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Learning artificial grammars:
No evidence for the acquisition of rules

ANNETTE KINDER and ANJAASSMANN
Philipps University, Marburg, Germany

Two experiments investigated whether there is evidence for acquisition of rules in implicit artificial
grammar learning (AGL). Two different methods were used in meeting this goal, multiple regression
analysis and analysis of receiver-operating characteristics (ROCs). By means of multiple regression
analysis, several types of knowledge were identified that were used injudgments of grammaticality, for
example, about single letters and about larger stimulus fragments. There was no evidence for the con­
tribution of rule knowledge. The ROCswere in accord with a similarity-based account of AGLand thus
did not support the notion that rule knowledge is acquired in AGLeither. Simulations with a connec­
tionist model corroborated the conclusion that the results were in accord with a similarity-based, as­
sociative account.

An important question in implicit learning research
has been whether implicit knowledge is stored in terms of
the surface features ofthe stimulus environment or in terms
of abstract, rule-like descriptions. A paradigm widely used
to investigate this question is artificial grammar learning
(AGL). In the experiments reported in this article, we ap­
plied two different methods to find out whether the knowl­
edge acquired in AGL can be described solely in terms of
surface stimulus features or whether an (additional) rule­
based process has to be assumed. The first method, mul­
tiple regression analysis (e.g., Johnstone & Shanks, 1999),
is an excellent tool to investigate the impact of rule ad­
herence as well as several types ofsurface information on
performance in AGL experiments. The second method,
the analysis of receiver-operating characteristics (ROCs;
e.g., Yonelinas, 1997), was applied to investigate the pro­
cesses underlying performance in AGL.

In AGL, strings are presented that were generated ac­
cording to an artificial grammar (such as the one depicted
in Figure I). During training, a subset of all grammatical
strings (i.e., the strings that can be generated by means of
a particular grammar) are presented. Usually, partici­
pants are told that they are taking part in a simple short­
term memory 'experiment and are instructed to memorize
the strings. That way, incidental training conditions are
provided. Only after the training stage is over are partic­
ipants informed about the existence of a set of complex
rules constraining letter order. Then they are presented with
new strings that are either grammatical or nongrammatical.
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ticle will be made available on e-mail request. Correspondence should
be addressed to A, Kinder, Fachbereich Psycho logie, Gutenbergstr. 18,
Philipps-Universitat, 0-35032 Marburg, Germany (e-mail: kinder@
mailer.uni-rnarburg.de).

Nongrammatical strings violate at least one ofthe rules of
the grammar. When participants are asked to categorize
these strings, their performance is typically well above
chance level.

Models ofAGL
Various models have been proposed that make entirely

different assumptions about the knowledge acquired in
AGL. We will use the terms rule-based and similarity­
based to categorize these models (see Hahn & Chater,
1998). Rule-based models assume that knowledge is
stored in collections ofrules that are organized in theories.
By contrast, similarity-based models assume that past sit­
uations or aspects of these situations are stored in mem­
ory. In the present article, similarity-based models refer
to all AGL models that do assume that participants learn
the training strings or the surface features ofthese strings
rather than the rules of the grammar. In turn, we will give
a selective overview of rule-based and similarity-based
models of AGL and, subsequently, take a look at hybrid
models that incorporate both types of processing.

Reber (1967, 1969, 1989) assumes that participants'
knowledge in AGL is entirely rule-based. Participants
are thought to acquire an abstract representation of the
rules of the grammar and to apply this knowledge uncon­
sciously. According to Reber, participants either know
the grammatical status of an item or are guessing. Thus,
he describes application ofknowledge in AGL in terms of
an all-or-none process or a threshold model. On the view
that participants acquire rule knowledge, this is a plausi­
ble assumption: As Hahn and Chater (1998) note, the con­
dition of a rule is either satisfied or not, while interme­
diate values are not allowed. In AGL, this means that a test
string either adheres to the rules somebody has learned
or not. Dienes, Kurz, Bernhaupt, and Perner (1997) argue
that Reber's threshold model is a high-threshold model
(Luce, 1963) because he assumes that participants are al-
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Figure 1. A typical finite-state grammar. Grammatical strings are generated by following the arrows
starting at IN and continuing until an exiting path is taken (OUT). Each time an arrow is chosen, the
letter associated to it is appended to the string.

ways correct in assessing grammaticality and make mis­
takes only due to guessing. In the present article, we refer
to Reber's notion when we use the term rule-based pro­
cessing. An alternative conception of rule-based process­
ing will be described in the General Discussion.

According to similarity-based accounts of AGL, par­
ticipants learn surface features of the training strings or
entire strings rather than the rules ofthe grammar. Vokey
and Brooks (1992), for example, proposed an account ac­
cording to which participants store single training items
but also build a pooled representation of multiple items.
The probability of a test item to be endorsed depends on
how similar it is to these representations. Thus, the model
assumes that grammaticality judgments are made by as­
sessing items on a continuous similarity dimension rather
than on the basis ofan all-or-none process. Unlike Vokey
and Brooks's account, Servan-Schreiber and Anderson's
(1990) competitive chunking model does not assume that
information about entire training strings is preserved.
According to this model, participants store knowledge
about letter chunks, which can be bigrams, trigrams, or
larger string fragments. In the core of Servan-Schreiber
and Anderson's model is the concept of "familiarity",
which they assume to be a continuous dimension. The fa­
miliarity of a test string depends on how many chunks it
contains that have been stored during training and on
how large these chunks are. The probability ofan item to
be endorsed is a positive function of its familiarity. An­
other similarity-based model ofAGL is the simple recur­
rent network (SRN) model, which belongs to the class of

connectionist models (Cleeremans, Servan-Schreiber, &
McClelland, 1989; Kinder, 2000). The knowledge stored
in an SRN could be described in a simplified way as
knowledge about the absolute and relative frequencies of
letters in the set of training strings (e.g., that "X" occurs
very often or that "T" often occurs after "XS"). This in­
formation is stored in a distributed fashion in the net­
work's connection weights. Whether or not a test string is
endorsed depends on how closely it corresponds to the
stored information. Thus, like in the similarity-based mod­
els described above, strings are assessed on a continuous
dimension. Although it is sometimes argued that the infor­
mation stored in an SRN is in some way abstract (Cleere­
mans et aI., 1989), the SRN is similarity-based in that it
involves an associative learning mechanism rather than
assuming acquisition of rules.

