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Binocular unmasking with unequal interocular
contrast: The case for multiple Cyclopean eyes

BRUCE SCHNEIDER and GIAMPAOLO MORAGLIA
University of Toronto, Erindale Campus, Mississauga, Ontario, Canada

Under certain conditions, the detection threshold for a sinusoidal grating embedded in a noisy
background may be an order of magnitude lower when binocular cues are available than when
monocular cues only are present. Such binocular unmasking occurs only when the degree of in-
terocular disparity for the target differs from that of the background. Two classes of models have
been advanced to account for such unmasking. The first assumes that orientation-specific, spa-
tial frequency channels in each eye encode the amplitude and phase of the spatial frequency com-
ponent of the pattern the channel is tuned to detect. Thus, a difference in interocular disparity
between target and background could result in interocular amplitude and/or phase differences
in left- and right-eye spatial frequency channels. When, however, there are no disparity differ-
ences between target and background, there will be no interocular differences in amplitude and
phase in the left- and right-eye channels. In this model, then, binocular unmasking reflects the
binocular system’s ability to respond to interocular amplitude and/or phase differences in the
patterns presented to the two eyes. In the second class of models, it is assumed that the left- and
right-eye patterns are first summed to form a “Cyclopean” eye. In these models, detection de-
pends on the effect this summation process has on the power spectrum of the summated patterns.
To decide between these two classes of models, we observed the occurrence of binocular unmask-
ing when (1) the contrast of masker and signal was varied identically in both eyes and (2) the
contrast of masker and signal was varied in one eye only. Consistent with our previous research,
we found that the results can be accounted for in terms of a linear summation model of binocular
unmasking; the alternative interocular phase detection model was disproved. The implications
of these findings for binocular contrast summation in the absence of visual noise are discussed.

The detection threshold for a sinusoidal grating embed-
ded in a noisy background may be more than an order
of magnitude lower when binocular cues are available than
when only monocular cues are present (Henning & Hertz,
1973, 1977; Moraglia & Schneider, 1990, 1991, 1992;
Schneider, Moraglia, & Jepson, 1989). This effect, in
deference to its auditory counterpart (see Durlach & Col-
burn, 1978, for a review), has been termed binocular un-
masking. We (Moraglia & Schneider, 1990, 1991, 1992;
Schneider et al., 1989) have suggested that binocular un-
masking may result from a linear summation of monocu-
lar inputs, through the effects that this operation has on
the power spectrum of the summated input and thus on
the resulting signal-to-noise ratio in the summated pat-
tern. Alternatively, other authors, both in audition
(Jeffress, 1972; McFadden, 1968) and in vision (Henning
& Hertz, 1973, 1977) have proposed that the unmasking
effect can be attributed to the observer’s ability to dis-

This research was supported by grants from the Natural Sciences and
Engineering Research Council of Canada to each author. We thank Scott
Parker for his comments on an earlier version of this manuscript.
Requests for reprints should be sent to B. Schneider, Department of
Psychology, University of Toronto, Erindale Campus, Mississauga,
ON L5L 1C6, Canada.

639

criminate interaural or interocular phase differences. In
these models, vector diagrams are constructed for noise
alone and signal + noise trials for each ear or eye. It is
then assumed that the observer uses interaural or inter-
ocular differences in phase to detect the presence of the
signal. In the auditory realm, where the predictions of
these competing views have been explored most thor-
oughly, it is typically found that both models, with ap-
propriate modifications, can account equally well for most
phenomena (see Colburn & Durlach, 1978, for a review).
In the visual realm, it is also clear that the vector model
and the summation model can both readily account for
the effects so far investigated (Henning & Hertz, 1973,
1977, Moraglia & Schneider, 1990, 1991, 1992;
Schneider et al., 1989).

In order to overcome this theoretical impasse, in the
present experiments we resorted to conditions of stimu-
lation in which vector models and linear summation
models predict quite different degrees of unmasking. In
particular, binocular unmasking was determined when
(1) the root-mean-square (RMS) contrasts of both masker
and signal were equal in both eyes and when (2) the RMS
contrasts of both masker and signal in one eye were either
50% or 25% of the value in the other eye. To explicate
why the two models make different predictions, we will
first describe the experimental paradigm employed in our
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studies and then show how the two models account for
the occurrence of binocular unmasking in these conditions.

The Experimental Paradigm
As in our previous research, we employed here a stan-
dard two-interval, forced-choice paradigm, in which ob-

servers were presented with two image pairs viewed
through a simple-lens stereoscope. On noise-alone inter-
vals, a field of two-dimensional (2-D) broadband Gauss-
ian noise (N) surrounded by a square frame of uniform
noise was presented to each eye (see middle panel of Fig-
ure 1). The 2-D noise field presented to the right eye,

Figure 1. The upper panel shows the Gabor signal used in all experiments. The middle panel shows a noise-only display; relative to
the left one, the right-eye Gaussian noise field is shifted horizontally to the right by 6 pixels (20.3’ of arc). The lower panel shows the
Gabor patch embedded in the noise, as in the experimental NS, condition.



however, was shifted d; to the right within the surround-
ing frame, as with uncrossed disparity. When viewed
through the stereoscope the fused 2-D noise was there-
fore perceived as being located behind the surrounding
frame. Before each trial began, a fixation spot was pre-
sented in the center of each frame. When the observer
fixated on this spot, this point, (xo,yo), was thus imaged
in the center of each fovea. Let the luminance pattern for
the left eye be g(x,y). Since the right-eye pattern was
shifted d;x to the right (shifts to the right are given a nega-
tive sign), the luminance pattern for the right eye is then
given by g(x+dy,y). On signal + noise intervals, a
Gaussian-enveloped sine-wave grating of the Gabor type
(Daugman, 1980), whose wavelength was equal to 2d;
(see top panel of Figure 1), was added to each field (see
bottom panel of Figure 1).

On the set of trials that were designed to produce
binocular unmasking, the Gabor signal, which was here
oriented vertically, was added at the center of both the
left- and the right-eye noise fields. Thus, with reference
to the frames, the coordinates of the Gabor patterns were
identical in both eyes (NgS, condition). When viewed
through the stereoscope, the fused signal appeared to float
in front of the background noise on the same plane as that
of the frame, which also had identical coordinates in both
eyes.

On control trials, the Gabor signal presented to the right
eye was shifted dx to the right of center. Since the 2-D
noise background and the Gabor signal were shifted by
the same amount (NzSs condition), the signal, when
viewed through the stereoscope, appeared to be embed-
ded within the background noise located behind the frame.
The degree of unmasking is indexed by the decibel dif-
ference in threshold signal-to-noise ratio in the two con-
ditions and is referred to as a binocular masking-level
difference (BMLD). The BMLD, measured in decibels,
equals 20 log[T(NaSq)/T{NaS,)], where T(NaSg) and
T(NaSo) represent the RMS contrasts at threshold for Con-
ditions N4S4 and NaS,, respectively. BMLDs found in var-
ious experiments range from 6 to 20 dB.

The Summation Model

We propose, in the summation model, that the monocu-
lar inputs to the two eyes are added together to produce
a Cyclopean visual field (Julesz, 1971); of course, before
addition occurs, the two eyes must be aligned through ap-
propriate vergence movements. In our experiment, this
alignment is prompted by the presence of a fixation point.
We also propose that summation occurs not only for cor-
responding points on the retinas, but also for points shifted
horizontally or vertically. How this might occur is shown
in Figure 2. The circles depict points on the two retinas;
the circles that have the same retinal coordinate values
thus stand for corresponding points on the two retinas.
Let us assume that corresponding points are simply added
to form one Cyclopean eye. It is also possible that a sec-
ond, parallel Cyclopean eye is formed by adding point
(x,y) in the left eye to point (x+d,,y) in the right eye,
where d,, represents either a positive or a negative hori-
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Figure 2. Upper panel: Retinal points in the left and right eye are
indicated by circles whose horizontal and vertical positions, rela-
tive to the center of the fovea, are specified by the horizontal and
vertical axes. Lower panel: For one row of left- and right-eye points,
the left- and right-eye inputs to the Cyclopean eye are defined by
d, = —2,ds = 0).

zontal shift. For example, if d, = —2, then point (0,0)
in the left eye would be added to point (—2,0) in the right
eye and so on for all retinal points. Other Cyclopean eyes
could then be formed by adding any combination of hori-
zontal or vertical shifts within a limited range. Thus, many
different Cyclopean eyes could be realized by this form
of parallel additive processing.

