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Predicting individual false alarm rates and
signal detection theory: A role for remembering

IAN G. DOBBINS, WAYNE KHOE, ANDREW P. YONELINAS, and NEAL E. A. KROLL
University of California, Davis, California

The relationships between hit, remember, and false alarm rates were examined across individual
subjects in three remember-know experiments in order to determine whether signal detection theory
would be consistent with the observed data. The experimental data differed from signal detection pre-
dictions in two critical ways. First, remember reports were unrelated, or slightly negatively related, to
the commission of false alarms. Second, both response types (remembers and false alarms) were
uniquely related to hit rates, which demonstrated that the hit rate cannot be viewed as the result of a
single underlying strength process. These results are consistent with the dual-process signal detection
model of Yonelinas (1994), in which performance is determined by two independent processes—
retrieval of categorical context information (remembering) and discriminations based on continuous
item strength. Remember and false alarm rates selectively tap these processes, whereas the hit rate is
jointly determined. Monte Carlo simulations in which the dual-process model was used successfully re-
produced the pattern in the experimental data, whereas simulations in which a signal detection model,
with separate “old” and “remember” criteria, was used, did not. The results demonstrate the utility of

examining individual differences in response types when one is evaluating memory models.

Typically, memory researchers use the theory of signal
detection in an attempt to remove the unwanted effects of
response bias in comparing accuracy across experimen-
tal conditions or different subject groups (for a review,
see Macmillan & Creelman, 1991). In such instances, it
is not the theory itself which is of interest, but rather the
effects of encoding manipulations or group differences
(e.g., control subjects vs. patients with neurological dam-
age) on a theory-based measure of accuracy—d’. Another
recent approach has been to use the theory itself as an ex-
planation of dissociations in response types across dif-
ferent remember—know studies (e.g., Donaldson, 1996).
The remember—know paradigm, originally developed by
Tulving {1985), requires subjects not only to select which
items they believe are “old” during recognition testing,
but also to select one of two responses regarding the con-
scious basis of why they believe a particular item is in fact
old. In the case of “remember” responses, subjects are
assumed to access recollective information regarding pre-
vious thoughts, feelings, or perceived events that have oc-
curred during their earlier encounter with the item. If they
are unable to retrieve such information but have a strong
sense that the item was previously studied, they are in-
structed to respond “know.” A common example of “know-
ing” often provided to subjects is the phenomenon of see-
ing someone who strikes one as highly familiar, but being
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unable to identify the contextual basis or source of this
familiarity (Mandler, 1980).

Remember—know studies have led to a myriad of dis-
sociations between remembering and knowing responses
(for a review, see Rajaram & Roediger, 1996). Such dis-
sociations are consistent with the assertion that remem-
bering and knowing reflect different cognitive processes
or states of consciousness. However, Donaldson (1996)
presented a slight modification of signal detection theory
that could accommodate dissociations of remembering
and knowing reports without postulating different under-
lying memory processes. This model, shown in Figure 1,
will be referred to as the two-criterion signal detection
model.

The model is a standard signal detection model with
two strength criteria: one for determining an item as old
(C,) and another more stringent criterion (C,) for pro-
viding remember responses. More specifically, “items
that lie above that criterion [C,] are identified as having
previously occurred (i.e., are given a yes response). A
second criterion is then established that divides the yes
responses into those above the new criterion, which get
labeled ‘remember,” and those below it, which get labeled
‘know’ ” (Donaldson, 1996, p. 524). In addition to the two
criteria, separate groups of subjects (each with a similar
overall accuracy) can be modeled as more or less conser-
vative in their responses. The top, middle, and bottom pan-
els of Figure 1 represent conservative, neutral, and liberal
groups of subjects, respectively. As one goes from the most
to the least conservative groups in this particular example,
it can be seen that the correct remember rate increases,
whereas the correct know rate decreases. In contrast,
both incorrect remember and know responses increase
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Figure 1. The signal detection model with old/new and remember criteria.
Top, middle, and bottom panels represent conservative, neutral, and liberal ob-

servers/groups, respectively.

across the groups. Thus, the model is quite flexible, and it
has had considerable success in describing the outcomes
of a number of remember—know studies (e.g., Hirshman
& Henzler, 1998; Hirshman & Master, 1997; Inoue & Bel-
lezza, 1998; for exceptions, see Gardiner & Gregg, 1997).

