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Regularity effects in word naming: What are they?
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In a word-naming experiment, word-body consistency was crossed with grapheme-to-phoneme reg
ularity to test predictions of current models of word recognition. In the latency and error data, a clear
effect of consistency was observed, with the influence of regularity somewhat weaker. In addition, sim
ulation data from three contemporary models of word recognition were obtained for the stimuli used in
the experiment in order to compare the models' latencies with those of humans. The simulations showed
that the human latency data are most consistent with the parallel-distributed-processing model of Plaut,
McClelland, Seidenberg, and Patterson (1996), less so with the dual-process model (Zorzi, Houghton,
& Butterworth, 1998),and least so with the dual-route-cascaded model (Coltheart & Rastle, 1994).

In experiments of reading aloud, irregular words (e.g.,
pint) take longer to name than regular words (e.g., punt).
Usually, a word is considered to be irregular ifit violates
grapheme-to-phoneme correspondence (GPC) rules,
which typically correspond to the most frequent pronun
ciations of graphemes. For example, the rule for i is Itt,
because this is the dominant pronunciation for i. Thus,
according to this definition ofregularity, pint is irregular
because the i rule is violated. However,pint is also incon
sistent. That is, there are similarly spelled words (e.g., mint,
lint) with conflicting pronunciations of the word body
(the vowel and following consonants). Many irregular
words are also inconsistent, which has often led to a con
founding ofthese variables, but they are separable dimen
sions. As a measure of consistency, we can examine the
distribution of pronunciations associated with a particu
lar word body. Words high on this measure ofconsistency
are those that have many more friends (words that share
the same body and a common pronunciation) than ene
mies (words containing the same body associated with a
different pronunciation). For example, storm has worm as
an enemy, but many more friends (form, norm, dorm, etc.).
A word lower on this consistency dimension would be one
with more enemies than friends, such as pint, which has
the enemies mint, hint, lint, tint, and no friends.

Several studies have demonstrated an effect of consis
tency that is independent of GPC regularity (Glushko,
1979; Jared, McRae, & Seidenberg, 1990). Words that are
regular as defined by GPC rules, but have many enemies
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(e.g., mood) yield longer naming latencies than do regu
lar consistent words (e.g., moon). In contrast, there is
very little evidence that GPC regularity effects are inde
pendent of word-body consistency. However, in a recent
study, Jared (1997, Experiment 4) examined consistency!
regularity effects for high-frequency words, using regular
and irregular-inconsistent words that varied according to
their friends-to-enemies ratio. This led to conditions in
which regular and irregular words either had more friends
than enemies (F>E), or more enemies than friends (E> F).
Differences in naming latencies between experimental
words and a set of regular control words were observed
for E > F, but not for F > E words.

Because current word-recognition models differ sharply
in their explanations ofregularity effects, the present study
was designed for the purpose of further studying the re
lationship between regularity and word-body consistency.
Participants named low-frequency words that varied in
regularity and the measure ofword-body consistency de
scribed above. Specifically, four types ofwords were pre
sented: regular F> E (e.g., toad), regular E> F(e.g., tone),
irregular F> E (e.g., toll), and irregular E > F (e.g., tomb).
In addition, simulation data were gathered for the purpose
of comparing the naming times for these words and the
output of three implemented word-recognition models
that make predictions about regularity effects. We turn
now to brief descriptions of these models and their pre
dictions regarding the roles ofconsistency and regularity
in word recognition.