Our overview has shown that similarity-based ac­
counts of AGL differ in their assumptions about which
kind of surface information is acquired in AGL and how
it is acquired. However, all of them assume that gram­
maticality judgments are made by assessing items on a
(hypothetical) continuous dimension rather than on the
basis of an all-or-none process as in Reber's rule-based
account ofAGL. Whereas Vokeyand Brooks (1992) term
this dimension similarity and Servan-Schreiber and An­
derson (1990) term itfamiliarity, there is no explicit name
for it in the SRN model.

Knowlton and Squire (1996) and Meulemans and Van
der Linden (1997) argued that neither an entirely rule­
based account nor an entirely similarity-based account



is sufficient to explain test performance in AGL experi­
ments. Therefore, they propose hybrid accounts of AGL
that combine rule- and similarity-based processing. These
accounts assume that participants learn both surface in­
formation and the rules of the grammar and apply both
types ofknowledge while making grammaticality judg­
ments.

Experimental Designs for
Investigating Rule-Based Processing in AGL

Two experimental designs were used to find evidence
for rule-based processing in AGL. In the first design, rule
adherence and surface information are manipulated in
such a way that grammatical and nongrammatical stimuli
are identical in terms ofsurface information (Knowlton &
Squire, 1996, Experiment I; Meulemans & Van der Lin­
den, 1997). If an effect ofgrammaticality still occurs, it is
argued that participants must have acquired rule knowl­
edge beyond the surface features ofthe strings. However,
the problem with this design is that it is impossible to bal­
ance the items in terms of all surface features that possi­
bly influence grammaticality judgments. In Knowlton and
Squire's stimulus materials, for example, grammatical
items contained a higher number of entirely novel chunks
than did nongrammatical items. Thus, participants sim­
ply might have tended to reject items containing novel
chunks. Although Meulemans and Van der Linden's ma­
terials were controlled in terms of chunk novelty, John­
stone and Shanks (1999) found that grammatical strings
contained more chunks in old positions-that is, in posi­
tions in which they had already occurred in the training
strings. A multiple regression analysis showed that par­
ticipants mainly used information about novel chunk po­
sitions for making judgments.

The problem ofrule adherence being confounded with
surface information was thought to be circumvented by
investigating the transfer of grammar knowledge to a
new letter set. In experiments using this design, partici­
pants are first trained with strings generated by a partic­
ular grammar using one letter set. Then, test strings gen­
erated by the same grammar but using a different letter
set are presented. Thus, surface information is completely
changed, whereas the rules according to which letter
strings were generated remain constant. In several exper­
iments using this design, participants' test performance
was above chance despite the changed letter set (e.g.,
Shanks, Johnstone, & Staggs, 1997;Whittlesea & Dorken,
1993). The seemingly straightforward conclusion that
can be drawn from this finding is that participants must
have learned something about the deep structure of the
training strings, independent of their specific physical ap­
pearance. However, Redington and Chater (1996) showed
that transfer to a new letter set can be explained solely on
the assumption that participants have stored fragments
of the training strings and find analogies between these
stored fragments and the fragments ofeach test string. To
summarize, both designs described in this section are in­
appropriate to show that rule knowledge is acquired in
AGL.
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An Alternative Approach
We therefore chose an alternative, two-pronged ap­

proach in order to investigate whether test items are
judged on the basis of surface information, on the basis
of rule knowledge, or both. First, we used the multiple
regression method that was first applied to AGL data by
Johnstone and Shanks (1999). In this method, the predic­
tor variables are the various features ofthe training strings
that possibly have an impact on grammaticality judg­
ments, such as associative chunk strength (which captures
the number of familiar bigrams and trigrams a test string
comprises), chunk novelty, and grammaticality (for a de­
tailed description of these measures, see Johnstone &
Shanks, 1999, and Kinder & Shanks, in press). The de­
pendent variable codes the participants' responses to each
test string. By means of this method, it is possible to as­
sess which sources of information significantly influ­
ence grammaticality judgments. The clear advantage of
the multiple regression method is that it allows the iso­
lation of the influences of various properties of the test
strings without manipulating them in an orthogonal fash­
ion. Most important, it provides information about
whether participants have learned something about the
rules of the grammar: If all surface features one can
think of are included as predictors, and the grammatical
status of the items is still a significant predictor, this in­
dicates that participants have acquired knowledge about
the grammar that is independent of the surface features
of the stimuli.

Like Johnstone and Shanks (1999), we used the indi­
vidual regression equation method recommended by Lorch
and Myers (1990) in order to test the effects of the predic­
tors against the appropriate error term. In this method, a
regression analysis is computed on the data ofevery par­
ticipant, thus providing a set of regression weights for
every data set. Subsequently, the regression weights are
averaged across participants. We intended not only to
replicate the results of Johnstone and Shanks but also to
apply the method to different stimulus materials gener­
ated with a different grammar. By extending the set of pre­
dictors used by Johnstone and Shanks, we investigated
additional sources of information that might underlie gram­
maticality judgments.