However, if correct, the two-criterion signal detection
model should not be restricted to the description of group

level differences because it also makes testable predic-
tions regarding the possible patterns of hits, false alarms,
and remember rates that should be observed across indi-
vidual subjects. That is, the three panels of Figure | can
be thought of as representing a conservative, a neutral,
and a liberal individual within a particular experiment,
each with a similar accuracy that is normally distributed



around a central d” score. If we assume that there is no-
ticeable variability in where each subject places his or her
old/new criterion within a given experiment, the model
in Figure 1 predicts a positive relationship between sub-
jects’ hit and false alarm rates. Liberal responders will
have both high hit and false alarm rates, and the reverse
would be true for more conservative subjects.!

More interesting predictions can be made regarding
remember rates.2 For example, the constraint that each
subject must place his or her remember criterion higher
on the strength continuum than the old/new criterion will
mean that on average the two criteria (and hence the pro-
portion of correct old and remember response types) will
be correlated across subjects. Thus conservative observers
will not only tend to commit fewer false alarms, but will
also be less likely to report remembering; the reverse
would be true for liberal observers. Importantly, the re-
lation between remember and false alarm rates would be
entirely indirect and merely the result of the criterion
placement restriction. That is, because subjects adopt their
remember criterion as a function of their old/new criterion
location, the former has no direct bearing on the observed
false alarm rate. Therefore, any information regarding
false alarms present in the remember rate is redundant to
that present in the hit rate.

In summary, visual inspection of the two-criterion sig-
nal detection model illustrated in Figure 1 suggests three
clear predictions regarding the relationships between hit,
remember, and false alarm rates for individual subjects.
First, hit and false alarm rates will be positively correlated
via the old/new response criterion. Second, remember
and false alarm rates will be positively correlated because
of the relationship between the remember and old/new
response criteria. Finally, because the relation between
remember and false alarm rates is entirely redundant to
that between the hit and false alarm rates, one would ex-
pect multiple regression to demonstrate that correct re-
member rates will yield no unique predictive information
about false alarm rates. This last prediction of complete
redundancy will be more fully expanded in the Results
section.

In the remainder of the paper, we will examine the in-
dividual response data from three separate remember—
know studies, more formally examine the predictions of
the two criterion signal detection model using Monte
Carlo generated remember—know data, and discuss the
imptications of the results for both the two-criterion sig-
nal detection model and the false alarm behavior of indi-
vidual subjects during remember—know recognition par-
adigms. First we will report on a consistent pattern of
response relationships observed in the individual subject
data of three separate remember—know experiments.

METHOD

Experimental Data
The following data are drawn from three unrelated studies in
which the primary focus was to compare group accuracy differences,
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or the estimation of recollection processes, and not to analyze indi-
vidual responses. They are similar in that each contained 24 subjects
and was administered via computer with keyboard input by the sub-
jects. A brief description of each experiment is given prior to the de-
scriptions of results of the correlation and regression analyses. Sig-
nificant effects are reported at the .05 level unless otherwise noted.
Figure 2A shows the scatterplots relating hit and false alarm rates,
hit and remember rates, and remember and false alarm rates.

Experiment 1. These data were previously published in Yoneli-
nas, Dobbins, Szymanski, Dhaliwal, and King (1996). The subjects
were presented with 160 medium- to high-frequency words drawn
from the Toronto word pool; they were instructed to try to remem-
ber the gender of the speaker for each word. Half of the words were
presented in a male voice, the other half in a female voice. In addi-
tion, male-voiced items were presented twice. The effects of this
manipulation are not of interest and the data are collapsed across
conditions. During testing, the subjects were presented the initial
160 items with an additional 80 new items in random order. Items
were counterbalanced by constructing three lists of 80 items and ro-
tating these across conditions (male, female, and new) for each sub-
ject. For each item, the subjects made a six-point confidence judg-
ment, followed by a remember— know judgment for items judged as
being old. The subjects were instructed that their remembering need
not only pertain to the gender of the speaker, but could also apply
to any other retrieved aspect of the study event.