The net result would be that if luminance pattern f(x,y)
were presented to the left eye, and pattern f(x +dy,y+dy)
to the right eye, where d; and d,, represent horizontal and
vertical displacements in the stimulus pattern, the sum-
mated pattern in the Cyclopean eye defined by shifts d,
and d,;, where « refers to a horizontal shift and 3 to a
vertical shift, would be

f(x,)’) + f(x+dx+dm)’+dy+dﬂ)- (1)

Suppose that f(x,y) = g(x,y), that is, f(x,y) is a 2-D band-
limited Gaussian noise, g(x,y), whose power spectral den-
sity function,

G(e,n) = Ag, —€0<e€=<¢ and —no<n =<7,
0, elsewhere, )

with A, representing the spectrum level of the noise, ¢
and » the spatial frequency variables corresponding to the
horizontal and vertical axes, and ¢, and 7, the upper hor-
izontal and vertical frequency limits on the band-limited
noise. Assume that d, = d; = d, = 0, and that d; 0.
Formula 1 now becomes

g(x.y) + glx+dy.y), ©)
and its 2-D power spectral density function (see Moraglia
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& Schneider, 1991) is
G(e,n)[2+2 cos(2wedy)]. )

The summated (dx = 20.3’ of arc) 2-D spectral power
density function for a Gaussian noise (bandwidth limited
for illustrative purposes to 0-3 cycles/degree [cpd] along
both horizontal and vertical spatial frequency axes) is
shown in Figure 3. Note that spectral power varies with
horizontal spatial frequency only and that a minimum of
zero occurs at e = 1/(2dy) = 1.48 cpd. Therefore, verti-
cally oriented, binocular spatial frequency channels, op-
timally tuned to f = 1.48 cpd, would not respond to the
background noise. Consider, however, what would hap-
pen if a vertically oriented Gabor signal (spatial frequency
= 1.48 cpd) were added without displacement to both
visual fields. The luminance pattern of each Gabor is
specified by

J(x,y) = Ajcos[2mes(x-xo)] expl —a*(x—xo)* — @*(y—Yo)’l,
(&)

where A; is the amplitude of the Gabor signal, e; its spa-
tial frequency, a the reciprocal of the space constant (one
half the distance between the 1/e points on the Gaussian
envelope), and x,, Yo the center of the enframed area. Be-
cause the Gabor signal is presented in exactly the same
locations in the two visual fields, after summation by a
Cyclopean eye whose d, = ds = 0, the summated pat-
tern would simply be double that in Equation 5. The dis-
tribution of spectral power for the summated Gabor sig-
nal is shown in Figure 4 along with the spectral density
function for the summated Gaussian noise. Clearly, a ver-
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tically oriented Gabor signal with spatial frequency equal
to 1/(2dy) should be readily visible against a Gaussian
background where the horizontal shift in the right-eye
background is equal to d,.

Notice that, in this example, the power spectral den-
sity function for the summated noise is identical for all
values of 7; thus, it suffices for the present purposes to
plot the spectral density function for the horizontal spa-
tial frequency variable only. Figure 5 shows how the spec-
tral density function for summated noise fields (dx =
20.3'": d,, ds = 0) varies as a function of the horizontal
spatial frequency variable for the 2-D band-limited noise
employed here (the full 0-8.7 cpd noise bandwidth is
shown). Note that there are troughs in the noise spectrum
that occur at odd multiples of 1/(2d,) and peaks that oc-
cur at even multiples of 1/(2dy). To intuitively appreci-
ate why the spectrum of g(x,y) + g(x+dx,y) is notched
along the horizontal spatial frequency axis, recall that a
band-limited Gaussian noise can be considered as a band
of sinusoidal spatial frequencies whose amplitudes,
phases, and orientations are random. Consider now the
horizontal sine-wave grating with a wavelength equal to
2d; in g(x,y). In g(x+dy,y), this sine-wave grating has
been shifted by exactly one half of its wavelength, so that
it is 180° out of phase in the left- and right-eye patterns.
Therefore, when the two patterns are added together in
the Cyclopean eye, this sine-wave grating will be com-
pletely canceled. Wavelengths near 2d; will produce in-
complete cancellation, resulting in the trough shown in
Figure 5 at a frequency = 1/(2d,) = 1.48 cpd. On the
other hand, a horizontal grating whose wavelength is dy
will be 360° out of phase and will show complete sum-
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Figu}'e 3. Two-dimensional power density function of the noise which results from the summation (d, = d; = 0) of the
Gaussian noises used in the experiments. Note that only the portion of the spectrum between +3 cpd is plotted for purposes

of clarity.
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Figure 4. The two-dimensional power density function of the summated Gabor signal (d, = d, = 0) is shown together

with the corresponding function of the summated noise.

mation, producing a peak in the spectral density function
at a frequency 1/d, = 2.96 cpd.

Figure 5 also shows the horizontal profile of the Gabor
signal; as the signal falls in a notch of the spectrum, it
should be readily detected in the NS, condition. This op-
portunity, however, cannot be exploited in the NSz con-
dition because the signals to be summated are in counter-
phase, since the displacement is exactly one half the
wavelength of the signal. Therefore, in the latter condi-
tion, binocular summation essentially erases the signals
in the Cyclopean eye. Because this condition contains no
useful binocular cues, detection will then be based on in-
formation from the monocular channels only (e.g., Wolfe,
1986) or from the binocular channel (Cyclopean eye) with
d. = —d, (see Appendix B).

Clearly, changing the displacements of the right- and
left-eye noise patterns will change the 2-D spectral pro-
file of the summated noise patterns. The 2-D spectral pro-
file of both noise and signal can also be changed by chang-
ing the internally imposed shifts, d, and ds. Thus, different
Cyclopean eyes are produced by different amounts of in-
ternally imposed disparity shifts. It is assumed in the
model that the observer can attend to any one of these
multiple Cyclopean eyes. Therefore, any combination of
external or internal noise shifts that produces notches in
the 2-D spectrum presents an opportunity for binocular
unmasking, provided that the spatial frequency, orienta-

tion, and degree of external interocular shift in the signal
concentrate its energy at a notch of the summated 2-D
noise spectrum for the Cyclopean eye in question. In every
case so far investigated by us, and for the previous cases
of BMLDs reported in the literature (Henning & Hertz,
1973, 1977), binocular unmasking has occurred whenever
the spectral energy in the summated signal was concen-
trated at a notch in the 2-D power spectrum of the sum-
mated noise for some reasonable values of d, and d,.

An examination of Figures 4 and 5 shows that, pro-
vided binocular spatial frequency channels are reasonably
narrow, contrast thresholds for narrow-band Gabor sig-
nals should be virtually independent of noise level, be-
cause the 2-D power spectrum of the summated noise con-
tains almost no energy in the region of the signal’s
frequency. Therefore, contrast thresholds for a Gabor sig-
nal in noise should be the same as those for a Gabor sig-
nal in the absence of noise; that is, unmasking should be
nearly perfect. In order for the summation model to
predict less than perfect unmasking, it is necessary to as-
sume that there is internally generated random noise added
to both the left- and right-eye patterns. For purposes of
modeling, we assume that the bandwidths of these inter-
nally generated Gaussian noises are at least as large as
the range of spatial frequencies that an observer is sensi-
tive to; that is, the power spectral density functions for
each of these noises, hi(x,y) and hr(x,y), are
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Figure 5. Variation in spectral power (arbitrary units) for the sum of left- and right-
eye Gaussian noise fields (d. = ds = 0) as a function of the horizontal spatial frequency
variable only. Also shown is the corresponding horizontal component of the power den-

sity function of the Gabor signal.

H(f,ﬂ) = Ah7 —Eu=€e<¢€y and —nuSnSnu
0, ©)

where ¢, and 4, represent the upper limits of horizontal
and vertical spatial frequency resolution in the observer.
Thus, if hr(x,y) and hgr(x,y) are the internal noises, the
internal representation of the luminance pattern for
g, nld. = ds = dy = 0] after summation becomes

glxy) + glxtdyy) + huxy) + hr(x,y), (1)
and its 2-D power spectral density function becomes
2H(e,n) + Gle,mI2 + 2cosmedy)]. 8)

Thus, the presence of internally generated noise results
in imperfect signal unmasking in the NaS, condition.

elsewhere,

The Phase Vector Model

Consider a spatial frequency channel centered on the
spatial frequency of the signal. If that channel is suffi-
ciently narrow, the Gaussian noise passing through the
channel can be considered as a sinusoidal signal whose
frequency is equal to that of the channel but whose phase
and amplitude are random. Such a signal can be repre-
sented as a vector in a 2-D space, with its length repre-

senting the signal’s amplitude and the angle it forms with
the horizontal axis representing the signal’s phase. Fig-
ure 6 (left side) illustrates such a vector for the left eye.
Recall that the Gaussian noise presented to the right eye
is shifted by a distance equal to half the wavelength of
the Gabor signal and, hence, by half a cycle in the chan-
nel we are considering. Therefore, the vector represen-
tation of the output for the right eye will be a vector whose
length is equal to that of the left eye’s but whose phase
is reversed by 180°. Now, when a signal in cosine phase
is added to the left and right eyes (see Figure 6, right
side), the resultant vectors are shifted in each eye so that
they are no longer 180° out of phase. Thus, binocular
unmasking could result from a comparison of phase an-
gles in the two eyes at the signal’s frequency. In the NuS,
condition, an interocular phase difference not equal to
180° would indicate the presence of a signal, whereas an
interocular phase difference exactly equal to 180° would
indicate that no signal was embedded in the noise. In the
NaSa condition, however, the signal is also 180° out of
phase in the two eyes. Therefore, irrespective of whether
or not the signal is added, the interocular phase differ-
ence remains at 180°. Thus, in the control condition, inter-
ocular phase difference could not discriminate between
the presence and absence of a signal.
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Figure 6. Vector diagram illustrating how interocular phase is shifted away from

180° by the addition of a signal.