The second method we used was the analysis ofROCs,
which was introduced by Yonelinas (1994, 1997) for in­
vestigating the processes mediating recognition memory.
According to an influential theory, recognition involves
two distinct processes:familiarity and recollection (e.g.,
Jacoby, Toth, & Yonelinas, 1993). Familiarity is thought
to be a continuous variable, and test performance based
on it should be in accord with signal detection theory (e.g.,
Yonelinas, 1994). By contrast, recollection is assumed to
be a discrete retrieval process that can return an exact
match to the test stimulus presented (e.g., Yonelinas,
1997). Mathematically, this process can be described in
terms of a threshold model: The threshold is exceeded if
an exact match in the memory store is found. Obviously,
this can happen only with old items, which makes the pro­
cess a high-threshold process (Luce, 1963). These two
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processes have the same general characteristics as the
two processes that possibly are involved in AGL: As noted
above, rule-based models assume that assessment ofgram­
maticality is a high-threshold process, whereas similarity­
based models assume that items are assessed on a con­
tinuous dimension. Thus, ifthe analysis ofROCs is useful
for investigating the processes involved in recognition
memory, it should also be useful for studying the pro­
cesses mediating grammaticality judgments.

Generation and Analysis of
Receiver Operating Characteristics

How are ROCs generated from data obtained in recog­
nition experiments? In these experiments, a list of study
words is presented first. Subsequently, a test list is given
comprising old items, which were in the study list, and
new items, which were not. A recognition ROC is the
function that relates the proportion ofhits (i.e., old items
that are called "old") to the proportion of false alarms
(i.e., new items that are called "old") at different criteria.
Typically, this function is obtained by asking the partic­
ipants to give confidence judgments on a scale ranging
from sure the item is old to sure the item is new. The
points on the ROC are plotted separately for each partic­
ipant as follows: The first point includes only the pro­
portions of old and new items remembered most confi­
dently. The second one additionally includes the next
most confident responses, and so on. The last point in­
cludes all responses, except the "sure new" ones. Thus, if
responses are made on a 6-point confidence scale, a 5­
point ROC will result. The same procedure can be used
to generate ROCs in AGL experiments ifparticipants are
asked to give grammaticality judgments on a confidence
scale rather than giving binary responses.

Some ofthe ROCs that theoretically can be obtained by
means ofthis method are shown in the right-hand panels
of Figure 2. If the points of these ROCs are plotted in z­
space, the curves in the left-hand panels of Figure 2 do
emerge. What does the shape ofthe ROC tell us about the
cognitive processes that are involved in responding? Ifa
ROC like the one in Figure 2a is obtained in a recogni­
tion experiment, this is interpreted as evidence that old/
new judgments are solely based on familiarity. In gen­
eral, this kind of ROC can emerge only if responses are
made by assessing items on a continuous dimension.
Therefore, it is in support of similarity-based models of
AGL, rather than rule-based models, if we observe this
kind of ROC in AGL experiments.

By contrast, ROCs like the ones in Figures 2b and 2c
emerge ifa high-threshold process underlies responding.
There are two possible thresholds: one for detecting tar­
gets and another for detecting nontargets. In a high­
threshold model with a threshold for detecting targets,
the percentage of hits is given by the equation P(hit) = x
+ (I - 1r) P(false alarm), where tt is the probability that
the threshold is exceeded by target stimuli. Thus, the ROC
relating hits and false alarms follows a straight line and
has a slope less than I (Figure 2b, left-hand panel). Con­
sequently, the z-ROC will be curvilinear and will also have

a slope less than I (Figure 2b, right-hand panel). Whereas
a "yes" response is given if a threshold for detecting tar­
gets is exceeded, a "no" response is given if a threshold
for detecting nontargets is exceeded. In the latter high­
threshold model, hit (items correctly categorized as tar­
gets) can be exchanged for correct rejection (items cor­
rectly categorized as nontargets), andfalse alarm (items
incorrectly categorized as targets) can be exchanged for
omission (items incorrectly categorized as nontargets).
Thus, the following linear equation results: P( correct re­
jection) = 1r+ (I - 1r) P(omission), were zris the proba­
bility that the threshold is exceeded on the presentation
of a nontarget. This function relating correct rejections
and omissions can be easily transformed into a ROC re­
lating hits and false alarms because the probability ofa hit
is I minus the probability of an omission and the proba­
bility ofa false alarm is I minus the probability ofa cor­
rect rejection. The ROC in a high-threshold model with a
threshold for detecting nontargets also follows a straight
line, but both the ROC and the z-ROC have a slope larger
than I (see Figure 2c). In the present article, we have to
consider both types of thresholds because it is unclear
whether rule-based accounts ofAGL assume that there is
a threshold for detecting grammaticality (i.e., for detect­
ing targets) or for detecting nongrammaticality (i.e., for
detecting nontargets). However, in both cases, ROCs dif­
ferent from the one in Figure 2a should emerge. If rule­
based and similarity-based processing were combined in
AGL, as hybrid models assume, z-ROCs would be less
curvilinear and have a slope less different from I than the
ones shown in Figures 2b and 2c but would still be dif­
ferent from the z-ROC in Figure 2a.

In the experiments reported in this paper, we obtained
ROCs for every participant by means of the confidence
method. Wethen estimated the slope and the intercept sep­
arately for each ROC and subsequently averaged these
values across participants (Yonelinas, 1994). By means
of this procedure, we tried to find out whether grammat­
icality judgments are made by assessing test items on a
continuous dimension, as similarity-based models as­
sume, or whether there is evidence for an (additional) all­
or-none-process, as rule-based models assume.

EXPERIMENT 1

In Experiment I, we replicated Knowlton and Squire's
(1996) Experiment I. In this experiment, Knowlton and
Squire varied chunk strength and grammaticality in an
orthogonal fashion. Thus, they sought to investigate the
influences of chunk strength and grammaticality inde­
pendently of each other. Our training procedure and our
stimulus materials were identical to those of Knowlton
and Squire, and we changed only the testing procedure:
Whereas Knowlton and Squire asked their participants to
give a binary judgment about the grammatical status of
each test item, we asked our participants to give a judg­
ment on a 6-point confidence scale. The scale ranged from
I, (the item is) surely correct, to 6, (the item is) surely in­
correct.
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Figure 2. The ROCs predicted by signal detection theory and two types of high-threshold mod­
els. The left-hand panels show the original ROCs, and the right-hand panels show the ROCs
plotted in z-space.