Experiment 2. These data are from a study examining differ-
ences between yes/no and forced choice responding (Khoe, Kroll,
Yonelinas, Dobbins, & Knight, 2000). The subjects were presented
with 200 six- to eight-letter words and were asked to generate two
vowels not present in each word. The words were presented one at
a time, and the subjects were instructed to proceed at their own
pace. After the study phase, the subjects engaged in a spatial dis-
tractor task for 30 min. Following the retention interval, the sub-
jects were tested for their recognition memory in blocks of 200
yes/no and 100 two-alternative forced choice (2AFC) trials. Only
the data from the yes/no test are included here. The blocks of yes/no
and 2AFC trials were counterbalanced across subjects. The items
were counterbalanced by constructing four lists of 200 items from
an 800-item word pool, each of which was rotated through possible
study test permutations across subjects. In the yes/no condition, 100
studied words were randomly mixed together with 100 “new” dis-
tractors. One word was presented on each trial, and the subjects
were asked to decide whether the word was old or new. Following
each old judgment, they were asked to make a remember—know
judgment.

Experiment 3. The subjects were presented with 150 low-
frequency words (M = 8.65; Kutera & Francis, 1967) during which
time they indicated via computer mouse how many syllables each
item had. Items were counterbalanced using six randomized study/
test lists and two randomized test orders. Study rate was self-paced,
with a new item appearing after each response. After the final word
of the study list, the subjects were given a recognition test in which
half the items were old and the other half new (total 300). For each
item, the subjects were required to make a recognition confidence
judgment (1 = certain old to 6 = certain new). In addition, follow-
ing each old response, they were asked to decide whether they re-
membered anything specific about the item’s previous occurrence—
for example, anything they thought about or noticed during the pre-
vious presentation, including making a specific overt syllable judg-
ment. The data analyzed in the present study were collapsed across
response confidence.

Results

Table 1 shows the correlation and regression data for
each of the three experiments; Table 2 shows the means
and standard deviations. In all three experiments, there
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Figure 2. Scatter plots of experimental and Monte Carlo data. The left plots show the relation between hit and false alarm rates, the
middle between hits and correct remember rates, and the right between correct remember and false alarm rates. The top panels show
the experimental data, the middle the Monte Carlo data for the two-criterion signal detection model, and the bottom the Monte Carlo

data for the dual-process model with a false remember rate of 0. The lines are best fit linear regressions.

was a significant positive correlation between the hit and
false alarm rates, which indicates that the adopted old/
new criterion varied extensively across subjects. Remem-
ber and hit rates were also positively correlated. In Exper-
iments 1 and 3, this correlation was significant, whereas
in Experiment 2, the correlation was positive, although the
obtained p value was only .20. Finally, in none of the three
experiments was there any evidence for a positive rela-
tionship between the remember and false alarm rates

since all three showed negative, but nonsignificant, cor-
relations. These correlations are displayed in scatterplots
for the aggregate data in Figure 2A.

The two-criterion signal detection model accounts for
these findings only partially. The fact that hits and false
alarms were positively related is consistent with the signal
detection assumption of a single old/new response crite-
rion, which determines both, and which varies across each
subject. The positive relation between remember and hit
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Table 1
Regression Results

Hits Remember Correlations

B SE B SE AR? H/FA H/Rem Rem/FA
Expentment 1 .88* .14 - .69* .14 .36* 56* 47 —-.26
Experiment 2 91* .10 ~.33* .10 10* .83* 27 -.08
Experiment 3 68* A7 —.58* 17 29* 44* 40* —.31
Total exp. data 79 .10 —.60* .10 26* 46* 54* —-.18
2-Criterion SDT sim.2 70* .1 .04 1 001 J13* .65* 50*
Dual-process sim. (.00)®  .88* .09 —-.50* .09 19* .63* 49* -.07
Dual-process sim. {.}5) 83* 08 — 24* .08 05* 4% 40* 09
Dual-process sim. (.30) 63* .10 .08 10 .005 .65*% .40 33

Note—AR? is the gain in R? when correct remember rate is entered into the regression equation. 2 Two-criterion
signal detection model. ®The parentheses indicate the three levels of false remember rates modeled in dual
process simulations. Remember rate is for correct responses only. *p < .05.

rates would then result from the theory constraint that the
remember criterion be placed to the right of the old/new
criterion. Thus, on average, both criteria in Figure 1 will
“track” together across subjects. The subjects who adopted
a liberal old/new criterion would be more likely to adopt
a liberal remember criterion; the reverse would be true
for the conservative subjects. However, if this was the
case, one would also expect to see a positive (although in-
direct) relation between remember and false alarm rates.
If remembering is related to the hit rate, and the hit rate
is related to the false alarm rate, the remember rate should
be related to the false alarm rate. There are two possible
arguments against this line of reasoning. The first is that
there simply may not be enough variability in the remem-
ber rates to detect a relationship. For example, if the sub-
jects had adopted the remembering criterion to the far
right in Figure 1, there would be insufficient remember
rates for detecting a correlation. A second concern is that
the remember rates might be determined in a region of
the old-item distribution that is severely nonlinear in com-
parison with the portion of the new-item distribution de-
termining the false alarm rates. We will directly address
these possible objections using the outcomes of Monte
Carlo simulations presented later.

