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Notes and Comment

Likelihood-ratio decision strategy for
independent observations in the
same—different task: An approximation
to the detection-theoretic model

R. JOHN IRWIN and MICHAEL J. HAUTUS
University of Auckland, Auckland, New Zealand

An optimal decision strategy for deciding whether two
things are the same or different is to adopt a likelihood-
ratio criterion. The parametric equations for the receiver
operating characteristic (ROC) based on the likelihood-
ratio strategy when observations are independent are
complicated; they require the numerical evaluation of a
double integral. An approximation to the parametric
equations for the likelihood-ratio strategy was developed.
This approximation takes the form of a pair of equations
that describe ROCs virtually indistinguishable from those
of the full model.

The same—different psychophysical task has recently
been the subject of considerable theoretical and experi-
mental analysis (see, e.g., Dai, Versfeld, & Green, 1996;
Hautus, Irwin, & Sutherland, 1994; Macmillan & Creel-
man, 1991). Part of the reason for this interest is that there
are at least two different decision strategies that can be
used to decide whether two stimuli are the same or differ-
ent. One strategy is to use the difference between the two
observations on a trial as the decision variable; Sorkin
(1962) first provided a detection-theoretic model for the
task on the basis of that decision variable. Later, however,
Johnson (1980) and Noreen (1981) demonstrated that if
the observations on a trial are assumed to be independent,
a decision variable based on likelihood ratio provides op-
timal performance in the task.! Unfortunately, however,
the parametric equations that define the receiver operating
characteristic (ROC) for the likelihood-ratio strategy are
not easy to evaluate because the equations for the hit and
false-alarm rates entail a double integral with no closed-
form solution. Here we provide a simple approximation to
these equations, an approximation that contains only the
well-known normal probability distribution function.

Assumptions and Terminology
We assume that the sensory effects of a stimulus can
be represented by a normally distributed unidimensional
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random variable. The Gaussian assumption can be justi-
fied on several grounds (Green & Swets, 1966); it is es-
pecially appropriate for the standard experimental ar-
rangement in the same—different task, in which two stimuli
are presented separately (Laming, 1986). We also as-
sume that the variances of the Gaussian distributions as-
sociated with the two stimuli are equal (again, see Laming,
1986, for the basis of this assumption), that their covari-
ance is zero (in other words, that the two variables are in-
dependent), and that there is no systematic effect related
to the two presentation intervals (Noreen, 1981). The dis-
criminability of the two stimuli can be represented by the
detection-theory index, d’, the distance between the means
of the Gaussian distributions in units of their common
standard deviation.

We suppose that the observer adopts a strategy by im-
plementing a decision rule. For the same—different task,
only two responses are available (“same” and “different”),
and the decision rule specifies how the information
available from a particular observation should be classi-
fied in terms of those responses. In what follows, we adopt
the notation of Macmillan, Kaplan, and Creelman (1977).
In the same—different task, there are two classes of stim-
uli, A and B, and an instance from either class can be pre-
sented in two separate observation intervals that are con-
tained in a trial.2 If the instances are drawn from the same
class in each interval, we use the notation <AA> or <BB>
to represent this type of trial, and if they are drawn from
different classes, we use the notation <AB> or <BA>. The
stimulus configurations in these two types of trials are
denoted S, for trials when the two stimuli are the same
and S, for trials when they are different.

The Likelihood-Ratio Strategy

Noreen (1981) derived several decision rules in terms
of likelihood ratio for the same—different task. For the stan-
dard experimental design in which S, and §, are pre-
sented with equal probability and each observation on a
trial is independent, Noreen pointed out that the decision
rule expressed in terms of likelihood ratio takes an intui-
tively plausible form: The observer should respond “same”
if both observations on a trial were more likely to stem
from A stimuli than from B stimuli, or if both were more
likely to stem from B stimuli than from A stimuli; other-
wise the observer should respond “different.”

