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Evidence for abstract, schematic knowledge
of three spatial diagram representations
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Spatial diagram representations such as hierarchies, matrices, and networks are important tools for
thinking. Our data suggest that college students possess abstract schemas for these representations
that include at least rudimentary information about their applicability conditions. In Experiment 1,
subjects were better able to select the appropriate spatial diagram representation for a problem when
cued to use general category information in memory about those representations than when cued to use
specific example problems given during the experiment. The results of Experiment 2 showed that the
superior performance in the general category condition was not based on a comparison of the test
problems with examples in memory.The results of Experiment 3 showed that the superior performance
was not due to learning that occurred during the experiment or to transfer appropriate processing. The
General Discussion section considers the nature of students' representation schemas and the question
of why college students have only rudimentary schemas for common and widely applicable diagram­
matic representations.

Diagrams as Tools for Thinking
Youwould probably find it helpful to consult a diagram

to fix a leaky faucet or learn a new juggling pattern. In
fact, many studies have documented the usefulness of
domain-specific diagrams in instructional texts for enhanc­
ing learning outcomes, especially in technical domains
(e.g., Hegarty & Just, 1993; Levin, 1989; Mayer & Gal­
lini, 1990; Sweller, Chandler, Tierney, & Cooper, 1990).

In addition to this static function ofillustration, domain­
specific diagrams often serve a more dynamic role during
problem solving. Kindfield (1993/l994) characterized
the quality and use ofdiagrams generated by people with
varying degrees of training in genetics (from a single in­
troductory course to a PhD degree) while they reasoned
about the process of meiosis. All of the subjects sponta­
neously generated diagrams during the course of their
problem solving. However, the diagrams constructed by
the more advanced subjects focused more on meiosis­
relevant features of chromosomes as opposed to their
perceptual appearance. In relating the types of diagrams
drawn to the problem solving displayed, Kindfield ar­
gued that "in essence, the more advanced participants
used fine-tuned diagrams as 'tools to think with' " (p. 21).

The proposal that abstract diagrams are "tools to think
with" can be extended beyond the life sciences fields.
For example, in the mathematical domain, one of Polya's
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(1957) heuristics for problem solving is to draw a figure
to represent the information (in particular the relations)
presented verbally in a problem. The importance of teach­
ing students how to represent problems nonverbally and
how to extract information from such representations has
been stressed by contemporary mathematics educators as
well (e.g., Barwise & Etchemendy, 1991; Goldin, 1985;
Lewis, 1989; Zimmermann & Cunningham, 1991).

Spatial Diagram Representations
Much of the recent research on the use of diagrams to

support problem solving has focused on diagrams that are
specific to narrowly defined content domains such as ge­
netics or geometry (e.g., Kindfield 1993/l994; Koedinger
& Anderson, 1990). There is less research examining peo­
ple's knowledge and use of more general-purpose dia­
grams. In this article, we focus on three related spatial di­
agrams-hierarchies, matrices, and networks-that are
applicable across a wide variety ofcontexts. For example,
a hierarchy can be used to represent the "familial" rela­
tions among members of the animal kingdom, the NCAA
basketball tournament pairings, or a corporate power
structure. Similarly, a node-link network (path diagram)
can be used to represent the flight paths for a particular
airline, the food web for a particular ecosystem, or the (hy­
pothesized) structure of semantic memory. And a matrix
can be used to represent multiplication tables, Punnett
squares in genetics, or a teacher's grade sheet. More gen­
erally, these types ofrepresentations are useful for solving
a wide variety ofproblems involving analytical (including
mathematical) reasoning, as well as for conceptualizing
and communicating psychological theories (Butler, 1993).

Several factors make it important for psychologists to
understand people's knowledge and use of these types of
representations. First, Barwise and Etchemendy (1991)
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have argued that nonlinguistic representation is ubiquitous
in deductive reasoning both in everyday situations and
in formal domains. The kind of reasoning Barwise and
Etchemendy have examined most closely is typified by
some of the problems found on the analytical reasoning
section of the GRE. Indeed, the instructions for that sec­
tion of the exam indicate that it might be useful to draw
a rough diagram while answering some of the questions.
Moreover, the appropriate type ofrepresentation often is
one of the spatial diagrams under discussion here.