The second analysis that we performed involved mui-
tiple regression. As discussed previously, the two-criterion
signal detection model suggests that remember rates
would be largely inconsequential in one’s predicting sub-

jects’ false alarm rates because the rates are determined
secondarily to the old/new decision process. Because
multiple regression determines the unique contribution
of the predictor variables, one’s entering remember rates
into the regression equation relating hits and false alarms
should yield no improvement because the information in
the remember rate is redundant to what is already present
in the hit rate. This null effect would seem even more
likely in the present data set, because the correlation be-
tween remember and false alarm rates in the raw data is
not significantly different from zero. However, when the
remember rate was entered into the regression for each
experiment, three important and related effects were ob-
served. First, in each case that the variance was accounted
for by the regression equation, R? was sizably increased
(see Table 1). Second, the apparent relationship between
the hit and false alarm rates increased. This can be seen
by comparing the beta weights for the hit rates with the
zero order correlations between hits and false alarms. In
each case the beta weight is considerably higher than the
correlation in the raw data. Finally, the beta weights for
remember rates are negative and significant, despite the
fact that there was no significant relation between remem-
ber and false alarm rates evident in the raw data. This pat-
tern is also observed in the aggregate data.

In the multiple regression literature, this pattern of ef-
fects is known as traditional suppression, and the remem-
ber rate is labeled a suppressor variable (for reviews, see

Table 2
Means and Standard Deviations for Experiments and Simulations

Correct Incorrect
FAs Remembers Remembers
M SD M SO M SD

Hits
M SD
Experiment 1 .69 12
Experiment 2 51 19
Experiment 3 79 13
Total exp. data .63 17
2-Criterion SDT sim. .65 A7

Dual-process sim. (.00)2 .64 .15
Dual-process sim. (.15) 65 14
Dual-process sim. {.30)

Note—Parentheses in column 1 indicate false remember rates for each simulation.
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Conger, 1974; Pedhazur, 1997; Wiggins, 1973). Suppres-
sion occurred in the present data because the remember
rate shared a relationship with the hit rate that was inde-
pendent of false alarm behavior. In short, the subjects with
high remember rates can be expected to have high hit
rates, but this increase in remember rates does not con-
tribute to the tendency to commit false alarms. The role of
the remember rate then is to literally subtract the vari-
ance in the hit rates that is not predictive of false alarms—
hence the negative beta weight and the term suppression.
This effect can be demonstrated graphically with Venn
diagrams (see Figure 3). The top panel shows the most
common case in regression, partial redundancy, in which
the predictors (hit and remember rates) are themselves
correlated. When the unique contribution of each is calcu-
lated via regression (shaded areas in Figure 3), it is shown
to be smaller than that apparent in the raw data. In con-
trast, the middle panel shows the complete redundancy
predicted by the two-criterion signal detection model. Be-
cause the remember rate contains no unique information
in regard to the relation between hits and false alarms, its
predicted regression weight is zero. Finally, the present
suppression effect is demonstrated in the bottom panel.
Although hit rates are correlated with remember rates,
this relationship does not overlap with that between hit
and false alarm rates.

DOBBINS, KHOE, YONELINAS, AND KROLL

The suppression effect of remember rates poses a
problem for the signal detection account because it dem-
onstrates that the hit rate has at least rwo unique and sys-
tematic sources of variance—one resulting from the re-
lationship between remember and hit rates, the other
between the remaining portion of hit rates (after remem-
ber rate is subtracted) and false alarm rates. This sug-
gests that the observed hit rate cannot be viewed as the
result of a single underlying strength process. Next, we
will demonstrate that the suppression effect cannot be
the result of nonlinearities that might arise from a single
underlying signal detection process.