The dual-route cascade (DRC) model (Coltheart, Cur
tis, Atkins, & Haller, 1993) represents an implemented
version of the dual-route theory of reading, containing
separate lexical and sublexical routes. The lexical route is
an interactive activation procedure (McClelland & Rum
elhart, 1981; Rumelhart & McClelland, 1982) that gener
ates a pronunciation by activating a phonological code in
a mental lexicon via a visual word representation. A sep-
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arate sublexical procedure operates on the basis of GPC
rules. The sublexical route generates pronunciations of
orthographic inputs by applying categorical GPC rules
that are based on the most frequent pronunciation of
each grapheme in a word. The sublexical route processes
orthographic stimuli one letter at a time from left to right
(Rastle & Coltheart, 1998). During word recognition, these
two processes work separately and simultaneously, and
feed information to a common phoneme system. Irregular
words (e.g., pint) take longer to name because the pho
neme system receives conflicting information from the
two processing routes. The incorrect code produced by
the sublexical route competes with the correct code re
trieved from the lexicon. For example, when the rules are
applied to pint, the unit representing III at the second po
sition in the phoneme system becomes active, and it
competes with lail activated by the lexical route. When
two or more phoneme units are active, their activation
serves to inhibit each other, and this increases reaction
time (Coltheart & Rastle, 1994).

It is important to note that GPC rules are categorical
(Seidenberg & McClelland, 1989). In other words, a
grapheme corresponds to a single phoneme and no oth
ers. For example, although -ood is associated strongly
with the pronunciation occurring in good, the sub1exical
route activates only lui when -ood words are processed.
Therefore, potential interference delivered to the phoneme
system from the sub1exica1 route is, in general, context
independent. The model contains context-sensitive rules,
but these rules are applied rather narrowly.

Effects of word-body consistency, on the other hand,
have been theorized to arise within the lexical route (Colt
heart et aI., 1993). Although localized pronunciation codes
for words exist within this route, information at various
levels (e.g., feature, letter, visual-word, phonological
word) is activated in cascade. That is, as soon as infor
mation becomes active at one level, it is shared with ad
jacent levels. Word-body units (e.g., ood) activate words
that contain them (e.g., mood, good, wood, etc.). The ac
tivation ofwords with contrasting pronunciations results
in competition in the phoneme system and leads to slower
naming latencies. For example, mood activates good,
wood, and so forth, and this generates competition at the
second phoneme position (owing to the alternative pro
nunciations of00). It is important to note that this within
route conflict is separate from the between-route compe
tition responsible for regularity effects. That is, consistency
effects are due solely to information activated within the
lexical route, and regularity effects are due to informa
tion activated through both routes.

Therefore, in the present study, according to the DRC
model, naming latency should be related to the number
of sources in which competition occurs. Specifically, the
model predicts that latencies should be longer for irreg
ular words than for regular words because ofcompetition
occurring between processing routes, and latencies should
be longer for inconsistent words than for consistent words
because of competition within the lexical route.

In contrast to the DRC model, in which regularity and
word-body consistency effects have different origins
within the lexical and sublexical routes, the model of
fered by Plaut, McClelland, Seidenberg, and Patterson
(1996) proposes that these effects share a common basis.
This model (hereafter referred to as PMSP96) consists of
a single network representing an orthographic input level,
a phonological output level, and a semantic level repre
senting the frequency of the orthographic input. In the
implemented model, hidden units mediate connections
between the levels in such a way that each orthographic
unit connects to each hidden unit, which, in turn, is con
nected to each phonological unit. Each connection is as
sociated with a weighted value that is adjusted during a
learning phase, and knowledge of spelling-to-sound re
lationships is contained in these weighted connections.
During learning, words that have consistent pronuncia
tions (e.g., punt) affect weight adjustment similarly for
each word in the neighborhood (e.g., hunt, bunt, runt, etc.),
whereas weight adjustment for words containing incon
sistent letter strings (e.g., bough, cough, dough, etc.) will
vary, depending on the target output. For example, when
bough is presented to the model, connection weights are
adjusted so that ough yields lau/, whereas when dough is
presented, the weights are adjusted so that ough yields
10/.After learning, the model yields longer settling times
for inconsistent words regardless of GPC regularity, be
cause the connection weights have been adjusted differ
ently for each particular orthographic-phonological re
lationship. Because irregular words (e.g., pint) typically
contain spelling patterns that are strongly associated with
alternative pronunciations, they are likely to show longer
settling times (which represents recognition speed in the
model). Consequently, the PMSP96 approach does not
distinguish between regular and irregular words on the
basis ofGPC rules, but rather in terms ofdegree ofconsis
tency; words are more or less regular, depending on the
consistency ofpronunciation of similarly spelled words.