Method
Participants. The participants were 20 students from Philipps

University, Marburg. They were from 19 to 27 years old (M =

22.35 years).
Stimuli. We used the same grammar as used by Knowlton and

Squire (1996, Experiment I). The 23 training stimuli and the 32 test
stimuli were generated by means of this grammar and were identi-

cal to the ones used by Knowlton and Squire except for a single let­
ter that was exchanged. We replaced the letter Twith the letter F in
all stimuli, because the original stimuli comprised some well­
known (German) abbreviations. There were four types of test stim­
uli, which differed with respect to grammaticality and chunk
strength: These were 8 grammatical strings with high chunk
strength, 8 grammatical strings with low chunk strength, 8 non-
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Results Experiment 1
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Figure 3. Mean endorsement rates in Experiments 1 and 2. The error bars indicate the standard errors.

grammatical strings with high chunk strength, and 8 nongrammat­
ical strings with low chunk strength (see Knowlton & Squire, 1996,
for the stimuli and their mean chunk strength values).

Procedure. Training stage: The participants were told that they
were taking part in a short-term memory experiment. The 23 train­
ing stimuli were presented one at a time on the computer screen for
4 sec each. Four seconds after a training string had disappeared, the
participant was told to type the string on the keyboard. If the par­
ticipant did not reproduce the letter string correctly, it was shown
again until it was reproduced without any mistakes. The training
strings were presented in random order. The set of 23 training
strings was presented twice, for a total of46 items.

Test stage: After the training stage was over, the participants were
informed for the first time that the letter strings they had just seen
had been formed according to a complex set of rules constraining
letter order. They were instructed to classify the test strings, which
were presented one at a time on a computer screen, according to
whether or not they followed these rules. Like Knowlton and Squire
(1996), we encouraged the participants to "rely on their feeling"
while making their judgment. Grammaticality judgments were
given on a 6-point rating scale ranging from I, (the item is) surely
correct, to 6, (the item is) surely incorrect. This scale was presented
on every test trial beneath the test string. The participants were
asked to type the appropriate number on the keyboard.

Results
The level of significance was set to .05 in the regres­

sion analysis and the analysis of variance (ANOVA). To
compare our results with the results of Knowlton and
Squire (1996, Experiment I), we counted responses from
I to 3 as "grammatical" judgments and responses from 4
to 6 as "nongrammatical" judgments. Figure 3 (left-hand
panel) shows the mean endorsement rates for grammati­
cal and nongrammatical strings with high and low chunk
strength in Experiment 1. As can be seen in this figure,
both grammaticality and chunk strength influenced the
endorsement rates. Like in Knowlton and Squire's ex­
periment, the chunk strength effect was larger with non­
grammatical items than with grammatical items. A 2 X

2 factorial ANOVA was computed with grammaticality
and chunk strength as within-subjects variables. Like in
Knowlton and Squire's experiment, there was a signifi­
cant main effect of both grammaticality [F(I, 19) = 20.1,
MSe = 0.042,p < .001], and chunk strength [F(l,19) =

13.2, MSe = 0.021, p < .002]. Unlike Knowlton and
Squire, we found no significant grammaticality X chunk
strength interaction [F(1,19) = 2.4, MSe = 0.033,p > .14].

In order to find out which kind of information the par­
ticipants used to give grammaticality judgments, we per­
formed a multiple regression analysis according to the
method suggested by Lorch and Myers (1990; see John­
stone & Shanks, 1999, for details on this method). Nine
predictor variables were defined, which already had
been used by Johnstone and Shanks (1999) or by Kinder
and Shanks (in press): (1) grammaticality (1, grammati­
cal; 0, nongrammatical), (2) a variable indicating whether
or not the first letter ofthe string had appeared in that po­
sition in the training strings, which was called "familiar­
ity of the starting letter" (I, familiar starting letter; 0,
novel starting letter), (3) anchor chunk strength, (4) global
chunk strength, (5) length, (6) novel chunk positions,
(7) chunk novelty, (8) a variable indicating whether the
pattern ofrepetitions was a familiar one, and (9) specific
item similarity. Global chunk strength, anchor chunk
strength, chunk novelty, and novel chunk positions were
computed as described by Johnstone and Shanks. The fa­
miliarity of the starting letter was coded because, with
only two different initial letters (X and V), a new letter
occurring at the first position of a test string would
surely be highly salient. Specific item similarity ofa string
was defined as the number of positions in which it di­
verged from its most similar training string, which could
be of identical or ofdifferent length. The test string VXJ,
for example, was assigned a specific item similarity value
of 1, because there was a training string VXH The pat-
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Table 1
Regression Weights Averaged Across Participants Found in

the Initial Multiple Regression Analyses of Experiments 1 and 2

Experiment I Experiment 2

{3 {3

Predictor M SE P M SE P
Grammaticality -.119 .056 -2.12 .047 .221 .048 4.59 .000
Familiarity of the starting letter -.170 .038 -4.46 .000
Anchor chunk strength .084 .071 1.18 .252 -.055 .064 -0.85 .404
Global chunk strength -.148 .059 -2.50 .022 -.098 .055 -1.77 .092
Length .092 .082 1.13 .273 -.089 .066 -1.36 .191
Novel chunk positions .007 .058 0.12 .903 .230 .049 4.73 .000
Novelty .039 .069 0.57 .575
Pattern of repetitions -.119 .045 -2.64 .016
Similarity -.019 .050 -0.39 .702 -.015 .038 -0.38 .706

tern of repetitions was assessed in the following way: For
each letter in a string, beginning from the second posi­
tion, we determined whether or not it was identical to its
predecessor. This was coded as either C for change or R
for repetition. The pattern of repetitions of the string
XXVJJ], for example, was RCCRR. For each test string,
we then assessed whether or not there was a training string
with an identical pattern ofrepetitions (1,familiarpattern
ofrepetition; 0, new pattern ofrepetitionsi.