When the underlying probability densities are Gauss-
ian, as assumed here, the likelihood ratio, L(x), can be ex-
pressed in terms of the discriminability index, d”, by mak-
ing use of the relation L(x) = ¢4 (see Green & Swets,
1966, Equation 3.3b). Noreen (1981) applied this rela-
tion to show that for the Gaussian case the likelihood
ratio for the same—different task is given by
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A particular value of the likelihood ratio, 3, can then be
adopted to achieve some goal, such as maximizing the per-
centage of correct decisions. An optimal value of S,
other things being equal, is equal to the ratio of the prior
probability of presenting S, trials to the probability of
presenting S| trials.

Figure 1 illustrates the decision space for the same—
different task. Each axis represents the strength of evidence
arising from each of the two observation intervals on a
trial. The evidence over many trials for a particular stim-
ulus sequence (e.g., <BA>) is bivariate-normal. The cen-
troids of adjacent distributions are separated by d’ and
the concentric circles represent loci of equal probability
density for each distribution. An example of a particular
likelihood ratio is also shown. The equal likelihood-ratio
contour for 8 = 2 is shown by the two solid curves, one
in the upper right quadrant and one in the lower left quad-
rant.3 An observer who adopted a criterion of § = 2
would call all pairs of observations falling beyond the solid
contour in the upper right quadrant or below the solid con-
tour in the lower left quadrant “same,” and all other pairs
of observations “different.” The axes of Figure 1 represent
yet another pair of likelihood ratios for the special case
when f3 = 1. For this special case, any point falling in the
upper right quadrant or the lower left quadrant would be
judged as arising from the same stimuli, and any other
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Figure 1. The centroid of a distribution is at the center of a set
of concentric circles. The circles show loci of equal probability
density for each distribution. The solid curves correspond to a
likelihood ratio, 3, of 2, and the broken curves to a likelihood
ratio of /2. When 3 = 2, for example, observations falling beyond
the criterion in the upper right quadrant or below the corre-
sponding criterion in the lower left quadrant would be called
“same”; other observations would be called “different.” The solid
lines represent an approximation to the likelihood ratio curves
for §= 2.

point would be judged as arising from different stimuli.

In the example illustrated in Figure 1, for which 8> 1,
the hit rate for the likelihood-ratio criterion is the sum of
two components: (1) the probability that an observation
(x,,x,) falls beyond the criterion in the upper right quad-
rant, given an <A A> trial; and (2) the probability that an
observation falls below the criterion in the lower left quad-
rant, given an <AA> trial.

If we denote the bivariate normal density function with
unit variance for <AA> trials as f, ,(x,,x,), then the hit
rate (sum of component probabilities [1] and [2])* is
given by the double integral of x, and x, over the region
for which L(x) > [3; this represents the volume under the
<AA> density function that lies beyond the likelihood
ratio, 3 (in both the upper right and lower left quadrants).
To specify the limits of integration, substitute 3 for L(x)
in Equation 1 and solve for x,. Next, note that the limit of
x, as x, approaches infinity (or equivalently, for this case,
of x, as x, approaches infinity) is

d’x, _
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X{—>o0 x>\ d’ e — B d

so that In( B)/d “is one limit of integration.> The other limit
is given by x,(x,); hence the hit rate is equal to
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Although Equation 3 can be simplified to some extent,
a closed-form simplification is not available. Therefore,
the hit rate for the likelihood-ratio criterion in the same—
different task can only be evaluated numerically.

A further benefit of reflection symmetry is available
for the calculation of the false-alarm rate: The volume be-
yond the contour in the upper right quadrant given <AB>
is equal to that beyond the contour in the lower left quad-
rant given <AB>. Hence the false-alarm rate is given by

p("Same” | (AB) v {BA))

oo

=2 j ,J:(X]) Jag(xp, xo)dx,dx,
In(B)/d

C))

Again, however, a closed form simplification of Equa-
tion 4 is not available.