In the present study, therefore, the PMSP96 model
should predict a robust effect of consistency. Regularity,
on the other hand, should have no effect that is indepen
dent ofthe consistency measure. That is, irregular words
should be named slowly only if they have a high propor
tion of enemies.

The DP model (Zorzi, Houghton, & Butterworth, 1998)
combines properties ofboth the DRC and PMSP96 mod
els. Like the DRC model, the DP model contains separate
lexical and sublexical routines that interact in a phono
logical decision system. As in the PMSP96 model, rep
resentations are distributed across units, pronunciation
codes are learned via standard algorithms, and the DP
model contains a hidden layer that mediates relation
ships between orthographic inputs and phonological out
puts. In contrast to the PMSP96 model, however, the DP
model has a separate two-layer phonological assembly
route that maps orthographic inputs directly onto phono
logical units (i.e., the sublexical procedure). Because two
layer networks cannot learn the arbitrary mappings that
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occur in irregular words (Hinton & Shallice, 1991), the
pronunciation of irregular words is learned via the hid
den units (i.e., the lexical procedure). The lexical route
is represented as a three-layer network with hidden units
mediating orthographic-to-phonological relationships. It
is assumed that the two-layer side of the model is faster
than the three-layer side because one less step is involved.

Regarding consistency and regularity effects, the DP
model should behave similarly to the PMSP96 model.
The three-layer network should operate like the PMSP96
model because they contain similar representations, and
they are trained similarly. Thus, the model should show
an effect of consistency. However, the two-layer network
should be more sensitive to grapheme-to-phoneme map
pings than orthographic-to-phonological body mappings
and show a strong regularity effect. Therefore, the model
should produce main effects of both variables. However, on
the basis of simulations ofJared's (1997) high-frequency
words (Zorzi, personal communication, July 1999), we
expect the model to produce a larger effect of regularity
than consistency.

In summary, regularity and consistency effects have
different bases in the DRC and DP models, and a com
mon basis within the PMSP96 model. In the DRC model,
regularity effects arise from competition between the
lexical and sublexical routes while consistency effects
reflect a conflict within the lexical route. In the PMSP96
model, consistency effects and regularity effects derive
from the same source, but the model is more sensitive to
consistency than to regularity. Finally, the DP model
should show sensitivity to consistency because it con
tains a three-layer network as does the PMSP96 model,
and it should show sensitivity to regularity because it
contains a two-layer network that is sensitive to grapheme
to-phoneme mappings.

METHOD

Subjects
Forty-nine undergraduates from the University of Kansas partic

ipated in the experiment for course credit. All were native speakers of
English who reported to have normal or corrected-to-normal vision.

Design
The design for the experiment was a 2 X 2 within-subjects fac

torial. The factors were consistency (F > E vs. E> F) and GPC reg
ularity (regular vs. irregular) of the targets.

Stimuli
The stimuli and their mean naming latencies, grapheme-to

phoneme (Berndt, Reggia, & Mitchum, 1987) and orthographic-to
phonological body (Ziegler, Stone, & Jacobs, 1997) conditional
probabilities are presented in the Appendix, and summary statistics
for these items are provided in Table I. All of the stimuli used were
monosyllabic words with printed frequency ofless than 57 per mil
lion words (Carroll, Davies, & Richman, 1971). Of the 40 targets
selected, 20 were regular in terms of GPC rules (Coltheart et aI.,
1993) and 20 were irregular. In addition, both the regular and ir
regular items were further classified into F> E and E > F groups.
We defined word consistency in terms of the summed frequencies
of each of the pronunciations ofa particular word body. I A consis-

Table I
Summary Statistics for the Items Used in the Experiment

(Mean Values are Provided)