The following Monte Carlo simulations were conducted
to determine whether the two-criterion signal detection
model would generate remember—know data that would
be consistent with the four key empirical findings out-
lined previously. These findings consist of (1) a positive
correlation between hit and false alarm rates, (2) a posi-
tive correlation between remember and hit rates, (3) a
null (or slightly negative) correlation between remember
and false alarm rates, and most importantly, (4) the re-
member rate suppression effect. We were unable to find
a remember criterion placement that was consistent with
the account of Donaldson (1996) and that was capable
of mirroring the present effects—in particular, the null
or slightly negative remember/false alarm correlation and

Hits
Partial Redundancy
Remembers
Faise Alarms
Complete Redundancy
Hits
Remembers False Alarms
Hits
Suppresson
Remembers
False Alarms

Figure 3. Venn diagrams of partial redundancy, complete redundancy, and

suppression.



the remember rate suppression effect. In contrast, when
we modeled the hit rate as being the result of independent
recollection (binomial) and familiarity (signal detection)
processes, and the false alarm rate as being largely deter-
mined by the familiarity process, the generated data were
hard to distinguish from the experimental results.

Monte Carlo Results

Two-criterion signal detection model. Within the
theory of signal detection there is a straightforward, though
intrinsically nonlinear, relationship between a given sub-
ject’s hit and false alarm rates. Both rates are determined
by the observer’s decision criterion, labeled C, in Figure 1.
During testing, old and new items that are associated with
familiarity or memory strength values above this cutoff
will elicit positive responses.

To simulate this model, we assumed that subjects with
similar memory abilities (say freshmen in an introduc-
tory psychology course) who participate in similar en-
coding conditions will have a 4’ that is normally distrib-
uted around a central value.? In order to closely match
the average experimental data, each of the 72 artificial
subjects was given a d” that was sampled from a normal
distribution with a mean of .95 and a standard deviation
of .50.4 In order to mirror the frequency and shape of hit
rates in the subject data, an old/new response criterion was
determined by randomly choosing from a normal distri-
bution of hit rate values with a mean of .70 and a standard
deviation of .20. The sampling process was repeated for
hit rates that fell below .13 or above .92 (the actual range
in the data). This yielded a slightly left-skewed distribu-
tion of hit rates with a mean, shape, and standard devia-
tion similar to those of the actual data and determined
the location of the old/new response criterion.

In order to obtain remember rates that were consistent
with the description by Donaldson (1996), in which sub-
jects first chose the old/new criterion and then selected
a more conservative criterion for remember reports, the
remember criterion (C,) was sampled to fall approxi-
mately 1.25 standard deviations above the old/new cri-
terion (drawn from a normal distribution with a standard
deviation of .50); values falling below the old/new crite-
rion due to chance were resampled in order to meet the
theory constraint that the remember criterion must fall to
the right of the old/new criterion for each subject.> This
selection process resulted in remember rates similar in
mean and standard deviation to those observed in the ac-
tual data. By using these parameters, we then calculated
each subject’s false alarm rate on the basis of the location
of the old/new criterion. The data for a typical run are
shown as scatterplots in Figure 2B, and the appropriate
values are listed in Tables 1 and 2. Despite the fact that
the underlying signal detection process is intrinsically
nonlinear, all three panels of Figure 2B show significant
linear relationships. Importantly, the right panel of Fig-
ure 2B shows a sizable linear relation (» = .50, p <.001)
between remember and false alarm rates across subjects
and, therefore, the lack of a positive correlation between
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remember and false alarm rates in the actual data is in-
consistent with signal detection theory, given the level of
observed remember rates. The second important result
of the simulation can be seen when both the hit and re-
member rates are entered into a multiple regression (see
Table 1). By construction, the remember rate has no ac-
tual bearing on the observed false alarm rate, which is
determined by the previously established old/ new re-
sponse criterion, C,. In other words, the observed raw
correlation between remember and false alarm rates is
an artifact of the constraint that the remember criterion
lies above the old/new criterion. This was borne out in
the results of the multiple regression. Examination of the
regression coefficients showed that all predictive value
lay with the hit rates; the coefficient for remember rate
was not significantly different from zero and yielded no
unique contribution to predicting false alarms. This pat-
tern differed from the experimental data in which inclu-
sion of the remember rate yielded a significantly nega-
tive beta weight, significantly increased R?, and elevated
the apparent relationship between hits and false alarms.

The previous simulation was based on the assumption
that the old- and new-item familiarity distributions have
an equal variance. This need not be the case, and signal
detection theorists often assume that the old-item distri-
bution is in fact more variable than the new (e.g., Ratcliff,
Sheu, & Gronlund, 1992). This was explicitly modeled
by repeating the simulation with standard deviations for
the old-item distribution between 1 and 1.5 times that of
the new. The results were essentially unchanged. Remem-
ber and false alarm rates remained correlated in the raw
scores, and the regressions demonstrated redundancy,
not suppression.