Again, without the presence of internally generated
noise, the vector model would predict levels of signal de-
tection in the N4S, condition that are orders of magnitude
better than those shown by observers. Therefore, it is rea-
sonable to introduce within this model internally gener-
ated independent Gaussian noises in each of the eyes.

Predictions for Unequal Interocular Contrast

In the reference experiment, the RMS contrast of sig-
nal and masker in the right eye was 100% of that of the
RMS contrast in the left eye. In two other experiments,
the RMS contrast of both signal and masker in the right
eye was set to 50% and 25 % of the value in the left eye.
In addition to these, two other experiments were con-
ducted where the RMS contrast of signal and masker in
both eyes was set to either 50% or 25% of the RMS con-
trast in the reference experiment.

Consider now what happens according to the summa-
tion model when contrast in the right eye is reduced by
50% . If r represents the ratio of the reduced to the origi-
nal contrast (r = .5, in this case), the summated pattern
for the noise becomes

g(x.y) + rgx+dxy) + hL(x,y) + hr(x)y), (9
and its 2-D power spectral density function becomes

(1+r9)A, + 24 + 2rAgcos(2medy). (10)

The luminance distribution for the sunmated Gabor sig-
nal in the experimental condition becomes

(1+r)Ajcos[2mes(x-xo)]expl —a*(x —xo)* — a*(y—Yo)*]
(11

and therefore its power spectrum profile is reduced to
(1+r)*/4 of its original value. Figure 7 (top panel)
presents the power spectral density functions for both sig-
nal and noise along the horizontal spatial frequency axis
for the summated inputs from the two eyes for the refer-
ence experiment. The middle panel presents the same
functions for one unequal contrast experiment (100%-
50%). Also shown are the same functions for the experi-
ment in which the RMS contrast in both eyes was reduced
by 50%. In all cases, it was assumed that the amplitude
of the internal noise was 10 dB lower than that of the ex-
ternal noise in the reference experiment. Figure 7 shows
that the signal-to-noise ratio for the summated inputs is
the largest for the reference experiment (100%-100%),
next largest for 50%-50%, and smallest for 100%-50%.
Thus, the summation model predicts that BMLDs should
be smallest in the unequal contrast case. We will now
show that the vector model predicts a different rank order.

Figure 8 presents vector diagrams for the three cases
discussed above. Note that in the 100%-50% case the
lengths of both the right-eye noise vector and right-eye
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Figure 7. Power spectral density functions along the horizontal spatial frequency axis for the summed input of corresponding
points from the two eyes for the reference experiment (upper panel), and for unequal-contrast 100% -50% (middle panel)
and reduced-contrast 50% -50% (lower panel) experiments. In all cases, the masker in the right eye was shifted 20.3 minutes
of arc to the right relative to the left eye masker creating the notch in the spectrum of the summed maskers; no shift was
introduced for the Gabor signals. Independent internal noises with spectral levels 10 dB lower than that of the external

noise in the reference experiment are also assumed.

signal vector are exactly half those of the corresponding
left-eye vectors. Clearly, reducing the size of the exter-
nal noise and signal vectors by the same factor does not
change the phase angle of the resultant vector, no matter
what the size of the reduction is, providing that the vec-
tors are not reduced to zero. Therefore, without internal
noise, all three experiments should yield equivalent
results.

The effect of internal noise on phase angle is illustrated
by the circles surrounding the tips of the noise vectors
in the no-signal interval and the signal + noise vector in
the signal interval. The points along the perimeter of these

circles illustrate possible locations for the tip of the vec-
tor produced by the addition of random internal noise of
uniform vector length. Possible angular shifts introduced
by this internal noise vector can be determined by draw-
ing lines from the origin to the perimeter of the circle.
The degree of angular change introduced by the addition
of internal noise depends on the length of the vector to
which it is added. Therefore, the variability in interocular
phase angle produced by internal noise for both the noise
and the signal + noise distributions increases as we pro-
ceed from equal (100%-100%) to unequal (100%-50%)
to equal (50%-50%). Figure 9 plots theoretical distribu-
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Figure 8. Vector diagrams illustrating how interocular phase is shifted away from 180° by the addition of the signal for the
three types of displays described in Figure 7. The points along the perimeter of the circles surrounding the tips of the vectors
specify possible locations for the vectors’ tips produced by the addition of random internal noise of uniform vector length.

tions of phase angles (see Appendix A) observed for these
three cases. In these calculations, it was assumed that the
amplitude of the internal noise was 10 dB less than that
of the external noise in the reference experiment. Note
that the variability in phase angle follows the expected
order. Therefore, we would predict BMLDs of declining
size as we go from 100%- 100% to 100%-50% to
50%-50%. Clearly, the two models predict different or-
derings of these three experimental conditions with respect
to the size of the BMLD; these predictions were tested
as described below.

METHOD

Observers

Two males (B.S., one of the authors, and D.B.) and 1 female
(J.C.) served as observers in each of the experiments reported here.
All had normal or corrected-to-normal acuity and normal stereo
vision; all were experienced psychophysical observers. J.C. and
D.B. were unaware of the hypothesis under investigation.

Apparatus and Stimuli

The displays, examples of which are shown in Figure 1 (middle
and lower panels), were produced as 8-bit images by an IBM AT
computer equipped with an ITI FG-100 image processor with
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Figure 9. Theoretical distributions of the extent to which the dif-
ference between left- and right-eye vectors differs from 180° for the
reference experiment (100% ~100%) and two comparison experiments
(100% -50% and 50% -50%). In these calculations (see Appendix A),
it was assumed that the spectrum level of the independent internal
noises added to the left and right eyes was 10 dB below that of the
noise in the reference experiment.

512 %512 pixel spatial resolution, and were presented through a
rectangular aperture on a black-and-white 9-in. TV monitor (Pana-
sonic WV 5370). The observers saw these displays through a simple-
lens stereoscope (Ogle, 1961, p. 99) equipped with neutral density
filters, an individual pixel subtending 3.38' of visual angle. The
left-eye display consisted of a 140 X 140 pixel field of 2-D Gauss-
ian noise surrounded by a 15-pixel-wide frame of 2-D uniform noise
(bandwidth = 8.7 cpd in both cases); the right-eye image consisted
of the horizontally right-shifted version (d: = —6 pixels or 20.3')
of the same Gaussian noise, also encased in a square noise frame
identical to that presented to the left eye. Luminance, linearized
via lookup tables, was in the range 0.2 cd/m? (gray level = 0) to
9.6 cd/m? (gray level = 255). The noise frame resulted from add-
ing uniform random deviates from —40 to +40 to the mean pixel
luminance (1 = 128); its RMS contrast RMS = [E(L; — Ly)*/n]"?),
where L, is the mean luminance and L; is the individual pixel lu-
minance) was 1.9 cd/m?. The Gaussian fields were generated by
rescaling a 140 X 140 matrix of random normal deviates with stan-
dard deviation equal to 80; the numbers in this table were then peak-
clipped at 1.6 standard deviations to keep them within the range
—128 to +127, and the final gray level values were obtained by
adding 128 to each such number. The mean luminance of these
Gaussian fields (x = 128) was 4.8 cd/m?. In the reference experi-
ment (100%-100%), in which the left- and right-eye Gaussian noises
were presented at full amplitude, their RMS contrast after peak-
clipping was 2.7 cd/m?.