Although Equations 3 and 4 are unwieldy enough on
their own, they are still insufficient to specify the hit rate
and false-alarm rate for the likelihood-ratio decision strat-
egy for any value of d”and f. This is because it is only
when 3> 1 that the contours of equal likelihood ratio lie
in the upper right and lower left quadrants of Figure 1—
the only case that we have considered so far, When f< 1,
the contours lie in the lower right and upper left quadrants,
as illustrated for § = 2 in Figure 1.



Fortunately, however, we can take advantage of some
symmetrical properties of the relations among the various
probabilities that need to be computed because likeli-
hood ratios of Sand 1/Bare identical except for the quad-
rants in which they lie. Inspection of Figure 1 shows that
the false-alarm rate for B> 1 is identical to the miss rate
for a criterion of 1/, and so the hit rate for a criterion of
1/B (the complement of the miss rate for that criterion)
is equal to the correct-rejection rate (the complement of
the false-alarm rate) for a criterion of 8. Similarly, the miss
rate for B> 1 is equal to the false-alarm rate for a crite-
rion of 1/8.

An Approximation for the
Likelihood-Ratio Strategy

We now present an approximation for the likelihood-
ratio decision strategy. The approximation is analogous
to one suggested by Nolte and Jaarsma (1967) for the op-
timal rule in the detection of one of m signals in Gauss-
ian noise (see also Green & Birdsall, 1978). The approx-
imation for =2 is illustrated by the solid straight lines
in Figure 1: The approximation consists of two pairs of
intersecting lines positioned at the asymptotic values of
x, and x, assumed by the likelihood-ratio criterion.® This
decision strategy, like that of the likelihood-ratio strategy,
follows a conjunctive rule, in contrast to the disjunctive
rule of Green and Birdsall. For this approximation to an
optimal criterion, 3, the observer accepts two sample pre-
sentations as the same if they both are less than —In(B)/d”
or if they both exceed In(f)/d’, which is the asymptotic
value of x, as x, approaches infinity and of x, as x| ap-
proaches infinity for any value of 8 and 4’ (see Equa-
tion 2).

For the approximation, when 8> 1 the optimal strat-
egy for the observer is to favor the response “different”
and, accordingly, respond “same” only if both stimuli are
quite likely to be <A> (both x, and x, exceed In(B)/d")
or if both stimuli are quite likely to be <B> (both x, and
x, are less than —In(f)/d’). For < 1, the optimal strat-
egy for the observer is to favor the response “same” and,
accordingly, respond “different” only if one observation
is quite likely to be a <B> while the other is quite likely
to be an <A>. (Noreen, 1981, pointed out that it might be
easter to think of the model as unidimensional with two
criteria that set up three regions: “likely to be a <B>”;
“ambiguous”; and “likely to be an <A>"; such models
have been widely used in other information processing
tasks, such as word recognition. From this point of view,
for B> 1 the observer should respond “same” only to
classifications of “AA” or “BB,” and respond “different”
otherwise. Conversely, when <  the observer should re-
spond “different” only to classifications of “AB” or
“BA,” and respond “same” otherwise.)

To compute the hit rate and the false-alarm rate for the
approximation, we proceed as we did for the likelihood-
ratio strategy, except that now the finite limit of integra-
tion is the same on each integral; that is, either In(8)/d’ or
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Figure 2. Receiver operating characteristics on z-coordinates
for the likelihood-ratio decision strategy (solid lines) and its ap-
proximation (broken lines) for various values of d¢. The two sets
of lines are barely discriminable in the figure for the values shown.
Note that, although at a first glance the curves appear to be almost
linear, close inspection reveals a degree of curvature that varies
depending on the value of d¢.

—In(B)/d’. The hit rate based on the approximation for
B> 1 can be represented as

p(’Same” | (Ad) v (BB)) = [l - q’(% ) %')]2

. [1 _ q,(lrm . 1)]
d 2
&)

where @(-) is the normal probability distribution function.

