Perception & Psychophysics
1986, 40 (4), 251-255

Measuring channel dependence
in separate activation models

HANS COLONIUS
Universitat Oldenburg, Oldenburg, Federal Republic of Germany

In the bimodal detection task, the observer must respond as soon as a signal is presented in
either of two modalities (e.g., a tone or a flash). A typical finding is a facilitation of reaction time
for redundant-signal trials, that is, when both signals are presented simultaneously. Separate-
activation models assume that the two signals are processed simultaneously within different chan-
nels and that a response is initiated as soon as an activation level is exceeded in either channel.
This paper examines a number of approaches to formulating a model of the stochastic mechan-
isms involved. Conditions allowing inference of the correlational structure of the channel processes
are discussed, and new models are proposed. Moreover, distribution inequalities for testing of
the models under weakened independence assumptions are derived.

This paper addresses a problem in the reaction time
(RT) analysis of a bimodal detection task. In this ex-
perimental situation, the observer must respond as soon
as a signal is presented in either of two modalities (e.g.,
a tone or a flash). On single-signal trials, only one signal
is presented; on redundant-signal trials, both signals are
presented simultaneously or with a short interstimulus in-
terval (ISI) delay. The typical finding is that RT is shorter
for redundant-signal trials. One type of model that has
been advanced for the redundant-signals effect is the
separate-activation model (cf. Miller, 1982). It is assumed
that the two signals are processed simultaneously within
different channels and that each channel produces a
separate activation. The response is initiated as soon as
an activation level is exceeded in either channel.
Responses to redundant signals are especially fast because
they are produced by the faster of two processes with ran-
domly varying durations. Raab (1962) summarized these
‘‘race models’’ by introducing the term ““statistical facili-
tation.”’

Recently, a number of papers concerned with the
stochastic modeling of the separate-activation mechanism
have been published. Specifically, it has been asked
whether the detection times of the two channels are in-
dependent random variables, and, if independence is re-
jected, whether they are positively or negatively correlated
(Grice, Canham, & Boroughs, 1984; Ulrich & Giray,
1986; van der Heijden, Schreuder, Maris, & Neerincx,
1984). In this paper, we critically review some of these
results and propose a number of alternative approaches.

Let RT, (RT,) denote the reaction time to stimulus S,
(S,) in the single-stimulus condition, and RT,, the reac-
tion time to the redundant signal, that is, when both sig-
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nals are presented. The corresponding cumulative distri-
bution functions are

PQRT. = 1) = F.),

PRT, = 1) = K,

PRT, < 1) = F (9.
In testing the separate activation model, it is commonly
assumed that the marginal distributions in the redundant-
signal condition can be equated with the RT distributions
in the single-signal conditions, implying

RT,, = min(RT,, RT,).

The plausibility of this empirically untestable assumption
rests on the details of the experimental setup and will be

taken for granted here. From elementary probability, we
have for any ¢

F.(t) = F.(f) + F,() — P[max(RT,,RT,) < 7. (1)

Omitting the unobservable negative term on the right-hand
side of Equation 1, Miller (1982) obtained

F,() = F.(t) + F¢). 2)

Violations of this inequality allow rejection of the entire
class of separate activation models. It has been observed,
however, that the upper bound in Equation 2 is not very
sharp. Let us rewrite Equation 1 in the following way:

F () = F.(t) + F,(t) — F.OF,()
—{P[max(RT,,RT,) < f] — F.(OF,())}
= F() + F,(0) — F.(OF,¢t) — D), 3

where D(f) stands for the expression in braces.

If the processing times are assumed to be independent,
we have D(t) = 0 and Equation 3 can, in principle, be
used to check this independent channels model. Further-
more, a number of authors (e.g., Grice et al., 1984; van
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der Heijden et al., 1984) have taken positive (negative)
values of D(z) as evidence for positive (negative) corre-
lation between the processing times. Unfortunately, this
last line of reasoning is not valid in general. Only if cer-
tain specific distributional assumptions not directly test-
able from the available data are introduced can the direc-
tion and/or size of the correlation be inferred. The
problem resides in the fact that in order to assess the de-
pendence of two random variables, knowledge of their
entire bivariate distribution is needed. In the empirical
context of separate-activation models, however, only the
marginals and the distribution of the minimum of the
processing times are available at best.

The above is nicely illustrated by the following
representation of the covariance of two arbitrary random
variables due to Hoeffding (see Lehmann, 1966):

cov(RT,RT,) = {{D(s,n)dsdr, @)

where
D(s,t) = PRT, < 5, RT, < 1) — PRRT, =< s)P(RT, =< ).

Obviously, D(s,t) = O for all s,t implies nonnegative
covariance. However, positive covariance does not en-
sure that D(s,?) will be positive for all s,z. In particular,
positivity of D(t,f) = D(¢), the term that occurs in Equa-
tion 3, is neither necessary nor sufficient for positive
covariance (or correlation).