A regression analysis was computed separately for
each participant, and the regression coefficients (stan­
dardized beta weights) were then averaged across partic­
ipants. For each predictor variable, a one-sample t test
was computed to assess whether or not it differed reliably
from zero. Table 1 shows the mean beta weights (with
standard errors), the t values, and the probability values
for each predictor. On average, the predictors accounted
for 39.84% ofthe variance. A positive beta weight means
that an item having a high value on the predictor variable
has a high probability of being rejected; a negative beta
weight means that it has a high probability of being ac-

cepted (because the scale ranged from 1, surely correct, to
6, surely incorrect). We found four significant predictors:
grammaticality, familiarity of the starting letter, global
chunk strength, and pattern of repetitions. Thus, items
being grammatical, starting with a familiar letter, having
high global chunk strength, or having a familiar pattern of
repetitions were endorsed with a higher probability than
were items being nongrammatical, starting with a novel
letter, having low global chunk strength, or having an un­
familiar pattern of repetitions.

ROCs were computed as follows: For each participant,
the cumulated relative frequencies for each response cat­
egory were calculated separately for grammatical and
nongrammatical strings beginning with Category 1 (surely
correct). Subsequently, these cumulative frequencies
were z-transformed. The mean z-ROC obtained with this
method is shown in Figure 4 (left-hand panel). In order
to find out whether z-ROCs had a slope different from I
or whether they had a significant quadratic component in­
dicating concavity, we computed a regression analysis in­
cluding a quadratic component for every participant. We
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Figure 4. Mean z-ROCs obtained in Experiments 1 and 2. The horizontal error bars indicate the
standard errors of the cumulative proportions offalse alarms. The vertical error bars indicate the stan­
dard errors of the cumulative proportions of hits.
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then computed one-sample t tests with the coefficients
obtained in these analyses in order to find out whether
possible deviations from the linear z-ROC having a slope
of I were statistically significant. The levelofsignificance
was set to .10 in these t tests in order to enhance power,
because we expected the slope not to differ from I and
the quadratic component not to differ from O. We used the
regression equation z(hit) = a + b * z(false alarm) + c *
z(false alarmj-, The average goodness of fit using this
equation was r2 = .96. The mean intercept (a) was .46,
the mean slope (b) was 1.11, and the mean quadratic con­
stant (c) was .02. The t tests showed that the slope did not
differ significantly from I [t(19) = O.72,p > .47] and that
the quadratic constant did not differ significantly from 0
[t(19) = 0.13, P > .89].

Discussion
In Experiment I, we basically replicated the results

obtained by Knowlton and Squire (1996): Like these au­
thors, we found significant effects of both grammatical­
ity and chunk strength. Although the grammaticality X
chunk strength interaction failed to reach statistical sig­
nificance in our experiment, the overall pattern (a larger
effect of chunk strength with nongrammatical items than
with grammatical items) was very similar to the one re­
ported by Knowlton and Squire. Thus, the fact that our
participants had to give confidence judgments instead of
yes/no responses seemed to have no remarkable impact
on the results.

The results ofthe regression analysis showed that three
different surface features of the test stimuli affected
grammaticality judgments. As in the analysis of the
mean endorsement rates, chunk strength significantly in­
fluenced the participants' responses. Like in Kinder and
Shanks's (in press) experiment, the familiarity ofthe start­
ing letter and the repetition pattern also turned out to be
important. However, not only surface features of the
strings but also the test items' grammatical status influ­
enced the participants' judgments significantly. One
possible interpretation of this result is that the partici­
pants indeed learned something about the rules of the
grammar and applied that knowledge at test. Another
possible interpretation is that the grammaticality effect
occurred because of some other variable confounded
with the grammatical status of the stimuli. It is in favor
of the latter explanation that the mean amount of vari­
ance accounted for by the various predictor variables was
rather low (39.84%). Thus, it is likely that there were
other, still undiscovered factors influencing grammati­
cality judgments. Furthermore, the analysis of the z­
ROCs did not support the notion that rule knowledge is
applied in judgments ofgrammaticality. The slope of the
mean 2-ROC did not differ significantly from I, and the
quadratic component did not differ significantly from O.
Thus, the analysis of the z-ROCs provided results in ac­
cord with an entirely similarity-based account of AGL.

EXPERIMENT 2

One reason for the absence of clear evidence for rule­
based processing in Experiment I could be that the ex­
perimental conditions did not support acquisition ofrules.
According to Meulemans and Vander Linden (1997), par­
ticipants need a high number of different training stim­
uli in order to become sensitive to the deep structure of
the strings. Thus, in Experiment I, the number of train­
ing trials might have been too low. In Experiment 2, we
therefore decided to replicate Meulemans and Van der
Linden's Experiment 2B, in which 125 different training
items were presented.

Method
Participants. Twenty students from the Philipps University,

Marburg, participated in the experiment. They were from 18 to 29
years old (M = 22.2 years).

Stimuli. We used the same grammar as used by Meulemans and
Van der Linden (1997, Experiment 28). The 125 training stimuli
and the 32 test stimuli were generated by means of this grammar
and were identical to the ones used by Meulemans and Van der Lin­
den except for two letters: We replaced T with F and replaced R
with J in all strings, because the original stimuli comprised some
well-known (German) abbreviations. The test stimuli differed with
respect to grammaticality and chunk strength: There were 8 gram­
matical strings with high chunk strength, 8 grammatical strings
with low chunk strength, 8 nongrammatical strings with high chunk
strength, and 8 nongrammatical strings with low chunk strength.

