Thus,
in a CV syllable, there is information in the burst and
formant transitions that is parsed and attributed to the
consonantal gesture, and information that is parsed and
attributed to the vowel gesture (see, e.g., Fowler, 1984).
Because gestures differ in their coarticulation resistance,
they differ in their degree of coarticulatory overlap with
their neighbors and therefore also in the degree to which
their acoustic consequences are intertwined with the
acoustic consequences of their neighbors (Recasens,
1985). Thus, a low-coarticulatory-resistance (high
overlap) gesture requires that more extensive acoustic
consequences of the overlap be parsed in perception than
does a high-coarticulatory-resistance one.

If locus equations are indices of coarticulation resis
tance, they also index (indirectly) the parsing necessary for
a particular syllable. (This is essentially the point made
by Sussman et al. [1995], when they wrote that locus equa
tions reveal a "vowel-normalizedF2 transition" [po 3112]
feature of stop consonants, in which "vowel-context
induced acoustic variability is 'absorbed'" [p. 3123].)
However, locus equations index coarticulation resistance
by relating the extents of F2 transitions for a consonant
in different vowel contexts. In other words, they are an ex
trinsic measure of coarticulation resistance-that is, a
measure of the coarticulation resistance of a given token
that requires reference to other tokens. However, the direct
realist parsing approach requires an intrinsic measure of
coarticulation resistance-that is, a measure of the resis
tance of a token that can be determined on the basis of
properties of that single token, without any external ref
erence. This is necessary because in a realist theory, per
ception does not occur by comparing a presented token to
stored information. An intrinsic index of coarticulation
resistance must provide information about how much in
formation should be parsed out for the consonant and the
vowel, respectively, and allow for identification of the
consonantal and vocalic gestures. This requires that the
natural parsing lines in the acoustic signal must some
how make themselves available to the perceiver. Admit
tedly, we cannot suggest what this information might be,
or how it is available to perceivers. Ideally for the account,
however, there should be a higher order variable that cap
tures this information, possibly taking the form of a
function using dynamical information in the burst and
transition. The crucial point is that there would not be a
different function for each place ofarticulation, such that
their outputs must be compared and the best fit selected,
as in the locus equation approach.

Conclusions
To summarize, we induced changes in speaking style

in productions ofCV syllables that resulted in systematic
changes in locus equation slopes and intercepts for Ibl,
Id/, and Igl in Experiment 1. In spite of these slope and
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intercept changes, the three consonants fell in distinct re
gions in slope-by-intercept space, although less clearly
so when /9/ was divided into separate allophones for
front- and back-vowel contexts. Thus, the findings ofour
production study generally support Sussman's claim
(e.g., Sussman et aI., in press) that slope and intercept
are distinctive for place of articulation, at least for stop
consonants. We also found that the locus equation slopes
and intercepts ofeach consonant under the different ma
nipulations could be fit to second-order locus-equation
regressions; we argued that if these SOLEs hold up as
robust phenomena, they may be problematic for the
OOC theory. In our perception experiment, we found that
a computational model ofconsonant perception based on
a locus equation account proposed by Sussman et al.
(1991) predicted subjects' classifications at above-chance
levels, but that its overall predictive ability was modest
at best. Furthermore, it performed no better at predicting
responses than an exemplar-based model that did not
capture the linearity ofF2 0ns and F2vowel' We concluded
that these results argue against the postulation of per
ception models in which locus equation linearity is as
sumed to play an important role. Furthermore, we ques
tioned the appropriateness ofmodels in which F2 0ns and
F2vowel are treated as cues processed separately from
other acoustic cues, and moreover those in which the F2
transition is reduced to these two static values. Finally,
we paired our perception findings with other findings in
the production domain (in particular, the fact that good
fitting locus equation functions can be found for Fl tran
sitions) to argue against the plausibility ofthe OOC claim
that the linearity in F2 0ns and F2vowel is a consequence
of speakers' meeting the demands ofperceivers. Instead,
we proposed that Fowler's (1994) uniform coarticulation
resistance hypothesis, in which perception plays no role,
is better suited to explain locus equations.
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NOTES

I. Sussman and Shore ( 1996), in contrast, reported that Idl and Izl did
not differ significantly in slope or intercept. However, 14 of the 22 sub
jects reported by Sussman and Shore had a steeper slope for Idl than for
Iz/, the direction of difference found by Fowler (1994), suggesting that
the lack of significance is due to a lack of power. Sussman and Shore
further found that a discriminant function analysis successfully distin
guished Id/, 1z1, and other coronals, taken as a group, from labials and
velars. However, they did not test whether a discriminant function
analysis would be able to distinguish between different consonants
within the coronal class. In fact, when plotted in slope-by-intercept
space, most of the Idl and izl productions reported by Sussman and
Shore fall in distinct regions, indicating that locus equation coefficients
do distinguish consonants within a place class.