Regular Irregular

Variable F> E E > F F> E E > F

Frequency 16.8 10.8 13.5 11.7
Familiarity 6.25 6.41 6.41 6.44
Imageability 5.07 4.95 4.99 5.10
Length 4.5 4.5 4.7 4.9
Bigram-frequency 4,997 5,312 5,730 5,767
Coltheart's N 7.1 7.7 6.4 5.2
Mean summed frequency-friends 449.1 184.0 745.8 140.7
Mean summed frequency-enemies 125.5 873.3 175.5 569.0
Conditional probability-body .84 .41 .70 .27
Conditional probability-grapheme .57 .62 .12 .17

tent word was one for which the summed frequencies of its friends
(i.e., similarly pronounced words) were greater than those ofits en
emies (i.e., differently pronounced words), and was labeled F > E.
For inconsistent words, the summed frequencies of enemies was
greater than those of its friends (labeled E > F). Varying consis
tency and GPC regularity (Coltheart et aI., 1993)allowed us to define
four stimulus categories: (1) regular F > E (e.g., toad), (2) regular
E > F (e.g., tone), (3) irregular F > E (e.g., toll), and (4) irregular"
E > F (e.g., tomb). The orthographic-to-phonological conditional
probabilities (i.e., the probability of a particular pronunciation,
given a particular orthographic sequence) showed that the range and
variation of consistency were approximately equal for these two
units.? For example, the mean conditional probabilities of the F>
E and E> F words were.770 and .342, respectively (mean range =

.432, standard deviation = .305), and the mean conditional proba
bilities ofthe regular and irregular words were .595 and .147, respec
tively (mean range = .448, standard deviation = .285). Also, be
cause of the recent controversy involving the criterion to initiate
pronunciation (see Cortese, 1998; Cortese & Zevin, 1998; Kawa
moto, Kello, Jones, & Bame, 1998; Rastle, Harrington, Coltheart,
& Palethorpe, 2000), equal numbers of plosive and nonplosive ini
tial phonemes occurred in each group. Other aspects of initial pho
neme were controlled by analysis of covariance. Furthermore, no
two words contained the same spelling pattern.

A series of regularity X consistency analyses of variance were
performed to compare the items on frequency, familiarity (rated by
a group of30 subjects), word length, imageability (Cortese, Simp
son, & Woolsey, 1997; Strain, Patterson, & Seidenberg, 1995; rated
by another group of 30 subjects), neighborhood size (Coltheart,
Davelaar, Jonasson, & Besner, 1977), and summed bigram frequency
(Solso & Juel, 1980). None of these analyses yielded any signifi
cant main effects or interactions (all ps > .23).

Procedure
The Micro Experimental Laboratory (MEL) software (Schneider,

1990) was used to present the stimuli via a microcomputer. On each
trial, a fixation mark (+) was presented for 1,000 msec. The word
stimulus then appeared until a naming response was made. An ex
perimenter seated next to the subject coded responses as correct,
error, or noise (i.e., the microphone failed to record the response or
if it recorded some extraneous noise). An intertrial interval of
1,000 msec was employed.

RESULTS

The responses coded as noise were removed from the
analyses. Also, responses beyond 2.5 standard deviations
ofthe mean for each condition were classified as outliers
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and were removed from the analyses. Noise responses and
outliers accounted for 4.4% ofthe data. The latency data
and error rates for each condition are presented in Figure I.

Analysis of variance by subjects and items (Clark, 1973)
was performed on latencies and errors. Consistency and
regularity were both within-subjects factors in the analy
ses by subjects (F]), and between-words factors in the
analyses by items (F2 ) . Voice, fricative, palatal, bilabial,
and liquid were included as covariate factors in the analy
sis by items. Unless noted, all effects are significant at
p< .05.