Because luminance resolution was limited to 8 bits, some distor-
tion occurred for low-RMS gratings. For example, consider the grat-
ing whose wavelength was 12 pixels, and whose gray level value
is given by 4-cos(27i/12), where i is pixel location, with i = 0
being the center of the waveform. The gray levels for 1 cycle of
this waveform for pixel locations 0-11 are 4, 3, 2, 0, -2, -3,
—4, =3, =2, 0, 2, 3. A truly continuous waveform would have
an RMS value of 2.83 gray levels. Because gray levels are limited
to the integer values above, the actual RMS value is 2.65. More-

over, a Fourier analysis of this waveform shows that there is some
energy at the higher harmonics. However, the amount of energy
at these higher harmonics is at least 20 dB lower than at the fun-
damental frequency. Hence, it is unlikely that the higher harmonics
are contributing to detection. For higher amplitude gratings, the
agreement between the theoretical RMS and the actual RMS is con-
siderably better. For example, the RMS value for the continuous
version of 128 -cos(2xi/12) is 90.51 gray levels, whereas the RMS
value of its discrete version is 90.57. Correspondingly, the rela-
tive sizes of the distortion products are smaller. It should also be
noted that some distortion was introduced by peak-clipping. How-
ever, the magnitudes of these distortion products were small rela-
tive to both signal and noise. Therefore, they are unlikely to have
affected performance. In sum, the major consequence of the digiti-
zation of gray levels appears to be that the theoretical RMS lu-
minance of the signal may differ somewhat from its actual RMS
luminance for low-amplitude signals. In our calculations, we used
the theoretical RMS values.

As in our previous studies, the location at which a Gabor signal
(see Figure 1, top panel) was added to the right side of the display
defined two conditions. In the experimental condition (NaS,), the
right signal was added to the noise at the location exactly correspond-
ing to that of the left signal —in both cases, the signal centers coin-
cided with the displays’ (Figure 1, lower panel). In the control con-
dition (NaSq), the right signal was added to the noise following a
horizontal shift equal in extent and direction to that of the noise.
In both conditions, the signals were added to the noise in one of
the two display pairs making up each trial. The Gabor signal (Fig-
ure 1, upper panel) had a 2-D half-width Gaussian space constant
of 18 pixels (to 1/e); the phase of the grating was 0°, its orienta-
tion vertical, and its wavelength 12 pixels, which corresponded to
a spatial frequency of 1.48 cpd. The gray levels of each pixel in
the Gabor signal in the noise were given by Ajcos[2#x(x—x,)/
Mexp{ —a*[(x—x,)* + (y—yo)*]}, where a is the reciprocal of the
space constant, \ the signal wavelength, A; its gray level ampli-
tude, and x,, y, the field center. For both conditions, four levels
of signal RMS were used (the latter was computed over the pixels
located within the 1/e boundary of the signal’s Gaussian envelope).
Pilot sessions of about 30-min duration were conducted to select
the signal levels appropriate for each observer. In addition to the
reference experiment, four other experiments were conducted in
which the RMS contrast of both signal and noise was changed. In
the experiment labeled 50%-50%, the RMS contrast of signals and
Gaussian noises in both fields was reduced to 50% of its value in
the reference experiment. In the experiment labeled 25%-25%, the
RMS contrast of signals and noises in both fields was reduced to
25% of its full value. In the experiment labeled 100%-50%, the
left-eye Gaussian noise and signal were presented at full amplitude,
while the RMS contrast of the right-eye Gaussian noise and signal
was reduced by 50%. Finally, in the experiment labeled 100%-25%,
the contrast of the Gaussian noise and signal in the right eye was
only one fourth that of their counterparts in the left eye. Thus, in
all cases, the signal-to-noise ratio in the right eye was identical to
that in the left eye.

Procedure

In all five experiments, the observers sat in a darkened room,
looking through the stereoscope at the apertured portion of the TV
screen. Initially, the fused display consisted of the noise frame en-
casing a blank area at whose center was a dark fixation spot, the
blank region being identical in extent and mean luminance to the
Gaussian noise fields to be presented during the trial. The square
frame was employed to aid fusion prior to stimulus presentation.
Thus, prior to and in between the two stimulus intervals, the ob-
server saw a square frame with a fixation spot in the center. A
buttonpress triggered the presentation of a 1-sec test display pre-
sented within the frame. Because the right-eye test display was dis-



placed to the right, the observers saw the Gaussian noise field as
appearing behind the frame. After the 1-sec presentation, the fixa-
tion display was again presented for 0.5 sec and followed by another
1-sec test display. Each of the two intervals contained different pairs
of Gaussian noises (randomly selected from a set of 104 such pairs)
presented within the frame, the signals being always added to one
of the two noise pairs. All observers reported seeing two samples
of stationary visual noise appear behind the square frame during
the two 1-sec intervals. When the target was presented at high con-
trast levels in one of the intervals in condition NaS,, it appeared
to “‘float’’ in front of the background on the same plane as that
of the square frame. When the target was presented at high con-
trast levels in NS4, it appeared to be embedded in the noise back-
ground. None of the subjects reported seeing any motion, nor did
they experience diplopia in any of the conditions. The observer’s
task was to indicate, by pressing the appropriate key on a response
box, in which of the two test displays the signal had been added
to the Gaussian noise fields. A computer-generated tone followed
this keypress when the correct interval had been chosen. A block
of trials consisted of displays of the same condition, the signals’
contrast taking any of four RMS values in random order, subject
to the constraint that each such value was employed an equal num-
ber of times. For each experiment, each observer served in 832
trials, 104 trials being collected per level of signal RMS at each
condition. These trials were delivered in eight blocks; order of block
presentation as a function of condition was randomized indepen-
dently for each observer. The reference experiment was run first,
and the order in which the remaining experiments were administered
was randomized independently for each participant, who all com-
pleted 4,160 trials. It should be noted that we have repeatedly ob-
served that the effects of practice in this type of experiment are
marginal at best.

RESULTS

Psychometric functions were obtained from each of 3
observers for the NgS, and NSy conditions of each ex-
periment. A reminder: In the reference experiment
(100%-100%), the RMS contrasts of both the Gaussian
noise and the Gabor signal were identical in both eyes.
In two other experiments, the RMS contrasts of both noise
and signal were identical, but were either 50% (50%-50%)
or 25% (25%-25%) of the reference experiment’s RMS
contrast. In a fourth experiment, the RMS contrast of the
left eye remained at reference levels, whereas the RMS
contrasts of both signal and noise in the right eye were
set at 50% of the left eye value (100%-~50%). In the fifth
experiment, the right eye contrasts for both signal and
noise were set at 25% of the left eye value (100%-25%).

Percent correct detection responses as a function of
signal-to-noise ratio in decibels are shown in Figure 10
for the 3 observers when both left- and right-eye fields
were at full contrast (100%-100%). Clearly, for above-
threshold RMS values the Gabor signals were more eas-
ily detected in the NaS, (filled symbols) than in the NgS4
condition. By defining threshold as signal-to-noise ratio
corresponding to 75% correct, and the BMLD as the per-
formance difference (measured in decibels) between the
two conditions at threshold, the estimated BMLDs were
14.5, 14.4, and 4.1 dB for Observers B.S., J.C., and
D.B., respectively. Figure 11 shows the performance of
these observers as a function of signal-to-noise ratio in
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Figure 10. Percentage of correct responses as a function of signal-
to-noise ratio in decibels for 3 observers in the reference experiment.
Filled symbols represent the NyS, condition; open symbols stand for
the NgSa condition.

the NaSq condition of all five experiments. There is no
indication that performance depended on the level of in-
terocular contrast. The extent of binocular unmasking was
therefore evaluated with reference to the average thresh-
old across the NgSq baseline condition for each subject.

Figure 12 shows how the BMLD varied with RMS con-
trast for the experiments in which the interocular contrast
was the same (unfilled circles) and different (filled cir-
cles). While large individual differences can be noted, as
we also found in previous experiments, it can be gener-
ally said that performance was better with the equal-
contrast displays than with the unequal-contrast ones. The
smooth curves are the predictions of a two-parameter
linear summation model in which one of the parameters
is the spectrum level of the internal noise relative to that
of the full-scale external noise, and the other parameter
is the bandwidth of a 2-D Gabor filter centered at the sig-
nal’s peak frequency (see Appendix B). The fits for the
equal-contrast conditions are quite good for all 3 subjects
and for the average data. The fits for the unequal-contrast
experiments are good for Subjects B.S. and D.B. and
about 2 dB too high for Subject J.C. The predicted func-
tions for Observer B.S. assume a Gaussian filter with a
bandwidth (to the % power points) of 0.23 cpd (0.23 oc-
taves), with the spectrum level of the internal noise be-
ing 13 dB below that of the full-scale external noise. The
fit for Subject J.C. required a bandwidth of 0.44 cpd (0.43
octaves), with the spectrum level of the internal noise be-
ing 23 dB below that of the full-scale external noise. The
bandwidth for Subject D.B. was 1.75 cpd (1.96 octaves),
with the spectrum level of the internal noise 20 dB below
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Figure 11. Percentage of correct responses as a function of signal-to-noise ratio for
the 3 observers in each of the five NySy control conditions.

that of the external noise. The bandwidth for the average
data was 0.64 cpd (0.63 octaves), with the internal noise
set 16.5 dB below that of the full-scale external noise.