To illustrate this argument, it may be useful to distin-
guish a notion of ‘‘global’’ dependence from one of ‘‘lo-
cal’’ dependence. If the function D(s,¢) is positive at some
point (s,£), we have local positive dependence at that point.
On the other hand, covariance (or correlation) is an overall
global measure of dependence, since it is obtained by in-
tegrating over all points (s,#), as demonstrated by Equa-
tion 4. The point then is that local positive dependence
everywhere, that is, at all points (s,t), implies global posi-
tive dependence but not vice versa. The following exam-
ple shows, more specifically, that global positive depen-
dence does not even imply local positive dependence in
terms of D(r) for some ¢.

Example:

Let random variables X and Y take on the values 1, 2,
3 with probabilities given in Table 1. Thus, we have
cov(X,Y) = 0.44, while D(1) = —0.01, D(2) = —0.04,
and D(3) = 0.0.

BOUNDS FOR corr(RT,,RT,)

As pointed out above, assessing the dependence of two
random variables without introducing any specific as-
sumptions requires knowledge of their entire bivariate dis-
tribution function. It is interesting to note, however, that
nonetheless some bounds on corr(RT,,RT,) can be given
(cf. Whitt, 1976):

Table 1
An Example of Global Positive But
Local Nonpositive Dependence

3 0.1 01 06
X 2 00 00 0.1
1 00 00 0.1

1 2 3
Y

Lemma:

Let random variables RT., RT, have a bivariate distri-
bution,

G.(s,) = PRT, < s, RT, < 1), ®)

" with marginal distributions F(s) and F(t); then the corre-

lation between RT, and RT,, corr (RT,,RT,), is bounded,
that is,

corr- = corr(RT,,RT,) < corr*;

here, corr (corr*) is the smallest (largest) possible corre-
lation for two random variables having a bivariate dis-
tribution with marginals identical to F, and F,. (An out-
line of the proof is contained in Appendix A.)

Estimation of corr™ and corr* is demonstrated below.
The usefulness of these bounds is, of course, not guaran-
teed a priori. Consider, for example, the case corr™ =
—1 and corr* = 1. Nonetheless, if one of the bounds is
equal to (or near) zero, for instance, the sign of
corr(RT,,RT,) is determined. The numerical estimates of
the bounds depend on the empirical distributions F, and
F, from the single-signal situations. (Details are provided
in Appendix A.)

For illustrative purposes, we use part of the data of two
experiments reported in Gielen, Schmidt, and van den
Heuvel (1983). The data of Experiment 1 consist of three
blocks of 25 responses of 1 subject to a visual, an audi-
tory, and a combined signal, respectively. In the
redundant-signal situation, the auditory stimulus was
presented 46.5 msec after the visual stimulus. The data
of Experiment 2 consist of three blocks of 25 responses
of 1 subject to a visual, a kinesthetic (a torque to the
responding limb), and a combined signal, respectively.
In the redundant-signal situation, the torque stimulus was
presented 100 msec after the visual stimulus. The esti-
mates for the bounds of the correlation between the
processing times in the redundant signal situation are as
given in Table 2. Admittedly, these bounds are of limited
value in assessing the actual degree of dependence be-
tween the processing times. The width of the interval may
in part be due to an insufficient approximation of the
Hoeffding integrals for computing the covariances with
too small a number of data points available. In any case,
they may serve as a baseline in the following sense: any
separate activation model for the redundant-signal situa-
tion consistent with the observed marginal distributions



Table 2
Maximal and Minimal Correlations for Fixed Marginals
in Gielen et al.’s Experiments

corr” corr*
Experiment 1 -.799 955
Experiment 2 ~.860 .830

predicts a correlation lying in the range of corr™ to corr*.
Some more specific models will be discussed in the next
section. The reader should note that in estimating these
bounds, no data from the redundant-signal trials are be-
ing used. If they are, the lower bound can presumedly
be sharpened. However, this, as well as diagnostic proper-
ties on the marginals implying closer bounds for the corre-
lation, deserves further study.

MODELING DEPENDENCE

It is obvious from the last section that some assump-
tions on the bivariate distribution are needed to derive
more specific information on the degree of dependence
between the processing times.

In an attempt to measure the strength of channel de-
pendence, Grice et al. (1984) proposed computation of
the tetrachoric correlation coefficient. The proportions of
responding and not responding to the single signals pro-
vide estimates of the marginals of a fourfold table; the
proportion of not responding in the redundant-signal sit-
uation fills one cell of the table. Since the table has only
one degree of freedom, the entire table is thus determined.
The tetrachoric correlation coefficient can be estimated
at any quantile of the redundant-signal distribution.
However, the validity of the whole approach rests on the
assumption of bivariate normality. If the computations
yield inconsistent estimates (as found, e.g., by van der
Heijden et al., 1984), it remains unclear whether this is
evidence against the model of separate activation or
merely against the assumption of bivariate normality.