Procedure. Training and test stages were very similar to those in
Experiment I. The 125 training stimuli were presented one at a time
for 4 sec on a computer screen. After a pause of 2 sec, the partici­
pants were asked to type the string on the keyboard. If the partici­
pant did not reproduce the letter string correctly, it was shown again
until it was reproduced without any mistakes. The training strings
were presented in the same random order to halfof the participants
and in inverse order to the other participants. Every string was pre­
sented twice. In all other respects the testing procedure was identi­
cal to that of Experiment 1.

Results
The level ofsignificance was set to .05 in the regression

analysis and the ANOVA. To compare our results with the
results of Meulemans and Van der Linden (1997, Experi­
ment 2B), we counted responses from I to 3 as "grammati­
cal" judgments and responses from 4 to 6 as "nongrammat­
ical" judgments. Figure 3 (right-hand panel) shows the
mean endorsement rates for grammatical and nongram­
matical strings with high and low chunk strength in Ex­
periment 2. Our results differed considerably from the re­
sults of Meulemans and Van der Linden: We found a
reverse effect of grammaticality (i.e., grammatical strings
were endorsed less often than were nongrammatical
strings). Whereas Meulemans and Van der Linden found
no effect of chunk strength, we found that items with high
chunk strength were endorsed more frequently than were
items with low chunk strength. A 2 X 2 factorial ANOVA
was computed with grammaticality and chunk strength as
within-subjects variables. There was a significant main ef-
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Table 2
Regression Weights (Averaged Across Participants)

in Experiments I and 2 Including Single Letters as Predictors

Experiment 1 Experiment 2

f3 f3
Predictor M SE P M SE p

Grammaticality -.102 .055 -1.86 .079 .112 .051 2.19 .042
Familiarity of the starting letter -.117 .044 -2.66 .016
Anchor chunk strength .074 .079 0.93 .364 -.076 .066 -1.14 .267
Global chunk strength -.211 .119 -1.77 .093 .020 .068 0.30 .767
Length -.005 .091 -0.05 .961 -.096 .066 -1.49 .154
Novel chunk positions -.079 .075 -1.06 .305 .175 .057 3.06 .006
Novelty .092 .082 1.13 .274
Pattern of repetitions -.080 .044 -1.81 .084
Similarity -.019 .053 -0.35 .730 -.040 .042 -0.95 .352
F -.032 .081 -0.39 .700 .275 .047 5.91 .000
J .145 .039 3.69 .002
M -.074 .036 -2.04 .056
V .023 .064 0.36 .727 .070 .042 1.67 .112
X .090 .078 1.15 .263 .123 .044 2.77 .012

feet ofgrammaticality [F(l,19) = 12.9, MSe = 0.020,p <
.002], indicating that grammatical strings were endorsed
less often than were nongrammatical strings; there was
also a significant main effect ofchunk strength [F( 1,19) =

11.0, MSe = 0.034, p < .004], indicating that strings with
high chunk strength were endorsed more often than were
strings with low chunk strength. There was no significant
grammaticality X chunk strength interaction [F(l, 19) =

2.1, MSe = 0.02l,p > .16].
As in Experiment 1, regression analyses were com­

puted separately for each participant. Because every test
item was presented twice in Experiment 2, the responses
given on the two presentations ofeach test string were av­
eraged. Because all strings began with familiar letters, we
did not use the predictor familiarity of the starting letter.
Furthermore, we did not include the predictor chunk nov­
elty, because there were no novel chunks in the test strings.
Also, we did not use the predictor pattern of repetitions
because there were no immediate repetitions of letters in
the test strings. The remaining six predictor variables were
(1) grammaticality, (2) anchor chunk strength, (3) global
chunk strength, (4) length, (5) novel chunk positions, and
(6) specific item similarity. Table 1 shows the mean beta
weights (with standard errors), the t values, and the prob­
ability values for each predictor. A positive beta weight
means that an item having a high value on the predictor
variable has a high probability of being rejected; a neg­
ative beta weight means that it has a high probability of
being accepted (because the scale ranged from 1, surely
correct, to 6, surely incorrect). Grammaticality was a sig­
nificant positive predictor, indicating that grammatical
stimuli were endorsed less frequently than were non­
grammatical stimuli. The other significant predictor was
novel chunk positions, indicating that the endorsement
probability increased as the number ofchunks at novel po­
sitions decreased. On average, 36.81% ofthe variance was
accounted for.

The result that the predictor grammaticality was sig­
nificant but in the reverse direction was rather puzzling

and could not be explained on the basis of the analyses
presented so far. However, we hypothesized that gram­
maticality might be confounded with some other variable
that was responsible for this effect. We therefore looked
for further predictors and noticed that there was a strik­
ing difference in the frequencies of single letters appear­
ing in the training strings: The most frequent letter was V,
which appeared 210 times. J appeared 179 times, M ap­
peared 162 times, X appeared 122 times, and F appeared
only 73 times. Interestingly, grammatical test strings con­
tained a higher number of the low-frequency letters F
and X than did nongrammatical strings (31 vs. 24). We
therefore performed a second regression analysis with
four additional predictors: For each of the letters F,M, V,
and X, we computed a predictor that was assigned the
value 1 if the test string contained the letter and the value
oif the test string did not contain the letter. The letter J
appeared in every test string, and so we did not use this
letter as predictor. Table 2 (right-hand portion) shows the
results of the second regression analysis. On average,
56.05% of the variance was explained. Thus, the amount
ofexplained variance was considerably higher than in the
first regression analysis. In this analysis, the predictor
novel chunk positions was still significant. Additionally,
F and X reached statistical significance, indicating that
test strings comprising these letters were endorsed less
often than were other test strings. F and X were the letters
occurring least frequently in the training strings. The re­
gression weight ofthe predictor grammaticality was much
lower than in the previous analysis but was still statisti­
cally significant. As in the previous analysis, it was pos­
itive, indicating that grammatical items were rejected
more often than were nongrammatical items. Ofcourse, it
does not make much sense to assume that the participants
endorsed items when they detected some violation ofgram­
maticality or rejected items when they detected no such vi­
olation. Thus, there still must be a confounding factor that
is the true reason for this effect. Unless the effect oc­
curred by chance, the reverse grammaticality effect in-
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dicates that we did not discover all factors that influence
grammaticality judgments.