The dual-process model The previous Monte Carlo
simulations have demonstrated that the signal detection
model by itself fails to adequately account for the pattern
of relationships observed in the experimental data. The
purpose of the next simulation was to see whether the
dual-process signal detection model of Yonelinas (1994)
could reproduce the present experimental results. The
model assumes independent, parallel contributions of
recollection and familiarity processes to the observed hit
rates of each subject. Recollection involves the retrieval
of contextual information associatively linked with the
item during a previous study episode. For example, when
seeing an item at test, a subject may recollect his/her ini-
tial mispronunciation of the item during study. Because
recollection is assumed to be a threshold process, it can
be measured as probability. It is this type of information
that subjects are presumed to be accessing when they give
remember reports. In contrast, familiarity is assumed to
operate in accordance with the equal-variance signal de-
tection model presented in Figure 1 (without the need for
a second remember criterion).

The Monte Carlo process was similar to the previous
signal detection runs with some exceptions. The starting
d’ was now sampled from a population centered on .53
with a standard deviation of .50. The reason for this re-
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duction (d’ was .95 in the previous simulation) was that
the observed hit rate was assumed to reflect the inde-
pendent contribution of both familiarity and recollection
processes [i.e., hits = R + F — (R * F)]. Therefore, the
observed hit rate was an overestimate of the true contri-
bution of signal detection to successful responding. In or-
der to estimate the actual proportion of hits due to famil-
iarity, we assumed a recollection rate of .30 (on the basis
of the observed total remember rate) and solved the equa-
tion for F yielding .47. This value was then used in con-
junction with the observed false alarm rate of .28 so that
we could determine an approximate d” starting value of
.53 to center the sampling process.

The old/new signal detection criterion was fixed by
sampling hit rates between .01 and .99 that were normally
distributed with a mean of .5 and standard deviation of
.2 . A separate and independent remember rate was sam-
pled from a population centered on the observed mean
remember rate of .30 and a standard deviation of .17. In
addition, remember rates were constrained to fall between
the actual observed range of .02 to .71. Following this,
the subject’s total hit rate was determined by indepen-
dently combining the sampled remember rate and signal
detection hit rate [i.e., R + F — (R * F)]. If the total hit
rate fell above or below the observed range in the actual
data (.13—.92), the process was repeated. The false alarm
rate was then determined by calculating the portion of
the new-item distribution that fell above the sampled old/
new signal detection criterion.

The data for a run are shown as scatterplots in Fig-
ure 2c¢, and the appropriate values are listed in Tables 1
and 2. The correlations between the hit, false alarm, and
remember rates are statistically indistinguishable from
those observed in the actual experimental data. More im-
portantly, the regression results also mirror the observed
data. When the remember rate was included in the regres-
sion equation, a clear suppression effect was observed.
The proportion of variance accounted for (R?) increased,
the apparent relation between hit and false alarm rates
increased, and the regression weight for remember rates
was significant and negative, despite the fact that the
correlation in the raw data was not significantly differ-
ent from zero (see Table 1).

The preceding simulation was based on the assumption
that recollection solely contributes to the hit rate. How-
ever, the actual data show a small proportion of incorrect
remember responses, and experimental data continue to
accumulate, suggesting that in some instances both rec-
ollective and familiarity processes can contribute to in-
correct responding (e.g., Duzel, Yonelinas, Mangun,
Heinze, & Tulving, 1997; Roediger, McDermott, & Rob-
inson, 1998). In order to model this, we assumed that some
proportion of each subject’s sampled remember rate was
faulty. This proportion was then subtracted from the re-
member rate to determine the correct remember rate and
was independently combined with the signal detection
false alarm rate (determined by the old/new criterion) to
arrive at the total false alarm rate for each subject. Tables |
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and 2 show the results when the false remember rate was
set at 15% and 30% of the overall remember rate. The
primary effect of our increasing the false remember rate
was the reduction in the suppression effect. Thus, as the
false alarm rate became increasingly determined by the
same two processes that affect the hit rate, the role of the
correct remember rate in the regression naturally became
more redundant. At a false remember rate of 15%, the
suppression effect was still clear, and the pattern of re-
gression estimates and correlations still resembled the
actual aggregate data, in which the false remember rate
was 13% of the overall remember rate. By the time the
false remember rate reached 30%, the relationship be-
tween the hit rate and correct remember rate was no
longer sufficiently unique (in comparison with the rela-
tion between correct remembers and false alarms) to
demonstrate suppression, and redundancy became evident
in the regression and correlation data. This outcome sug-
gests that one should expect the degree or level of sup-
pression observed in actual data to be inversely related to
the level of false remember reports.