No attempt was made to fit the vector model to the data,
because the vector model predicts that the 50%-50% ex-
periment should induce a smaller BMLD than that of the
100%-50% experiment, and because the 25%-25% ex-
periment should produce a smaller BMLD than is obtain-
able in the 100%-25% experiment. The results for all 3
subjects were in the opposite direction. If the vector model
were correct, the only way this could happen is if the in-
ternal noise was so intense that it effectively overwhelmed
the phase shift caused by the presence of the signal. If
this were to occur, then the probability, say, that the
100%-50% experiment should have a smaller BMLD than
the 50%-50% experiment would be approximately 0.5.
The same should hold true for the 100%-25% versus
25%-25% comparison. Therefore, if the vector model
were correct, but with a very large amount of internal
noise, then p(100%-50% > 50%-50%) = ', and
p(100%-25% > 25%-25%) = %. The probability that
all 3 subjects should show the pattern observed in Fig-
ure 12 then is 1/64. Note also that this is a conservative
estimate of the true probability. If the true probability of
100%-50% > 50%-50% were actually close to 2, the
internal noise would be so large that the BMLDs in both
conditions would be close to zero. Figure 12, however,
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Figure 12. Binocular masking level differences (BMLD) for 3 ob-
servers (average BMLDs are also shown) as a function of the at-
tenuation in the RMS contrast of the experimental displays relative
to the values of the reference experiment. Open circles represent
the three equal conditions; closed circles represent the two unequal
conditions. The smooth curves are the prediction of the summation
model.



indicates that BMLDs for the equal conditions were quite
a bit larger than zero. Therefore, the probability of ob-
taining the observed pattern of results from the 3 subjects,
assuming that the vector model is correct, is consider-
ably less than 1/64. The results, therefore, clearly reject
the vector model.

DISCUSSION

Two different types of models have been proposed over
the years to explain unmasking effects in both audition
and vision. The first class of models assumes that per-
ceptual systems first process the information coming from
the two eyes or the two ears separately. Within each eye
or each ear, summary statistics of dimensions of the stim-
ulus pattern are computed. For example, each eye could
analyze the pattern in terms of its orientation and spatial
frequency composition. In such a model, at any given
orientation and spatial frequency, the right eye might com-
pute the amplitude and phase of that spatial frequency
component. A similar decomposition and analysis would
occur in the other eye. Binocular processing might then
consist of interocular comparisons of the amplitude and
phase values of these components. If noise and signal +
noise trials produced either interocular amplitude differ-
ences or interocular phase differences, these differences
could then be used to discriminate between signal and no-
signal trials. The phase-vector model is an example of
such a theory, and it predicts that performance in the
unequal-contrast conditions should be better than in the
equal-contrast conditions.

The second class of models assumes that, for the pur-
poses of unmasking, the visual or auditory patterns in the
two eyes or ears are combined before further processing.
In other words, a Cyclopean eye is formed to obtain a
single representation of the visual world. The summation
model that we propose falls into this class because it as-
sumes that the patterns in the two eyes are added together
to form a single visual representation, with summary sta-
tistics, such as those described above, computed on the
Cyclopean pattern. If noise and signal + noise trials differ
with respect to specific summary statistics computed on
the summated pattern, this difference could be used as
a basis for distinguishing between the two alternatives.

More specifically, in the present model it is assumed
that a multitude of Cyclopean eyes can be formed by add-
ing together the luminance patterns from the two eyes after
they have been shifted relative to each other either
horizontally or vertically, or both. These shifts are ac-
complished by (1) vergence movements or (2) they are
internally generated (d.., ds). In general then, if fi(x,y)
is the luminance pattern presented to left eye, and fr(x,y)
is the pattern presented to the right eye, a Cyclopean eye
is defined by

fL(X,}’) + fR(X+da+dXV’y+dﬂ+d}’V)v (1 1)

where d, is the internal horizontal displacement, dxy
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represents the degree of horizontal displacement due to
vergence movements, ds and dyy are their vertical counter-
parts, and the point (x=0,y=0) specifies the geometric
center of each luminance pattern. Note that under nor-
mal viewing conditions, fi. and frx would be highly corre-
lated patterns, and it is assumed that the extent of possi-
ble internal shifts is limited (e.g., to Panum’s area). In
the present model, it is assumed that a spectral analysis
is conducted on one or more of the possible Cyclopean
eyes. If the spectral patterns differ for noise and signal
+ noise distributions in any such eye, this difference will
be used to discriminate between these two alternatives.

It is also important to note that it does not matter
whether vergence movements image the background or
the signal on corresponding points. In the present exper-
iments, given the fixation conditions, it is assumed that
the signal would fall on corresponding points and that the
background noise would be displaced on the retinas.
Therefore, the Cyclopean eye defined by (d. = ds = 0)
would produce a notched noise spectrum and a summated
signal. However, if vergence movements occurred, such
that the background now fell on corresponding points
(dev = —dy) so that NS, and NgSq effectively become
NoSa and NoS,, the Cyclopean eye defined by (d. = di,
ds = 0) would still have the notched noise spectrum and
summated signal.

With respect to the present experiments, the summa-
tion model predicts that, unless the internal noise is very
high (see Appendix B), performance should be poorer in
the unequal-contrast case than in the equal-contrast case.
The experimental data supported this prediction, rather
than the prediction of the vector model. Furthermore, the
quantitative predictions of a two-parameter summation
model provide a good fit for all of the subjects in the equal-
contrast experiments and a good fit for 2 of the subjects
in the unequal-contrast experiments. For the 3rd subject,
J.C., the predicted values in the unequal-contrast case
were slightly higher (1.5 dB at 100%-50% and 3 dB at
100%-25%) than the obtained values. Thus, the summa-
tion model not only can account for the qualitative trends
in the data but also provides a fairly good quantitative
account.

The two parameters of the summation model were the
bandwidth of the internal filter and the level of internal
noise. Estimates of internal bandwidth ranged from 0.23
to 1.96 octaves, with the larger bandwidth associated with
the oldest subject (D.B., age = 54 years). Pichora-Fuller
and Schneider (1991) have shown that estimates of band-
width for elderly subjects in an auditory equivalent of the
present model are larger than those of young subjects.
It is conceivable that the larger bandwidth exhibited by
D.B. represents a visual counterpart of this auditory ag-
ing effect; to explore this possibility, a systematic study
concerning age-related differences in the occurrence of
binocular unmasking is currently under way in our labora-
tories. It is also worth noting that our average bandwidth
estimate is in the range of those found for human observers
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of low-contrast gratings (e.g., Sachs, Nachmias, & Rob-
son, 1971, 0.4 octaves; Legge & Foley, 1980, 0.5 oc-
taves; Watson, 1982, 0.5 octaves). Further parametric
work will be required, however, to determine just how
well the two-parameter model can account for binocular
unmasking or whether some other model of the Cyclo-
pean eye would provide a better description.

The test of the summation model attempted here lends,
we believe, appreciable support to our account of binocu-
lar unmasking and is fully consistent with our previous
investigations of this process. These investigations estab-
lished that detections thresholds appeared to depend on
the signal-to-noise ratio in the summated pattern. We
showed in a variety of ways that whenever appropriate
amounts of horizontal and vertical shifts were used to pro-
duce notches in the summated noise at particular spatial
frequencies and peaks in the summated signals at the same
spatial frequency, BMLDs were observed. Conversely,
no evidence of binocular unmasking was ever found when
the signals were *‘located’’ outside of the notches in the
2-D power spectrum of the summated noise.

It is important to note that, in the absence of visual
noise, our paradigm reduces to a binocular summation
paradigm, and our model becomes functionally equiva-
lent to the binocular summation model proposed by Camp-
bell and Green (1965). As such, it clearly predicts that
binocular thresholds, with equal contrast in each eye,
should be v2 lower than the corresponding monocular
thresholds, a finding that is well documented in the liter-
ature (for reviews, see Blake & Fox, 1973; Blake, Sloane,
& Fox, 1981). In a recent paper, Anderson and Movshon
(1989) evaluated binocular summation for sinusoidal grat-
ings that varied in the ratio of contrasts presented to the
two eyes. Their study, then, is equivalent to our study
without visual noise. They argued that their resuits were
incompatible with the Campbell and Green model; they
might therefore be seen as incompatible, by implication,
with our model of binocular summation. However, they
note that in order for the Campbell and Green model to
work, it must be assumed that ‘‘the observer can identify
and discount the internal noise arising from one eye when
the signal is presented to the other”’ (p. 1115). Another
way of rephrasing this condition is to say that the Camp-
bell and Green model requires that the observer have in-
dependent access to each of the monocular channels, as
well as to the binocular channel. In fact, Wolfe (1986)
has argued for the existence of such separate and indepen-
dent channels. According to such a notion, detection
would occur whenever activity in any one of these chan-
nels reached threshold. Thus, if the grating was presented
only to the right eye, detection would be based on the
right-eye channel and not on the binocular channel, be-
cause the signal-to-noise ratio would be higher in the
monocular channel than in the binocular channel. When
the contrast in the two eyes is equal, however, detection
will be based on the binocular channel because, under
these conditions, the signal-to-noise ratio in the binocu-

lar channel is v/2 higher than in the monocular channel.
For conditions of unequal contrast, detection would be
based on the channel with the higher signal-to-noise ratio.