The z-ROCs were computed separately for every par­
ticipant as described in Experiment 1. The mean z-ROC
is shown in Figure 4 (right-hand panel). The intercept is
negative because nongrammatical strings were endorsed
more often than were grammatical strings. In the ROC
analyses, the level of significance again was set to .10 in
order to enhance power, because we expected the slope
not to differ from 1 and the quadratic component not to
differ from O. The average goodness offit in the quadratic
regression was r2 = .97. The mean intercept (a) was - .31,
the mean slope (b) was 1.06, and the mean quadratic con­
stant (c) was .06. One-sample t tests showed that the slope
did not differ significantly from 1 [t(19) = 0.71,p > .48],
and that the quadratic constant did not differ signifi­
cantly from 0 [t(19) = 0.66,p > .51].

Discussion
In Experiment 2, we failed to replicate the results of

Meulemans and Van der Linden (1997). Whereas these
authors found no effect of chunk strength, we obtained a
reliable effect of chunk strength. We also found a gram­
maticality effect, but it was a negative one: Nongrammat­
ical strings were endorsed with a higher probability than
were grammatical strings. Of all our results, this is per­
haps the most compelling evidence against rule-based
processing. If the participants had learned something
about the rules of the grammar, a reverse grammatical­
ity effect would have been expected least of all.

The second regression analysis, including the absence
or presence ofall letters as separate predictors, provided
at least a partial explanation of the reverse grammatical­
ity effect. According to the regression analyses, the par­
ticipants relied considerably on information about single
letters. Grammatical items comprised a higher number
of atypical letters than did nongrammatical items (i.e.,
letters that had appeared in the training strings not very
frequently). Thus, using information about single letters
led to higher endorsement rates for nongrammatical
strings than for grammatical strings.

The regression analysis revealed that the participants
were far from applying rule knowledge in judgments of
grammaticality. Instead, they apparently relied on simple
information about fragments and about single letters.
Further evidence against the application of rule knowl­
edge came from the ROC analysis. The z-ROCs were in
accord with the assumption that the grammaticality judg­
ments were made by assessing items on a continuous di­
mension: The slope of the z-ROC did not differ reliably
from 1,and there was not a significant quadratic constant
indicating concavity.

Reanalysis of Experiment 1: Regression
Analysis Including Single Letters as Predictors

The results of the second regression analysis in Ex­
periment 2 made us wonder whether or not the presence
of single letters could also have been important in Ex-

periment 1. Therefore, we computed another regression
analysis on the data of Experiment 1 (with the same
methodology as before) including the presence of all let­
ters used in the grammar as predictors. The results, which
can be seen in Table 2, indicate that, in Experiment 1, in­
formation about single letters was also used in judgments
of grarnmaticality. Strings containing the letter J had a
higher probability of being rejected than did strings not
comprising this letter. This is a replication ofa result re­
ported by Kinder and Shanks (in press), who also found that
strings including J were rejected more often. By including
single letters as predictors, the amount ofexplained vari­
ance rose considerably from 39.84% to 50.69%. Most im­
portant, in this analysis gramrnaticality failed to reach
statistical significance. This indicates that the effect in the
first regression analysis was at least partially due to a con­
founding ofgrammaticality with single-letter information.

GENERAL DISCUSSION

In the two experiments reported in this paper, we
found no evidence for rule-based processing in AGL.
The only result that, at first sight, seemed to indicate that
the participants were applying rule knowledge was that
the predictor grammaticality reached statistical signifi­
cance in the multiple regression analysis ofExperiment 1.
This effect, however, can be explained by grammaticality
being confounded with single-letter information, as our
second regression analysis of these data revealed. The
conclusion that no rule knowledge was acquired was cor­
roborated by the z-ROCs observed in the two experiments,
which showed neither a slope significantly different
from 1 nor a significant quadratic constant that would
have indicated concavity. Thus, the ROCs were in favor of
a similarity-based account ofAGL rather than a rule-based
account.

However, it could be argued that our ROCs do not con­
tradict all kinds of rule-based models of AGL, but only
Reber's (1967, 1969, 1989) account. Reber assumes that
participants build a representation of the rules of the
grammar, which is in some way similar to the grammar it­
self. Furthermore, he assumes that participants either
know or do not know the grammatical status ofa test item.
Therefore, the application ofrule knowledge is an all-or­
none process and should lead to ROCs rather different
from the ones observed in our experiments. An alterna­
tive characterization of the rules underlying gramrnati­
cality judgments is proposed by Mathews and Roussel
(1997). These authors describe a classifier model called
THIYOS, which assumes that participants acquire nu­
merous fragmentary rules such as "endorse strings that
begin with an X" or "endorse strings that end with sev­
eral Vs," which differ in strength. In this kind of rule­
based model, grammaticality judgments could be as­
sumed to be made by assessing items on a continuous
rule-adherence dimension: The (hypothetical) value of
an item on this dimension could be assumed to be a func­
tion ofboth the number and the strength of rules applying
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Figure 5. Grammaticality effects predicted by the SRN with
the stimuli in Experiments 1 and 2 as a function of the learning
rate. Each data point represents an average across 100 simulation
runs. The error bars indicate the confidence intervals.

to this item. Thus, a variant of THIYOS might be capa­
ble of producing ROes like the ones found in our exper­
iments. However, even if such a model could account for
the ROCs, it could hardly explain the reverse effect of
grammaticality in Experiment 2. Actually, this effect is the
strongest evidence against rule-based processing in our
experiments. Any type of rule-based account would pre­
dict that a positive effect of grammaticality should occur
particularly in this experiment: The participants had many
opportunities to extract the rules of the grammar, because
they were presented with so many different grammatical
strings.