In the latency data, consistent (F > E) words were
named in less time than were inconsistent (E >F) words
[F](l,48) = 82.80, MSe = 445.41; F2(1,31) = 10.91,
MSe = 1,025.42]. Regularity was significant by subjects
[F]0,48) = 7.39,MSe = 307.13],but notby items [F20,31)
= 1.42, MSe = 1,025.42, p > .24]. The interaction be
tween consistency and regularity was also significant by
subjects [Fl(l,48) = 4.16, MSe = 560.48], but not by
items (F2 < I). Simple effects show that consistency was
significant for both regular words [t,(48) = 7.26, SE =
4.73] and irregular words [t,(48) = 4.75, SE = 4.32].

In the error data, more errors were made for inconsis
tent (E> F) than for consistent (F>E) words [F](1,48) =
53.64,MSe = .01; F2(l,31) = 13.34,MSe = .01]. Regu
larity was significant by subjects [F](l,48) = 22.63,
MSe = .01], but not by items [F2(1,31) = 2.16, MSe =
.01, p > .13]. The consistency X regularity interaction
was not significant (both Fs < 1). The vast majority of
the errors produced could be seen as consistency driven
(e.g., bead as rhyming with head, and pint rhyming with
mint). One exception to this was that suite was com-

575

monly mispronounced as suit. There was no sign of a
speed-accuracy tradeoff in the data.

The results of this experiment suggest that naming la
tencies and errors are more affected by word-body con
sistency than by GPC regularity. A clear effect ofconsis
tency was observed (35 msec), whereas the influence of
GPC regularity was somewhat weaker (16 msec).

Simulations
We obtained measures of naming latencies from each

of the models for the stimuli in the experiment in order
to compare the performance of each model to the human
data (see Figure 2).3The DRC model showed an effect of
regularity that was similar to the results observed with
Jared's (1997) stimuli [F(l,36) = 7.01, MSe = 27.62],
but the effect of consistency was in the opposite direc
tion to that observed in the experiment and was not sig
nificant[F(I,36) = 2.64,MSe = 27.62,p>.II].Aspre
dieted, the PMSP96 model showed a large effect of
consistency [F(l,36) = 10.90, MSe = .01], whereas reg
ularity was not significant (F < 1). Also as predicted, the
DP model produced a large effect ofregularity [F(1,35) =

27.53, MSe = .62] and a small effect of consistency
[F(I,35) = 4.30, MSe = .62]. The consistency X regu
larity interaction was not significant for any of the mod
els (all Fs < I).

In addition, in order to test the models at the item level
(e.g., Spieler & Balota, 1997), we calculated the corre
lation between the output of each of the models and the
item means obtained from our subjects. The results of
these analyses are consistent with the results obtained at
the factor level. Only the latencies obtained from the
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Figure 1. Mean latencies and proportion errors (above each bar) as a function of regularity
and consistency.
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DISCUSSION

and that of the ORC model failed to show the obtained
pattern.

The results of the experiment reported here support
the predictions made by the PMSP96 model. In fact,
consistency as measured by word-body friends and ene
mies had a clear effect on naming performance, whereas
GPC regularity did not. The OP model performed simi
larly to the PMSP96 model, but it did not produce as
close ofa match to the human data. The ORC model was
not supported by the human data.

On the basis of these results, we would argue that con
ceptions oforthographic/phonological regularity in word
recognition need to be considered more in terms ofword
body consistency than of GPC regularity. Inconsistent
words take more time to respond to and lead to more errors
than do consistent words, irrespective ofGPC regularity.
Much ofthe previous research manipulating spelling-to
sound regularity has typically failed to take into account
the fact that irregular words usually have many enemies,
whereas regular words tend to have many friends. In other
words, the research has frequently confounded regular
ity with consistency.