Figure 13 is a replotting of the data of Observer E. A.
from Anderson and Movshon (1989) along with the pre-
dictions from our summation model. (Similar results
would be obtained for the other observers.) The ordinate
and abscissa of this figure represent the threshold con-
trasts for the right- and left-eye gratings, with the points
lying on the ordinate and abscissa representing monocu-
lar viewing conditions. The ratio of the y-coordinate to
that of the x-coordinate specifies the contrast ratio used
in determining threshold. The solid line represents the pre-
dictions of the summation model (see Appendix B). When
the contrast in one eye is much greater than the contrast
in the other eye, the model predicts that the threshold for
these unequal-contrast conditions should be equal to the
monocular threshold. When, however, the signal-to-noise
ratio in the binocular channel becomes larger than those
in the monocular channels, then the contrast needed for
threshold is less than that required for monocular detec-
tion. Note that the binocular summation model, with in-
dependent access to monocular and binocular channels,
can provide a good account for the data. Furthermore,
if one makes allowance for the occurrence of probability
summation across channels, the abrupt transition from a
monocular to the binocular channel would be smoothed
considerably. The reason for this is that as the signal-to-
noise ratio approaches equality in the monocular and
binocular channels, detection could be based on the
momentary value in either channel, leading to a degree
of probability summation and a rounding of the abrupt
transition in the predicted functions.

Legge (1984) has proposed a model of binocular inter-
action in which the signal from each eye is squared and
integrated before summation occurs (see his Figure 4).
This model clearly cannot account for the binocular un-
masking data, because if the monocular signals are
squared and integrated before summation there cannot be
any cancellation and therefore any binocular unmasking.
In general, any models that involve squaring or rectifica-
tion before summation are incompatible with the results
from binocular unmasking. Because Cogan’s (1987)
model involves rectification in the monocular channels,
and because the fused binocular channel responds only
when the monocular responses are in the same spatiotem-
poral phase interocularly, it also cannot handle the results
from binocular unmasking experiments.

Although Anderson and Movshon (1989) propose a
model for binocular summation that provides a good ac-
count of the classical data on binocular summation, their
model is also unable to predict the results of the present
unmasking experiments with unequal interocular contrast.
They hypothesize that the visual system has a number of
binocular channels that differ from one another with
respect to the relative number of inputs from each eye—
that is, they differ in the weight given to each eye’s in-
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Figure 13. Binocular summation data for Observer E.A. from Anderson and
Movshon (1989). The abscissa gives the contrast at threshold for the left-eye grat-
ing; the ordinate gives the contrast at threshold for the right-eye grating in a
binocular situation. For instance, the point (x = .0094, y = 0) represents a
monocular stimulus to the left eye; the point (x = .0062, y = .0062) represents
equal contrast in both eyes, and the point (.008,.004) represents a contrast ratio
between the two eyes of 2:1. Left and right gratings (spatial frequency = 2.6 cpd)
were in phase. The solid line represents the predictions of our model, assuming
(1) that the observer has independent access to the two monocular channels and
the binocular channel and (2) that there are independent sources of internal noise
in each monocular channel. The data points plotted here were taken from Fig-
ure 1A in Anderson and Movshon (1989). (Reprinted with permission from Vi-
sion Research, Vol. 29, P. A. Anderson and J. A. Movshon, “Binocular combi-

nation of contrast signals,” 1989, Pergamon Press.)

put. Thus, in their model there would be a binocular chan-
nel in which the left-eye signal would be weighted four
times as much as the right-eye signal. Conversely, there
should be another channel in which the weighting func-
tion is reversed. They, like us, assume linear summation
within these channels, with detection occurring whenever
activity in any one of these channels exceeds threshold.
This means that when contrast of the left-eye signal is one
fourth that of the right-eye signal, then in the channel
where the left eye input is weighted four times more than
the right-eye signal, both eyes will contribute equally after
weighting has occurred. Thus, with shifted noise, can-
cellation will be virtually complete at some frequencies,
and good binocular unmasking should occur in this chan-
nel. Another way of viewing their model is that the dif-
ferential weighting function in this channel serves to equal-
ize the two inputs. In this respect, it is like Durlach’s
(1972) equalization and cancellation model of binaural un-
masking, in the sense that the amplitude (contrast) in each
ear (eye) is equalized before subtraction or cancellation.
Such a model, then, would predict that when the magni-

tude of the external masker is much greater than that of

- the internal noise, the amount of unmasking should be the

same for the 100%-100% condition as it is for the
100%-25% condition. Although this prediction of an
equalization and cancellation model holds in the auditory
realm (McFadden, 1968), the present data show clearly
that it fails in vision. Therefore, we can conclude that a
model that involves unequal weights applied to the
monocular inputs before summation cannot account for
the data.

Concerning the specification of the possible physiolog-
ical embodiment of the summation process, electrophysio-
logical studies of the striate cortex suggest that many
binocular interactions can be accounted for in terms of
linear summation of neural signals from the eyes (e.g.,
Ohzawa & Freeman, 1986a, 1986b). Psychophysical
evidence for the linearity of spatial-frequency-and-
orientation-selective binocular neurones in the human
visual system is also available (e.g., Blake & Levinson,
1977). Moreover, comparable bandwidths estimates are
also reported in several electrophysiological studies of
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binocular cortical units (e.g., Albrecht, 1978; R. L.
De Valois, Albrecht, & Torrel, 1982; see also R. L.
De Valois & K. K. De Valois, 1988). Mechanisms such
as these, characterized by the properties of binocularity,
linearity, and relatively narrow tuning in the 2-D Fourier
domain can thus be tentatively regarded as potential can-
didates for the mediation of the effects observed in our
study.
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APPENDIX A
Vector Theory

Figure A1 presents the vector diagrams for left and right visual fields for the condition NaS,, at the spatial
frequency and orientation corresponding to that of the Gabor signal. Note that the external noise vector R
at the signal’s spatial frequency is 180° out of phase in the two visual fields. The magnitude of Ro, however,
is the same in both fields. If 6 is the phase angle of the external noise vector in the left eye, the phase angle
of the external noise vector in the right eye is 8o + 180°. Assume that the signal is in cosine phase (as it
was in this experiment). Then adding the signal to the noise vector in the two fields is equivalent to adding
horizontal vector s to the tips of the noise vectors in both left and right visual fields. In addition to the external
noise vector and signal vectors in each field, we are hypothesizing that independent random noise is added
to both fields. Let Ry and Ry be the independent internal noise vectors added to the right and left fields,
respectively. The magnitude of the resultant left-field vector is identified as R, in Figure Al and its phase
angle is 6,. Correspondingly, the resultant right-field vector has magnitude R,, and phase angle 8;. The extent
to which 8, —#8, differs from 180° can be used as a detection cue. Therefore, we are interested in the distribu-
tion of (6,—6,) —180°. Figure A2 shows the distribution of the equivalent left- and right-field vectors for
NoS., and the resultant phase angles 8, and 8,. This condition represents the case in which the left and right
external noises appear in corresponding positions within the frame, and the Gabor signals also appear in cor-
responding positions but 180° out of phase. Note that vector lengths Rr and Ry, and phase angle 8; are identi-
cal in both Figures Al and A2 and that 8, in Figure A2 is shifted by 180° relative to its value in Figure Al.
It is easy to show that when the external noise vector, signal vector, and internal noise vectors are the same
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Figure Al. Vector representation of events in the left and right
eyes of an observer in the NS, condition. The R, vector in the up-
per right-hand quadrant is the noise vector in the right eye. The
equivalent vector in the lower left-hand quadrant is the noise vec-
tor in the left eye. The vector, s, represents the signal added to both
eyes, and Rg and R, represent independent left- and right-eye noise
vectors. The resultant phase angle for the right eye is labeled 6,;
the resultant phase angle for the left eye is 0,. -

Figure A2. Vector representation of events in the left and right
eyes of an observer in the N,S, condition. The noise vector R, is
common to both eyes. The vector labeled —s is added to the left eye,
and the vector s is added to the right eye. The internal noise vector
added to the right eye is the same as the internal noise vector Ry
shown in Figure Al. The internal noise vector added to the left eye
is identical in length but opposite in phase to that shown in Figure
Al. The coordinates for the tip of the external noise vector are (x,,yo),
the coordinates for the tip of the resultant right eye vector are (x,,y,),
and the coordinates of the resultant left eye vector are (x,,y,). The
phase angles for the noise vector and the resultant right and left

eye vectors are 0,, 0,, and 0,, respectively.

for N4S, as they are for N,S,, then the distribution of (6, —6,—180°) in NaS, is identical to 6,—8, in NoS..
We derive the distribution function for §,—8, in condition NoS., and note that it must be identical to that
of (02—8,—180°) in NaS,.