2. We saw no possible harm in using ourselves as subjects. Our aim
was to vary coarticulation resistance and therefore locus equation slope
as much as possible. The only way we as subjects could bias results in
the intended direction was to have followed our own instructions espe
cially well.

3. In order to address a reviewer's concern that the slope and intercept
changes could have been due to changes in F2vowel as well as in F2 on,'
we recomputed the slopes and intercepts for each speaker in two ways.
First, we took the F2 vowel values from the normal productions and re
gressed the F2 on, values from the high and low productions on them,
and second, we took the F2nn, values from the normal condition and re
gressed them on the F2vnwel values from the high and low conditions.
To the extent that the changes in slope and intercept in the high and low
conditions from the normal condition are independent from changes in
F2 vowel' the recomputed locus equations using the normal-production
F2 vowel values should be similar to the true locus equations for the high
and low conditions. Furthermore, to the extent that the slope and inter
cept changes are related to changes in F2 o"" the recomputed locus
equations using the normal-production F2 0ns values should be more
similar to the locus equations for the normal condition. In fact, both
outcomes were obtained: in the first analysis, the mean slopes and in
tercepts in the high and low conditions (averaged across consonants)
were .828 and .718, and 36\.9 and 502.2 (the original means were .823,
.693,328.0, and 560.3); in the second analysis, the means were .710,
.696,510.9, and 569.2. Thus, there was little change in the first analy
sis, and substantial change in the second (for the high condition); more
over, in the second analysis, the recomputed means were very similar to
those ofthe normal condition (.726 and 500.8). This indicates that the
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observed slope and intercept changes due to the manipulations were, in
fact, primarily a consequence of changes in F2 on, '

4. There is a straightforward algebraic proof ofthis. The intersection
of two lines v, = mix i + b, and v, = mzxz + bz is

The slope of the second-order line (formed by plotting the first-order
slopes of these points on the x-axis and the first-order intercepts on the
y-axis) is

and thus equals (-I) multiplied by the x-coordinate of the intersection
of the two lines. The intercept ofthe second-order line can be determined
by inserting the coordinates (x I ,y I) into the general equation

to equal

Substitution offirst-order slopes for xs and intercepts for ys reveals this
to be identical to the j-coordinate of the intersection point.

5. Standard error of estimate (mean squared variance off the regres
sion line) is a better basis for comparison than RZ, because there is more
variance in F20ns than there is in FI ons (covering a range ofabout 1400 Hz
rather than about 500 Hz). A given amount ofdeviation offof a line for
a shallow slope results in a lower RZ than does the same amount of de
viation for a steeper slope.

6. An exception is /g/, which uses the tongue body, but shows large
changes in F2 on, with changes in F2 vowel ' /g/ may not resist coarticula
tion in a language such as English, because a shift in its place of artic
ulation due to coarticulation with a vowel does not make it confusable
with any other stop in the language. Although /d/ uses the tongue tip, not
the tongue body, Recasens (1985) argues that the physical linkage of
the tongue tip to the tongue body can cause the achievement ofa tongue
tip gesture to constrain movement ofthe tongue body as well.

7. Sussman (e.g., Sussman et al., 1991) does acknowledge that locus
equations cannot fully support consonant perception and suggests that
the outputs of the F2-processing system interact with outputs of other
cue-processing systems (for F3 and burst). Thus, the model would not
be expected to predict subjects' responses perfectly. However, because
locus equations are the backbone of the model, and presumably the pre
dominant cue, they should be expected to predict a large proportion of
responses.

8. Only the normal and high-overlap tokens were used to limit the
number oftokens subjects listened to, and because the low-overlap con
dition was not effective in changing the locus equation slopes. We chose
tokens produced by Subject M2, who showed the greatest overall change
in slopes from normal to high productions for the three consonants and
thus offers the greatest degree of variability in token space.

9. Hintzman uses 3 as the exponent. We used higher power exponents,
however, to reduce further the contributions ofall but the closest matches.
This should improve the performance ofthe model. However, recall that
the exemplar model is still constrained to use the same information that
the linear-template model uses. Our aim is to see whether a model can
perform as well as these without any use of prototypes.
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