Our finding is consistent with other studies in which
it has been found that word-body consistency plays an im
portant role in word recognition (e.g., Glushko, 1979;Jared,
1997; Jared et al., 1990; Treiman, Mullennix, Bijeljac
Babic, & Richmond-Welty, 1995). For example, using a
large-scale regression analysis, Treiman et aI. found that
for word body-units in three-phoneme words, the con
sistency of the body unit accounted for more variance
(p < .05) than did vowel consistency (p >.27). In addi
tion, Jared (1997), crossing the same variables as in the
present study but using high-frequency words, found that
consistency was stronger than regularity. Finally, studies
done primarily with regular words have shown word-body
consistency effects that are independent of regularity
(Glusko, 1979; Jared, 1997; Jared et al., 1990). On the
other hand, not one study involving the reading of words
has shown a stronger effect of regularity than of consis
tency. Thus, we would argue that in experiments using
only real words where the system is not biased in an un
natural way, consistency effects should be and always are
larger than regularity effects. It is important to note that
we are not arguing that grapheme-phoneme regularity has
no effect in word naming. Rather, conceptions ofspelling
to-sound effects in reading aloud should be thought of
more in terms ofword-body consistency than grapheme
to-phoneme regularity.

It may be argued that the consistency effect reported
in the present study is a within-word context effect. That
is, information about the grapheme may be overridden by
the contextual information provided by the word body.
For example, the most common way to pronounce i is II/
(as in lid), but the ind body is most frequently pronounced

irregular
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Figure 2. Simulation data from the DRC, PMSP96, and DP
models.

PMSP96 model significantly correlated with the human
latencies [r(39) = .44, OP model; r(38) = .28, P < .09,
ORC model; r(39) = - .06, p > .10].

Overall, the pattern of reaction time data generated by
our subjects resembled most closely that of the PMSP96
model, whereas the output ofthe OP model overestimated
regularity effects and underestimates consistency effects,
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as in kind. The present results suggest that the irregular
ity of i is overridden by the consistency of indo This find
ing contrasts sharply with previous notions regarding the
supreme status of the grapheme in visual word recogni
tion (Coltheart et aI., 1993).

Regarding the theoretical implications of the present
study, the simulation results show that the PMSP96 model
most closely simulates the observed outcome. Thus, the
model appears to be more sensitive to word-body consis
tency than to grapheme-phoneme consistency. The
PMSP96 approach views regularity as a continuous vari
able based on the statistical properties of spelling-to
sound mapping of English. The irregularity of a word
corresponds to the phonological characteristics of simi
larly spelled words. If the pronunciation of similarly
spelled words is consistent with the target word (e.g.,
toad, bind), the adjustment of the weights during learn
ing will be applied in a consistent manner (so that ind
yields /aind/, and oad yields /od/). However, if the pro
nunciation of similarly spelled words is inconsistent with
the target word (e.g., bead and pint), the weights will be
adjusted differently for the different pronunciations (e.g.,
so that int maps onto faint! when pint is presented and
/rnt/ when hint, mint, tint,print, lint, etc. are presented).
When the target pronunciation is the least common, per
formance will suffer. It is important to note that the model,
in principle, could handle an effect of regularity as long
as it was always smaller than that of consistency (as
suming that all other factors are equated). Consider bind
again. We might expect the model to be affected by other
i words in the sense that during learning when the model
is presented with the grapheme i, the weights are being
adjusted so that i yields the GPC-consistent pronuncia
tion. However, when presented with ind words, more
connections within the network are being adjusted so
that ind yields the /aind/ pronunciation rather than the
/md/ pronunciation. The hidden layer that allows the
model to learn the pronunciation of inconsistent words is
more sensitive to larger orthographic units than it is to
smaller ones (Seidenberg & McClelland, 1989). Consis
tent with this idea, the PMSP96 model shows a large con
sistency effect, and a small, nonsignificant effect of reg
ularity. Presumably, if the number of items increased, a
significant regularity effect could be found in the model,
but the consistency effect would be greater.

The OP model operates in a similar fashion, but the
sublexical route tends to emphasize grapheme units such
that words containing inconsistent graphemes (e.g., bind
and pint) will create equivalent interference in the pho
neme decision system regardless of the body consis
tency. The lexical route will be sensitive to body consis
tency because it operates very similarly to the PMSP96
model. Thus, the model simulates both a regularity effect
and a consistency effect. However, given the simulation
data, the model in its current form tends to overempha
size the effect of regularity and underestimate the effect
of consistency.