In Figure A2, R, is the vector corresponding to the external noise. Because we are assuming that the BMLD
condition is NoS., the external noise vector is the same in both eyes. The tip of this vector is the point, (xo,Yo),
where xo = Roc0s8, and y; = Rysinf,. Let us assume, for the moment, a fixed external noise vector. Assume
that the signal is added to the noise in the right eye in cosine phase. In Figure A2, the signal added to the
right eye external noise is the vector s. Because the testing conditions are NoS., the external noise vector
is the same in both eyes, but the signal vector in the left eye is opposite in phase. Thus, the left-eye signal
vector is represented by —s. We also assume that independent internal noise is added in each eye. Let us
assume that the standard deviation, o4, of the internal noise in the left eye is the same as the standard deviation
of the internal noise in the right eye. Adding external noise to the right eye adds a random vector, Rg, to
the vector sum of Rg and s. Define the tip of the resultant right-eye vector, R,, as the point (x,,y,). Similarly,
the resultant left-eye vector is the vector sum of R,, —s, and Ry. Define its tip as (x;,y,). Clearly x, = R,cos#,,
y: = R.sinf,, x, = Rjcosf,, and y, = R;sind,. For a given external noise vector, R,, and for a*> = 1/(203}),
the probability density function (PDF) for the point (x,,y;) is

(@*/7) exp(—a*v?), (AD)
where v? = [x,—(xo+5)]* + [y, —yo]*. Therefore, the integral of this PDF is
(a*/7) r’ sm exp(—a*v?)dx,dy,. (A2)

Now, if we switch to polar coordinates, dx,dy, becomes R,dR,d6, and
V= =+ + Dn—yol
X8 =2x,%0—2x, 8 + x5+ 2x05 + 52+ ¥y~ 2y, Yo + 5
fcos?d, —2R,Rocos6,cos6, — 2R scosf, + Ricos*6, + s*

I
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+ R%sin*@, — 2R, Rosinf, sinf, + 2R osc0s8, + R3sin?f,
= R3-2R,R.cos(8; —0,) —2R,scosf; + R3+ s> +2R oscosb.

Also, with this switch to polar coordinates, R, is integrated from 0 to infinity and 6, is integrated from o— =
to B+ x. Now define

X = 0,~8,, dX=d8,, with the limits of integration for X being — = to =.
B = RscosX+scos(X+0,).
o = Risin?X—2R,sco8 Xcos(X+6,) + s2sin(X +6,) +2R o sc0sb,.

The integral of the density function now becomes

(@ S;"’ S Riexp[—a*(R, —B)*]exp(—a*a?)dXdR,. (A3)
Now define =R, —8, du=dR,, with the limits of integration on y being — 8 to infinity. The integral of the
density function now becomes

(a*/7) S;exp( —a*a?) ( s:( p+B)exp(—a*u?) dp.) dx
= @m |7 exp(- a’a‘)(exp( ~a6)/(2a"+8 " exp(- az,f)d,‘)dx. (A%)

Define t = ap, dt = adp, with the limits on integration for ¢ being —af to infinity. The integral now becomes

(@7 S;exp(—a’a‘)(exp(-a’ﬂ’)/(Za’)+(B/a) S:acxp(—tz)dt)dx. (AS)
Now if 8 is positive, then
(Bla) s:ﬂexp(-—t‘)dt = (6/a)(0.swm+ SZW exp(—t’)dt). (A6)
If B is negative, then
(8/a) s:sexp(—t’)dt = (B/a)(0.51r”’—- S‘;"" exp(—t’)dt). (A7)
Therefore,
(8la) rﬂexp(—t’)dt = Bx"*/(2a)+(|Bl/a) j‘(‘)“" exp(—t3)dt. (A8)
Now,
s‘;"" exp(—13)dr = 0.5x"erf(alBl). (A9)

Therefore, the integral of the probability density function becomes

1 x
(2‘;) S_'{exp[—al(a2+31)] + aBw'*exp(—a‘a?) + a|ﬁ|1r”ze)(p(—a’a‘)erf(a|ﬁ|)}dX_ (A10)

Formula A10 is the integral of the probability density function for X = §,—6,. By a similar derivation, the
integral of the PDF of Y = 6,—6, is
1
(5-) s' {exp[—a*(A*+BY)] + aBx'*exp(—a*4®) + a|B|x"?exp(—a*A})erf(a|B))}dY, (All)
T, -x

where
B = RocosY — scos(Y+0,)
A? = Risin?Y + 2R,scosYcos(Y+60,) + ssin*(Y+6°) — 2R,scosb.
Now the integral of the joint PDF for X, Y is the product of Equations A10 and All:

L) cx
(E) Sﬂ{exp[—a’(a}+61)] + afw'2exp(—a*ad) + a|Blxexp(—a*ad)erfalBl)}dX
X

1
(2—)5' {exp[—aX A1+ BY] + aBr'*exp(—a*A}) + a|Blx'exp(—a*Aderf(a|B)}dY, (A12)
x, -~
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where
a? = Risin?X — 2R,scosXcos(X+6,) + ssin*(X+6,)
A? = Risin’Y + 2R,scosYcos(Y+8,) + s*sin?(Y+6,).
Now this joint PDF is defined in the XY plane. If we rotate the axes of this plane by 45° to obtain axes X;,Y;, then
X, = [12'2][X+1), Y, = [172'?)[Y-X],
and
X = [172'2][X, - Y], Y = [172'*][Y,+ X ].

In the X,, Y, plane, the limits of integration for Y, are ~2'/2x to 2'/*7. Let ¢ = 2'/2. The limits of integration
for X; are from —L to +L, where

L = |{|Y|=cx.
Therefore, the integral of the probability density function in the X;, ¥, plane is
| exp[—a*(R3+5%)] + af,w'’*exp(—a’ad) + alBs|x'2exp(—a*ad)erf(alBsl)
(4,,2) S % S fL X dX.dY,
exp[—a*(R3+5%)] + aB,x''*exp(—a’A3) + a|B,|7'*exp(—a*A})erf(a|B|)
(A13)
where,
B2 = Rocos[(X;—Y,)/c] + scos[(X,—Y,)c + o]
B, = Recos[(Y,+X)/c) — scos[(Y,+X,)/c + 6]
o = Risin*[(X,—Y)/c] — 2Roscos{(X;— Y,/ clcos[(Xr—YrYc + 6]
+ s%sin’[(X,—Y,)/c+6,]
A3 = R3sin®{(Y,+X))/c] + 2Roscos[(Y, + X;)/c]lcos[(Y,+X,)/c+6,]
+s2sin?{(Y, + X,)/c+6,].
Now, with a change of variables, we can define
0a = cY, = 6,0,
Op = cXp = 0, + 0, — 26,.
The integral then becomes

exp[—a*(R3+5?)] + aBan'’?exp(—a’ald) + al|Ba|x'/*exp(—a’ad)erf(alBal)

(#) E, 5 1, X d6,dbg,

exp[—a*(R3+5?)] + aBpr'2exp(—a’A}) + a|Bp|r'/?exp(—a*A3)erf(a|B,|)
where (Al4)
Ly = |(|6a] —27)]
Ba = Rocos{.5(0,—04)] + scos[.5(8,—0a4) + 6]
B, = Rycos[.5(6p+04)] — scos[.5(0,+6a) + 6o]
ay 3sin?[.5(0p —0a4)] — 2Roscos[.5(0p—0a)]cos[.5(0p—04) + 6o) + s*sin*[.5(8,—84) + 6o
A} 3sin?[.5(0,+64)] + 2Rsscos[.5(0p+00)]cos[.5(0,+604) + 60) + s*sin?[.5(8p+84) + 6o].

Note that Formula A14 is conditional on R,,0,. Therefore, if we multiply Formula A14 by the PDF for
Ro,8,, which is [Ry/(20%))exp[ —R3/(203)1dR,db,, and integrate over 8, and R,, we obtain the integral of the
PDF for 04. Letting b* = 1/(20»*), where o is the standard deviation of the external noise, this integral is

b 2x (x (o (Lp
87 S_h L 50 s_wRof(a,Ro,oo,op,od,S)exp(—bzRé)dO,,dRodoodo,,, (A15)
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where f(a,Ro00,0p,04,5) =

exp[—a*(R3+5%)] + aBam'’?exp(—a*ad) + alBa|7'*exp(—a*ad)erf(alBal
x ) (A16)

expl—a*(Ri+s)] + aBpn'/exp(—a*dl) + a|B,|n/*exp(—a*A2)erf(a|B,|)

Therefore, the PDF for 6, is

b? -
(§) gj 50 s’_"’lpRo £(@,Ro,00,0,,04,5)exp(—b*R3)d0,dRodb, (A17)

where 64 ranges from —2x to 2x.