The role of guessing. Recently, Gardiner, Ramponi,
and Richardson-Klavehn (1998) presented recognition
data in which subjects were allowed to make three types
of item endorsements: remember, know, and guessing.
The results indicated that when the subjects reported that
they had guessed, the odds of success were approximately
even, in contrast to remember and know responses, which
were both considerably higher. This outcome was taken
by Gardiner et al. as suggesting that guess responses may
be qualitatively different from both remember and know
responses.

In the present study, we have assumed that instances of
guessing are already appropriately modeled within the
signal detection framework, under the standard assump-
tion that as a given item’s familiarity approaches the cri-
terion for responding old, subjects will become increas-
ingly uncertain of their endorsements (for a similar
argument, see Hirshman, 1998). From a signal detection
perspective, it is not surprising that the odds of success
decline and approach even for the lowest levels of confi-
dence, provided that the subject is largely unbiased (i.e.,
old/new criterion is centered midway between the distrib-
utions). In the case of a group of subjects who are on av-
erage unbiased (viz., some liberal, some neutral, and some
conservative), the experiment-wide odds of successful
guessing responses will also approach even. To illustrate,
if we take the conservative and liberal observers illustrated
in Figure 1, and assume that they will respond guessing
old whenever items fall within .25 standard deviations
above their old/new criterion, we can use the relative areas
under the distributions to calculate their odds of success.
For the conservative observer, whose criterion is set at 1.5,
the odds are 3.7 to 1. For the liberal observer, whose cri-
terion is set at —.25, the odds are .27 to 1 that he or she will
be correct, or 3.7 to 1 that he or she will be mistaken (i.e.,
below chance). Thus, despite the fact that each subject has
the same memory capability, their cutoff values for re-



sponding “old” greatly affects their raw odds of success.
Furthermore, if the data were averaged across the 2 ob-
servers, the experiment-wide odds of successful guessing
responses would then be even, despite the fact that the in-
dividual odds of successful guessing are reciprocal. These
factors illustrate the difficulty in interpreting raw odds data
as being indicative of different mnemonic response types.
Modeling guessing on the same confidence continuum as
other non-recollective endorsements arguably avoids such
problems and is consistent with the observation that when
guessing, the odds of success can be quite low.

DISCUSSION

Overall, the results pose a significant challenge to the
two-criterion signal detection model. Although this model
is capable of reproducing observed correlations between
remember and hit rates, and between hit and false alarm
rates, it makes errant predictions in regard to the relation
between remembering and committing false alarms. Un-
der the model there should be an observed (although in-
direct) correlation between remembering and false alarm
rates in the raw scores. Observers with lax old/new crite-
ria should have elevated false alarm rates and a greater
tendency to report remembering. The reverse should be
true for conservative observers. This positive relationship
is clear and statistically reliable in the generated data (see
the right panel of Figure 2B). In contrast, the experimen-
tal data suggest no such relationship between remember
and false alarm rates (see the right panel of Figure 2A).
The second prediction of the two-criterion signal detec-
tion model is that in the presence of hit rate information,
the remember rate will not contribute to predicting false
alarms (i.e., redundancy). Because multiple regression
extracts the unique contribution of each of the predictors,
and remember rates have no unique information (from
the two-criterion signal detection viewpoint), a null con-
tribution is predicted. This is indeed what occurred in the
Monte Carlo simulation; however, this prediction stands
in contrast to the actual experiment results, which showed
a large suppression effect that demonstrated the unique
relationships between remembering and hits, and between
hits and falsé alarms. These findings contradict the notion
that “remember responses represent nothing more than
conservative yes responses” (Donaldson, 1996, p. 524).

Although these findings pose problems for the two-
criterion signal detection model, they are easy to inter-
pret within a dual-process signal detection framework
(Yonelinas, 1994). In the present group of experiments,
remember rates had a largely unique relation with hit
rates because new items rarely triggered the retrieval of
contextual information about the previous study event
(for exceptions, see Dobbins, Kroll, & Liu, 1998; Roedi-
ger & McDermott, 1995); hence, the false alarm rate was
relatively free of the recollection process. In contrast, a
subject’s familiarity response criterion determines both
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nonrecollective hits and false alarms, and when the ef-
fects of recollection are partialled or removed from the
hit rate through regression, this relationship is clarified
{i.e., the beta weight is higher than the raw correlation).
This conclusion is further strengthened by the Monte
Carlo simulation of the dual-process model, which repro-
duced both the patterns of correlations and the suppres-
sion effect that was observed in the experimental data.