Let us outline another approach of modeling depen-
dence, one which may be called ‘‘semiparametric.’’ The
idea here is to construct a bivariate distribution from speci-
fied marginals. An example is given by Huang and Kotz
(1984) in their discussion of the bivariate Farlie-Gumbel-
Morgenstern (FGM) system of distributions with bivari-
ate cumulative distribution

Go(s,0) = F()F,(0[1 + aF(s)F, 0], ©)

where F = 1 — F, o a real number. There are other sys-
tems of distributions available and some remarks on
choosing an appropriate form are made below. This semi-
parametric approach is attractive for a number of reasons.
Note that for these models the bivariate distribution is
characterized by the univariate marginal distributions.
Thus, the assumptions these models make only amount
to specifying the way the bivariate distribution is con-
structed from the marginals. It is not necessary to postu-
late a special distributional form of the marginals in order
to test the model. On the other hand, if for some reason
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the experimenter prefers to assume a parametric form for
the marginals (e.g., normal distributions), he or she may
still stay within the semiparametric approach by just put-
ting these marginals into the model equation. Moreover,
models like the FGM system (Equation 6) have a simple
analytical form; their dependence structure is entirely cap-
tured by just one parameter (for several empirical appli-
cations, see, e.g., Conway, 1983).

Before the semiparametric approach is illustrated, some
comments on testing of the separate activation model in
general are in order. The first step in testing the model
is to use Equation 2 (or a sharpened version of Equation 2
to be presented later). If no rejection is possible, some
more specific model could be proposed and tested.
However, as pointed out earlier, apart from the marginal
distributions, only the minimum processing times are ob-
servable and, hence, amenable to testing. Consequently,
evidence in favor of any specific model is somewhat
limited. In our view, this supports the adequacy of an ap-
proach such as the semiparametric one with rather large
model subclasses.

Apart from the FGM system of distributions, essentially
two other one-parameter families that possess various
different properties are known (the interested reader
should consult Johnson & Kotz, 1972). For the present,
we adopt the FGM system here for reasons of simplicity
and because it contains the case of independent process-
ing. It is known, however, that this model allows for only
rather weak degrees of dependence. If stronger depen-
dence is suspected, then either such models as the iter-
ated FGM systems, which introduce one or more addi-
tional parameters, or the other one-parameter systems are
possible alternatives (cf. Huang & Kotz, 1984).

For the dependence parameter « in the FGM model,
there is a simple approximation to its maximum likeli-
hood estimate that depends on the marginals only (see Ap-
pendix B for details). Moreover, the Pearson product-
moment correlation coefficient is given by

corr (RT,,RT,)
a*{|” 11-Fusndsy * {”_(1-Fyodr}

[SDX)SD(D)].
In particular, if both marginals are normal, we have
corr(RT,,RT,) = a/w. 8

For the data from Gielen et al.’s (1983) Experiment 2,
computation of the correlation via Equation 7 yields .09.
However, this estimate should be taken with a grain of
salt, since it is based on only three blocks of 25 data points.
If the marginals are assumed to be normal, the correspond-
ing estimate via Equation 8 is .012. For van der Heijden
et al.’s (1984, Table 1, p. 581) data, the correlation es-
timate via Equation 8 is .481.

A test of the FGM model could be carried through by
a chi-square test on the data observed in the redundant-
signal situation. If no parametric assumption on the mar-
ginals is made, the values of the observed marginals go-
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ing into the prediction will have to be counted as
parameters that reduce the number of degrees of freedom
in the chi-square. Obviously, this suggests a split-half
technique; that is, half of the data should be used to esti-
mate the marginals and the dependence parameter, while
the other half could be taken for the comparison with the
predictions. If a parametric assumption on the marginals
is made, only the number of estimated parameters of these
functions would have to be taken into account for com-
puting the number of degrees of freedom for the test. In
any case, our present data base is too small to allow a
reasonable check of the model.

AN INEQUALITY TESTING FOR
POSITIVE (NEGATIVE) DEPENDENCE

Let us return to the issue of testing the separate activa-
tion model before subscribing to a specific model. In the
proposition given below, we state a simple inequality
strictly sharper than the one given by Miller (1982) (cf.
Equation 2), allowing for the rejection of a number of
models. Two random variables, such that D(s,r) = 0
(resp. < 0) for all s,¢, are called positively (resp. nega-
tively) quadrant dependent, PQD (NQD) for short (cf.
Lehmann, 1966). The class of PQD (NQD) random vari-
ables is a large one, but it is entirely contained in the class
of all positively (negatively) correlated random variables;
that is, PQD (NQD) implies positive (negative) correla-
tion. Two random variables are independent if and only
if they are both PQD and NQD.