We can now ask what happens if we attenuate both the noise and the signal vectors in the left eye by scale
factor r. This has the effect of multiplying both R, and s in the left eye by r. This in turn requires that B
be multiplied by r and that A* be multiplied by r*. If we follow through on these changes, we can show that
the probability density function for 6, is

B\ s ca
(i;?)s I slplpexp[”zazRoscosoo(l"1)]Rog(a,Ro,Bo,9p,0d,s,r)CXp(—b‘R%)dG,,dRodﬁo, (A18)

where g(a,Ro,00,0p,84,5,r) =

exp[—a*(R3+5%)] + aBam*?exp(—a’ay) + a|Ba|m/2exp(—a*ad)erf(a|Bal)
X . (A19)

exp[—a*r(R3+5%)] + arBymt’’exp(—a’r’d?) + a|rB,|n'2exp(—a*r*AYerf(a|rB,|)

Equation A18 was used to generate the probability density functions shown in Figure 9. To evaluate the
error function (erf), approximation 7.1.28 in Abramowitz and Stegun (1970) was employed. The three in-
tegrals in Equation A18 were evaluated numerically. Note that 84 is evaluated from —2# to 2#. Since 04
= +190° is the same angle as s = —170°, the functions in Figure 9 are plotted between — and 7, taking
into account the equivalence noted above.

APPENDIX B
The Summation Model

To show that the summation model provides a good fit to the data, let g(x,y) have the spectral density func-
tion given in Formula 2. Similarly, let the density function for the internal Gaussian noise 2(x,y) be
Hlen] = Ap, —€u<e<ew and —nmu<n<mu
0, elsewhere,

where €., 1, are the horizontal and vertical frequency band limits on the internal Gaussian noise. For the
purpose of evaluating BMLDs, let us assume that e, and 7, are effectively equal to infinity. This assumption
is reasonable provided that the bandwidth of the internal Gaussian filter is small relative to the bandwidths
of the external and internal noises. Let d = dy + d. be the combined external and internal horizontal shifts
in the external noise. Then the spectral density function for

rogx.y) + rrg(x+d,y) + hr(x,y) + hr(x,y),

assuming that Ay (x,y) and hr(x,y) are independent of each other and with ry,7r being attenuation factors placed
on the left- and right-eye external noises, becomes

Gle,n) [ri+rk+t2rirr cosred)] + 2H[e,n]. (B1)

Assume now that both internal and external noises are passed through an internal Gaussian filter whose spec-
tral profile is

exp[—b*(e—es)* — b*y?], (B2)

where ¢; is the center frequency of the Gabor signal. Then the total energy from both internal and external
noise sources in this channel is given by
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(G(e,n)[ri + ry] + 2”(6,7])) sj; Sj;exp[-b’(e—e,)z—bznzlded'q
+ (2rreGe,m) [~ |7 cos@wedyexpl —b*(e — ey —bin?ldedy. (B3)

It is relatively easy to show that this integral becomes

—_ ldl
;[G(e,n)(r’ﬁri) + 2H(e,n) + 2rLrnG(e,n)cos(21rde,)exp( :2 )] (B4)
Note that in NaS, no shift is imposed on the Gabor signal. Therefore, maximum energy in the Gabor signal
occurs when the internal horizontal shift, d, = 0. Note also that the energy in the background noise is at
a minimum for d = dy, and ¢; = 1/(2d,). For in that case, the total energy in the background noise is given by

T —x'd?
bz[G(e,n)(r’Lﬂ’x) + 2H(e,m) — 2’L"RG(€"’I)CXP( e )] (BS)

In N4Sa, the Gabor is shifted by the same amount as the noise. Therefore, total energy in the summated signal
is maximized when d, = —d,. Hence, d = 0, and the total energy in the background noise is given by

;[G(e,r[)(rl_+rg)’ + 2H(e,n)]. (B6)

Note that for both NS, (d.=0) and NuSa (d.= —d;), the summated Gabor signals are identical and, therefore,
the energy in summated Gabor signals is identical. The signal-to-noise ratio in N4S, divided by the signal-to-
noise ratio in N4Sq for equal-strength Gabor signals is

[G(e,n) (rL+1r)* + 2H(e,n)]

(B7)

Y
[G(e,n)(ri+r§) + 2H(e,n) — 2rLrRG(e,n)exp( Z’ )]

The predicted size of the BMLD then is

10log [Gle,n)(rL+rr)* + 2H(e,n)] ‘ ®8)

2d2
Gle,n)(ri+rR) + 2H(e,n) — 2rLrgG(e,n)exp[ e ])

Note that because we are dealing in power rather than luminance, decibels are defined as 10 times the loga-
rithm of the ratio of two powers rather than 20 times the logarithm of the ratio of two luminances. Now if
we define ¢ = H(e,n)/G(e,n), then Equation B8 becomes

10log [(ro +re)” + 2c) : (BY)

2 2 — _TZdl
(ri+rR) + 2c — 2rirrexp

b2

Values of b and ¢ were found that minimized the sum of squared deviations between predicted (Formula B9)
and obtained BMLDs for all 3 subjects using an iterative procedure. The smooth curves in Figure 12 for
the equal conditions were generated by forcing ri. = rg and letting rg vary from .22 to 1. The smooth curves
in Figure 12 for the unequal conditions were generated by forcing ri. = 1 and letting rg vary from .2 to 1.

In the equal conditions, ri = rg = r. In the unequal conditions, rp. = 1, and rg = r. Therefore, the BMLD
for a reduction in one eye only will equal the BMLD for the equivalent reduction in both eyes, only when

(1+r)* + 2¢ 4rt + 2c
= . (B10)

—rid? —nid?
1 4+ r* + 2¢ — 2rlexp 2r* + 2¢ = 2r’lexp
b? b?

It can be easily verified that this equality holds when ¢ = 0.5r(1—r). For ¢ = 0.5r(1—r) + ¢, ¢ # 0, we
can also show that Equation B10 is true only when

_,n,ldl
e[l + exp(— b —)] = ¢r

1+ exp(_Wd )] (B11)

bl
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This can occur only for ¢ = 0, or r = 1. Therefore, the BMLD for a reduction in one eye will equal the
BMLD for the equivalent reduction in both eyes if and only if ¢ = 0.57(1 —r). For ¢ < 0.5r(1—r), the BMLD
for the equal-reduction case will always be greater than the BMLD for the equivalent reduction in one eye
only. Because the smallest value that r takes on in this experiment is 0.25, as long as ¢ < 3/32, the ordinal
prediction in the summation model is opposite that for the vector model. Estimates of ¢ in this experiment
are considerably less than this value so that the summation model predicts the opposite pattern from that of
the vector model.

When there is no external noise, the signal-to-noise ratio in the left channel is Si/oL, where Sp is the RMS
amplitude of the signal in the left eye, and oy is the standard deviation of the internal noise in the left channel.
Let us assume that the observer has independent access to the two monocular channels and to the binocular
channel. Therefore, when the signal is presented only to the left eye, threshold will depend only on the signal-
to-noise ratio in the left-eye channel. Let Sit be the RMS of the signal at threshold for monocular, left-eye
presentation. The signal-to-noise ratio required for threshold in the left-eye monocular channel is, therefore,
Sir/oL. Let us furthermore assume that the signal-to-noise ratio required for threshold is the same in the binocular
channel and the monocular right-eye channel. Therefore, Sy1/01. = Sgr/or, where Sgr is the monocular threshold
in the right eye, and or is the right-eye internal noise. We note that sometimes the right- and left-eye thresholds
are not equal, that is, St = aSgt. When this occurs, then o1 = aog, if the signal-to-noise ratio at threshold
is to be identical in both monocular channels.

Now consider what happens in the binocular channel when the left-eye signal is presented at full value,
S, with the right-eye signal set to rS. If the left and right internal noises are independent, the signal-to-noise
ratio in the binocular channel is given by

S+rS S(1+r)
Vot + ok arV1 + a ’

We can now look for the value of S that will produce the same signal-to-noise ratio in the binocular channel
as that produced in the monocular channel when the monocular channel is at threshold. Setting the expression
B12 = Sgr/or, we find the value of § at binocular threshold to be

A Sr: + Si3
Spr = YORTLT LT (B13)
1 +r

(B12)

where Sgr is the threshold value of S in the binocular channel. If the observer has independent access to each
of these three channels, then threshold will be reached whenever Sg > Sgt, or St > Sit, or § > Spr. This
is the model that was used to plot the predicted values in Figure 13.
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