These findings highlight the utility of examining in-
dividual subject data with regression techniques when
contrasting recognition models.® The failure of the sig-
nal detection model to predict basic patterns of respond-
ing across individual subjects brings into question its
utility in describing group-level differences and shows
that it is in need of revision. The dual-process signal de-
tection model does this by incorporating an additional
contextual retrieval process. We do not deny that studied
items often engender only a feeling of familiarity during
testing, and that such information is well modeled as be-
ing continuous in nature, using signal detection theory.
Although such feelings of familiarity can be used by the
subject to infer that an item was in fact studied, this is
clearly a more distant inference than that which would be
required had the subject remembered something uniquely
related to the study context—for example, the subject’s
having mispronounced the item when he/she had previ-
ously read it on the computer monitor. Given this premise,
the attempt to model remember—know performance en-
tirely within the signal detection framework amounts to
the assertion that it is appropriate to scale responses that
are accompanied by the retrieval of contextual informa-
tion identically to those that are not. Such an equivalency
of scale challenges the notion that subjects are capable of
remembering distinct personal episodes when appropri-
ately cued and is inconsistent with the observed relations
among phenomenological reports of individual subject
data.
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DOBBINS, KHOE, YONELINAS, AND KROLL

NOTES

1. Alternately, one might suppose that subjects adopt an optimal
old/new response criterion midway between the old- and new-item dis-
tributions. This would mean that subjects with a higher d” would have
lower false alarm rates. In addition, because the optimal criterion loca-
tion “lags” behind the mode of the old-item distribution as d” increases,
these subjects would also have higher hits rates. Thus, what is predicted
is a mirror effect in the individual subject data (see Stretch & Wixted,
1998, for further discussion). However, there was no evidence for such
a placement strategy in the present data.

2. Throughout the paper we use the terms remember rates and cor-
rect remember rates, interchangeably. Incorrect remember responses are
explicitly labeled as such.

3. Donaldson (1996) used both d” and 4" when he compared the ac-
curacy of remember responses with that of overall recognition on the
basis of the claim that remember responses arise from the same distri-
butions that govern overall responding. In order to simulate this model,
one must specify an appropriate familiarity distribution from which to
sample; we chose to use the normal distribution with its relative distance
measure d’. However, in the case of 4’, Macmillan and Creelman (1996)
demonstrated that the implied relative operating characteristic (ROC) of
the A" metric is not consistent with a known single type of underlying
familiarity distribution, but instead “morphs” from one that is consis-
tent with logistic distributions at low performance levels to one that is
consistent with double equal threshold, rectangular distributions at high
performance levels. Given the similarity in shape between logistic and
normal distributions, the present data and conclusions would be largely
unaffected by the use of A” at low performance levels. However, the fact
that at high performance levels the implied ROC for 4’ resembles a dou-
ble equal threshold process is clearly at odds with the form of empirical
ROC:s for single item, old/new recognition (see Macmillan & Creelman,
1991; Swets, 1986). This precluded its use in the present simulations.

It is also worth noting that in the present signal detection simulation
data, where d’ remember and d’ recognition were identical by construc-
tion, 4’ remember was systematically lower than 4’ recognition (57 out
of 72 cases, p <.001, sign test). Such a pattern was evident in the meta-
analysis data of Donaldson (1996) in 60 out of 80 comparisons and has
also been observed in empirical individual subject data (e.g., Gardiner
& Gregg, 1997). Overall, these findings suggest that the 4" metric may
be systematically biased (Dobbins, 2000).

4. The actual d’ in the experimental data was 0.93 when calculated
from the overall hit and false alarm rates and 1.05 (o = .55) when the
rates were averaged across subjects.

5. Additional simulations were conducted in which the remember cri-
terion was sampled from a uniform distribution between zero and two
standard deviations above the old/new criterion. The pattern of results
was unchanged.

6. We thank John Gardiner for pointing out that such regression tech-
niques may also be useful in traditional meta-analysis studies, provided
that enough data points are available for reliable regression, in which
case the hit, remember, and false alarm rates of each experiment would
serve as the units of analysis.
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