Proposition 1:
If RT,, RT, are PQD random variables, then
F (0 = F() + F(0) — F(OF,). ®

Moreover, for NQD random variables, the above inequal-
ity is reversed.

This proposition is an immediate consequence of Equal-
ity 3 above. The inequality is put to use as follows. Sup-
pose, for a given set of data some specific model, such
as the bivariate normal or the FGM, is to be tested. Then
Inequality 9 should be checked first. The reason is that
these specific models (and a number of others) imply
either Inequality 9 or its reverse, depending on whether
the processing times are positively or negatively cor-
related. For example, van der Heijden et al. (1984) actu-
ally tested Inequality 9 (and its reverse), and found that
it was clearly violated (it seems, however, they were not
aware of the consequence, namely rejection of the bivari-
ate normal). The role this proposition plays is, loosely
speaking, somewhat destructive: Violation of the inequal-
ity (or its reverse) rules out a number of models for
separate activation; nonviolation, however, does not al-
low any inference on the direction of the correlation, as
we demonstrated in the first section of this paper.

Finally, we turn to a generalization of the above propo-
sition. The observable reaction time is typically conceived
of as the sum of the detection time and a common vari-
able base time, B, summarizing all stages that follow
stimulus detection (e.g., motor components, cf. Ulrich
& Giray, 1986). We thus have

RT, = X+B,RT, = Y+B,RT,, = min(X,Y)+B.

The following proposition amounts to saying that the
above test extends to the case of an additive decomposi-
tion. It generalizes a corollary in Ulrich and Giray (1986,
p. 249) by assuming X and Y to be PQD instead of in-
dependent.

Proposition 2:

Suppose X and Y are independent of B; if X and Y are
PQD random variables, then so are RT, = X+B and RT,
= Y+B and the bound in Proposition 1 applies.

For a proof, the reader is referred to Tong (1980, The-
orem 5.1.4).
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APPENDIX A

Outline of Proof for the Lemma

For any bivariate distribution, G, with marginals F, and F,,
the following bounds hold:
G; = max(F,+F,—1,0) = G,, < min(F.,F)) = G;. (Al)

G;, and G, constitute bivariate distributions with marginals iden-
tical to those of G,,. Putting



D*(s,) = Gyfs,5) — FA)F,(0)

D (s, = Gg(s,)) — F9)F,()
and inserting D* and D~ into Hoeffding’s representation of the
covariance (Equation 4) yields immediately the covariances cov*
and cov - of the random variables corresponding to G}, and G,

respectively. Since G,,, GJ,, and G, have the same marginals,
their corresponding standard deviations are identical, too. Thus,

corr* = cov*/[SD(X) * SD(Y)]
and

corr” = cov'/[SD(X) * SD(Y)].
Applying Inequality Al then implies the lemma.
Estimating the Bounds corr* and corr-

_ First, the empirical (cumulative) distribution functions F.and
F, are used to approximate G, and G5

G; = max(i‘,+f‘,— 1,0) and G;, = min(ﬁ',,f,).
This yields corresponding estimates
D* = Gi—F.F, and D- = G;,—F.F,.
Then the Hoeffding integrals for cov* and cov™ are approximated
by the sums generated by replacing D* and D~ by D* and D",

respectively. For Experiment 1 of Gielen et al. (1983), these
estimates are about

covt = 190 and cov- = —159.

Dividing by the observed standard deviations, SD(X) = 17.6
and SD(Y) = 11.3 (with X denoting visual, Y auditory stimuli),
then delivers the estimates of corr* and corr™ reported in the first
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row of Table 2. For Experiment 2, the corresponding estimates
are
cov* = 186.4 and cov- = —193.4
SD(X) = 23 and SD(Y) = 9.76

(with X denoting visual, Y torque stimuli), leading to the esti-
mates reported in the second row of Table 2.

APPENDIX B

The approximate maximum likelihood estimate for o is known
to be (cf. Conway, 1983) .

a = L[1-2*F(s)] * [1-2*F,1)]/N, (B1)
i=1
where
N = TU-2%F(s)I * [1-2*F, ()P,
i=1
given the observations (s,,7) i = 1,..., n. We computed & by

taking the observations (#,) in the redundant signal situation and
inserting the corresponding values of the empirical distribution
functions F.()) F,(t;) into Approximation B1. For Gielen et al.’s
(1983) Experiment 2 data, this yields @ = 0.039. To evaluate
Equation 7, the integrals have to be approximated by the cor-
responding sums over the empirical survivor functions (1 —F,)
and (1—F,), yielding 17.12, and 31.64, respectively. The stan-
dard deviations are SD(X) = 9.76 and SD(Y) = 23.00.
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