What did the participants learn if they did not learn the
rules of the grammar? We could answer this question by
simply describing the results of the regression analyses:
The participants must have learned information about
single letters, both unrelated and (as far as the first posi­
tion is concerned) related to position. Furthermore, they
must have stored chunks also both unrelated and related
to positionalinformation (global chunk strength in Ex­
periment I, and novel chunk positions in Experiment 2).
However, by describing the types of information learned
in the two experiments, we cannot explain why there was
a positive effect of grammaticality in Experiment I but a
negative effect of grammaticality in Experiment 2. Al­
though it is rather clear that a rule-based model cannot ex­
plain the reversal of the grammaticality effect, it is not at
all clear that a similarity-based model of AGL can. Ap­
parently, neither the model by Vokey and Brooks (1992)
nor the competitive chunking model by Servan-Schreiber
and Anderson (1990) would have predicted this result.
This is because these models are not sensitive for single­
letter information. However, acquisition of single-letter
information is the only explanation we found for the re­
verse grammaticality effect in Experiment I.

Stimuli Exp. 1
Stimuli Exp.2

A model that is sensitive to single-letter information is
the SRN model ofAGL (Cleeremans et aI., 1989; Kinder,
2000). At present, the SRN model appears to be the most
successful model ofAGL. It has been shown to reproduce
several effects found in AGL, such as the effects of sim­
ilarity to training strings and grammaticality reported by
Vokey and Brooks (1992; see Dienes, Altmann, & Gao,
1999), the effects of grammaticality and chunk strength
found by Knowlton and Squire (1996; see Redington,
1998), and the transfer of grammar knowledge to a new
letter set (e.g., Shanks, Johnstone, & Staggs, 1997; see
Dienes et aI., 1999). We ran simulations with the stimu­
lus materials of both experiments in order to find out
whether or not this model could produce a positive effect
of grammaticality in Experiment I and a negative effect
of grammaticality in Experiment 2 with an identical set
of parameters (parameters and simulation details are
given on e-mail request). It is important that the param­
eters are identical in both simulations, because they re­
flect psychological variables such as learning efficiency
and attention, and there is no reason to assume differences
between the two samples ofparticipants in these variables.
In our simulations, we systematically varied the learning
rate parameter. Figure 5 shows the effect of grammati­
cality (P[yesl grammatical] - P[yes Inongrammatical))
observed in these simulations. With the stimuli of Experi­
ment I, there is a positive effect ofgrammaticality already
with a learning rate of .04. With the stimuli of Experi­
ment 2, the learning rate parameter has to be three times as
large for a positive effect of grammaticality to occur. As
a result, there is a range oflearning rate parameters where
we observe a positive effect of grammaticality with the
stimuli of Experiment I while observing a negative ef­
fect ofgrammaticality with the stimuli ofExperiment 2.
This reversal occurs despite the fact that the parameters
in the simulations of Experiments I and 2 are the same.

What is the reason for the reverse grammaticality effect
in our simulations of Experiment 2 with learning rates
smaller than .12? It is a result not of the particular gram­
mar used in this experiment but ofthe stimuli selected for
training and for test. Grammatical test stimuli comprise a
larger number ofletters that occurred in the set of train­
ing strings with relatively low frequency than nongram­
matical stimuli. The model is particularly sensitive for
frequencies of single letters if the learning rate is low:
The higher the learning rate, the larger is the model's
sensitivity to larger fragments, while its sensitivity to
single letters decreases.

The simulation results indicate that the SRN model
might be an adequate model to explain our data. Also, it
has been shown to account for a variety of other effects
observed in AGL experiments (see above). We therefore
would like to describe in more detail how knowledge is
stored according to this model: The same kind of mech­
anism might be responsible for acquisition of grammar
knowledge in human participants. During training, strings
are stored in the network by the gradual adjustment of its
connection weights on every trial. If only a single string
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was presented to the SRN several times, the network
would learn this string perfectly. However, in an AGL ex­
periment, many strings are presented, all of which are
stored within the same associative structure. Each string
can have individual features that do not occur in any
other string. Also, each string has common features that
occur in a few or many other strings. Connection weights
that represent individual features ofa string will be weak­
ened ifother strings are presented thereafter. In contrast,
connection weights representing common features will
be strengthened on the next trials. Thus, the network will
store the common features of the strings rather than the
individual ones. Typically, grammatical test strings are
more similar to the training strings than are nongram­
matical test strings in that they incorporate a higher num­
ber of common features. This is why the SRN can dis­
criminate between grammatical and nongrammatical
strings. It could be argued that, although the model does
not assume acquisition of rule knowledge, it neverthe­
less assumes some kind ofabstraction process. However,
this abstraction is not the kind of abstraction that is in­
volved in rule learning. It is a result of interference due to
new information that is stored in the same memory struc­
ture and thus is entirely associative in nature.

In conclusion, we have obtained both empirical and
computational evidence for the hypothesis that a similarity­
based associativeprocess can explain performance in AGL.
Extending other approaches (e.g., Servan-Schreiber &
Anderson, 1990), we found that not only fragment infor­
mation is important in AGL but that information about
single letters also influences grammaticality judgments.
In our data, there was no evidence for acquisition of rule
knowledge in AGL.
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