Just as for the likelihood-ratio strategy, the total false-
alarm rate for the approximation for the case when > 1
is equal to twice the false-alarm rate for either stimulus
pair <AB> or pair <BA>. The equation for the false-alarm
rate for the approximation turns out to be

p("Same” | {(4B) v (BA4)) = 2 [1 - q)(? - d?')]

[1 - @(m + iﬂ (6)
d 2

Again, Equations 5 and 6 are the parametric equations
for half the ROC—that is, for the ROC when > 1. Analo-
gous reasoning to that used in determining the symme-
try of the ROC for the likelihood-ratio strategy shows
that, for the approximation, the ROC is also symmetric
about the negative diagonal of the ROC square, so that a
complete ROC can be constructed by using Equations 5
and 6 to calculate the ROC for 8> 1. The obtained curve
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can then be reflected about the negative diagonal to ob-
tain the curve for f< 1. Evaluating Equations 5 and 6 does
not pose any special problems because the only compli-
cation in their numerical evaluation involves the well-
known normal probability distribution function.

We are now in a position to compare the ROCs for the
likelihood-ratio strategy with those of its approximation.
For this comparison, we show the ROCs on z-transforms
of the hit rate and false-alarm rate. As is well known, ROCs
from Gaussian density functions are straight lines on these
coordinates, and it turns out, as Macmillan and Creel-
man (1991) have stated and Dai et al. (1996) have con-
firmed, that same--different ROCs based on likelihood
ratio are nearly straight lines with unit slope on these co-
ordinates. Figure 2 depicts some ROCs for the likelihood-
ratio strategy and its approximation for d” values of 1, 2,
3, 4, and 5. There are two ROCs illustrated in Figure 2
for each d’ value. The approximation is uncannily close
to the likelihood-ratio ROC—so much so that for the ex-
amples illustrated in Figure 2, it is virtually impossible to
discern a difference between the two sets of ROCs. From
this it can be concluded that the approximation is an ex-
cellent one.

Conclusion

Use of the approximation developed in this paper obvi-
ates the need to perform numerical evaluations of inte-
grals (except the normal probability distribution function,
for which there are efficient algorithms). Hence, the task
of fitting the approximation to the model is fairly stan-
dard and not computationally intensive. The use of the
approximation is justifiable because the approximation
is an extremely good one over a wide range of parameter
values.
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NOTES

1. More recently, Dai et al. (1996) have shown that the two previ-
ously suggested decision strategies for the same—different task lie at
the extremes of a model, on the basis of likelihood ratio, that allows
observations to be correlated. The model we discuss (and term the
“likelihood-ratio model™) corresponds to Dai et al.’s model for the ex-
treme case when there is no correlation between observations.

2. The intervals can be separated in time or space, depending on the
nature of the task.

3. The dashed curves show the likelihood-ratio contour for f = V2.
the reciprocal of 8 = 2. In general, the likelihood-ratio contour for 1/
is a reflection of that for 8 about the line X, = 0.

4. The hit rate for <AA> trials is equal to that for <BB> trials due
to reflection symmetry about X, = —X in the decision space. This per-
mits the <BB> distribution to be neglected in the calculation of the hit
rate.

5. The value In()/d” is also the criterion adopted in the yes—no task
when criterion location is defined in terms of the number of standard
deviations from the equal-bias point (Noreen, 1981, p. 246, Decision
Rule; Macmillan & Creelman, 1991, Equation 2.10).

6. This modification to the criterion has the effect of increasing
both the false-alarm and hit rates by a small proportion when 8> 1 and
reducing these rates by a small proportion when S < 1. The effect is to
move the point specified by a particular § on the receiver operating
characteristic (ROC) closer to the minor diagonal. However, the point
does not deviate appreciably from the ROC curve for the particular
value of d’. When f§ = 1, the approximation and the likelihood-ratio
model are equivalent.
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