The ORC model produced a large effect of regularity
and no effect ofconsistency; in fact, the phonological code
took slightly more time for F > E words than for E > F
words. Thus, the model greatly overemphasizes the ef
fect of regularity. The problem with the ORC model is
that it considers regularity a categorical variable. Thus
bind is viewed as being as irregular as pint because the
rule for medial i has been violated equally in both words.
Interestingly, bind and pint are very similar phonologi
cally. In fact, phonologically they differ only by the voic
ing of the first and last phonemes. However, the mean
naming latency ofbind was 560 msec, whereas the mean
naming latency ofpint was 615 msec. We claim that the
difference in naming latencies of these two words can be
traced to their differences in word-body consistency. It
seems possible that the DRC model could account for
these findings by making its rules more context sensitive.
Currently, context-sensitive rules exist within the model,
but they are applied rather narrowly. In terms ofthe pre
sent study, context sensitivity could be expanded, and
this would result in making some of our irregular stimuli
regular and vice versa. For example, rules such as i(nd)
fail (due to the pronunciation of find, kind, mind, etc.)
might be formed. Another possibility would involve
changing parameter values so that there would be more
of a reliance on the lexical route. If consistency effects
reflect activity within the lexical route as Coltheart et al.
(1993) state, then presumably they could be made greater
by putting more emphasis on lexical processing. There is
some recent evidence that subjects may be able to rely on
lexical/semantic processing in some situations and sub
lexical/phonological in others (Zevin & Balota, 2000).
However, the model did not show any hint of a consis
tency effect in the simulations presented here or in those
presented by Jared (1997). Thus, in its present form, the
ORC model does not appear to be compatible with the
results reported here, and it is difficult to say whether a
change in parameter values would be detrimental to the
model's performance in other areas that the model has
had success with.

It should be noted that the results of the present study
are somewhat of a paradox when compared with the re
sults of studies examining the role of orthographic units
in nonword pronunciation. For example, in Andrews and
Scarrett's (1998) recent study, although word-body con
sistency accounted for more variance than did grapheme
to-phoneme consistency in pronunciation variability of
nonwords (i.e., the extent to which subjects gave differ
ent pronunciations for particular stimuli), subjects usu
ally assigned pronunciations of nonwords according to
GPC rules. Furthermore, the results of a large-scale
study by Seidenberg, Plaut, Petersen, McClelland, and
McRae (1994) on the pronunciation of 590 nonwords are
consistent with the finding of Andrews and Scarrett. In
Seidenberg et al.'s study, 24 participants named non
words generated from 590 different word bodies. If we
consider the stimuli used in the present study, 20 items
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(the 10 regular E > F words and the 10 irregular F > E
words) had pronunciations in which word-body consis
tency and GPC rules were in conflict with one another.
Fortunately, the preferred pronunciations of these par
ticular word bodies in nonwords containing them are
available in Seidenberg et al. The GPC-generated pro
nunciation was favored for 14 of the critical nonwords,
whereas the word-body generated pronunciation was fa
vored for only 5 of the items (choU, tearl, doup, grall,
and skose). The results from studies of nonword pronun
ciation suggest that the grapheme is more influential
than the consistency of the word body when applied to
the pronunciations of novel word-like stimuli. The para
dox can be made clear by returning to the items bind and
pint. Whereas it seems apparent that the difference in la
tencies reflects the consistency of these two items, in the
Seidenberg et al. study, the GPC-based pronunciation was
favored for bothjind (by 23 out of24 subjects) and bint
(by all 24 subjects). Thus, it seems that consistency mat
ters most for word pronunciation and favors the PMSP96
model, and that regularity matters most for nonword pro
nunciation and favors the DRC and DP models.

In addition, Andrews and Scarrett (1998) found that in
terms of the word body, the number of neighbors ac
counted for more variance in a regression analysis than
did the summed frequencies of those neighbors on sev
eral different measures. In contrast, Jared et al. (1990)
found that with regard to word naming, the summed fre
quency of enemies rather than the number of enemies
was responsible for increased naming latencies for incon
sistent words (see note 1). Future research on consistency
should focus on the basis of the discrepancy between the
word and nonword studies.

In summary, the manipulation of GPC regularity and
word-body consistency allowed for the examination of
contrasting predictions made by the PMSP96, DRC, and
DP models. The results are most consistent with the pre
dictions made by the PMSP96 model and less so with the
other two models. The conclusion from these studies is
that during normal visual word recognition, the word body
controls processing more than does the grapheme unit.
Furthermore, a more accurate definition of phonological
regularity should emphasize the consistency of pronun
ciation of similarly spelled words.
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NOTES

I. Jared et al. (1990) have demonstrated that the consistency effect is
driven by the summed frequencies of friends and enemies rather than
their number. Jared et al. observed an equivalent consistency effect be
tween conditions in which the ratio of the number friends and enemies
varied while the summed frequencies remained constant. Specifically,
one condition of words had a greater number of friends and a smaller

number of enemies than another, but the summed frequencies offriends
and enemies was the same, and naming latencies were equivalent.

2. It should be noted that we selected our stimuli on the basis of the
summed frequencies offriends and enemies due to the findings ofJared
et al. (1990). Both the conditional probabilities of Berndt et al. (1987)
and Ziegler et al. (1997) are based on the number of words that contain
these orthographic-to-phonological relationships. Thus, there may be
some minor discrepancies in stimulus classification if a type approach
(based on the number of words) is employed instead ofa token approach
(based on the summed frequencies of words). However, regarding the
words in the present study, the friends-to-enemies ratio of these two ap
proaches is highly correlated.

3. The simulation data is based on an assumption that the naming re
sponse begins when the phonology of the whole word has been com
pleted. Although this assumption has been challenged recently (see Cor
tese, 1998; Kawamoto et aI., 1998), changing the assumption to an
initial-phoneme criterion should not greatly affect the results ofthe mod
els, because an equal number of plosive and nonplosive initial pho
nemes were employed in each condition. An initial-phoneme criterion
assumption would decrease the consistency/regularity effects for nonplo
sives but not for plosives. Because equal numbers of each occur in each
condition, the pattern ofresults would be maintained for either criterion.

APPENDIX
Words Used in the Experiment, Their Naming Latencies,

Grapheme-to-Phoneme Conditional Probabilites, and Orthographic-to-Phonological Probabilites

Conditional Probability Conditional Probability

Item Latency Grapheme Body Item Latency Grapheme Body

Regular F> E Regular E> F
toad 515 .933 .800 tone 544 .785 .750
batch 526 .542 .889 bead 634 .576 .308
storm 508 .314 .750 spook 536 .570 .000
dice 496 .589 1.0 dose 520 .868 .182
shut 528 .417 .889 foul 529 .324 .333
shear 512 .576 .789 font 585 .261 .500
paste 495 .651 .800 dome 521 .785 .667
leaf 505 .576 .666 mood 522 .570 .333
drool 538 .570 .857 grease 539 .868 .571
lass 519 .542 1.0 wreath 614 .576 .500

Irregular F > E Irregular E > F
toll 539 .314 .714 tomb 542 .006 .500
bind 560 .074 .875 pint 615 .074 .100
scarce 558 .020 .500 shove 524 .055 .689
pearl 514 .056 1.0 plaid 568 .003 .125
stealth 590 .298 1.0 suite 617 .046 .000
soup 516 .041 .666 flown 568 .502 .429
pour 488 .041 .200 cough 530 .517 .250
mall 505 .002 .929 youth 537 .041 .250
climb 537 .074 .500 gross 529 .314 .111
host 505 .314 .142 height 530 .142 .250
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