Second, because of their intermediate level of gener­
ality, spatial diagram representations highlight structural
commonalities across problems that are superficially
quite different (Novick, 1990; Novick & Hmelo, 1994).
Thus by successfully (and appropriately) constructing
such representations, problem solvers would be led to
see deep similarities among diverse problems that other­
wise might not be salient. There is a large literature doc­
umenting the importance of structural understanding as
a key factor underlying expertise (e.g., Chi, Feltovich, &
Glaser, 1981; Schoenfeld & Herrmann, 1982).

Finally, spatial diagram representations facilitate learn­
ing and problem solving because they (I) simplify com­
plex situations and illustrations by discarding unneces­
sary details (see. e.g., Lynch, 1990; Winn, 1989), (2) make
abstract concepts more concrete by mapping them onto
spatial layouts with familiar interpretational conventions
(e.g., Winn, 1989), and (3) substitute easier perceptual in­
ferences for more computationally intensive search pro­
cesses and sentential deductive inferences (Barwise &
Etchemendy, 1991; Larkin & Simon, 1987). A number
of studies provide empirical support for the benefits of
using spatial diagram representations for learning and
problem solving on specific tasks (e.g., Bartram, 1980;
Carroll, Thomas, & Malhotra, 1980; Day, 1988; Guri­
Rozenblit, 1988; McGuinness, 1986; Novick & Hmelo,
1994; S. H. Schwartz, 1971). For example, Day found
that subjects who studied medication instructions in the
form of a list did less well at answering both factual and
inferential questions about the instructions than did sub­
jects who studied the information in the form ofa matrix
(56% vs. 78% correct, respectively).

The Nature of Solvers' Spatial Diagram Knowledge
Despite these studies documenting the usefulness of

spatial diagram representations for solving particular
problems, little is known about solvers' knowledge about
these representations. Bransford, Sherwood, Vye, and
Rieser (1986) have stressed that in order to be good
problem solvers, students need to learn conditionalized
knowledge-that is, knowledge that includes informa­
tion about the conditions for and constraints on its use.
At least some of college students' knowledge of spatial
diagram representations appears to be conditionalized in
this sense. In an early study, S. H. Schwartz (1971) stud­
ied the types of representations subjects spontaneously
constructed to help them solve deductive reasoning prob­
lems in which the goal was to match values on different
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dimensions (e.g., to determine which prisoner is in Cell
Block E). He found that subjects who used a matrix rep­
resentation were more likely than those who used either
a network or sentence representation to solve the prob­
lems. S. H. Schwartz and Fattaleh (1972) then conducted
a study in which the problem clues were presented in one
of three different formats: sentence, network, or matrix.
They found that subjects were much more likely to switch
to than from the more efficient matrix representation:
45% of the sentence and network subjects switched to a
matrix representation, whereas only 17% of the matrix
subjects changed representations.

Knowledge concerning the applicability conditions for
spatial diagram representations may come from either or
both of two sources. One source is specific examples of
situations in which a particular type of representation
has proved useful in the past. For example, our subjects
typically know that matrices are used for multiplication
tables, seating charts, time schedules, calendars, and po­
lice maps of a city. If representation knowledge is pri­
marily exemplar based, then selection of an appropriate
type ofrepresentation to use in a new situation would rely
on the mechanism of representational transfer (Novick,
1990; Novick & Hmelo, 1994).

A second possible source of information about applic­
ability conditions is an abstract schema for each type of
representation. There is precedence for this proposal;
Koedinger and Anderson (1990) found evidence for the
use of diagram schemas in solving geometry proofs. A
matrix schema, for example, might include the informa­
tion that matrices are particularly useful when (1) there
are items in two distinct sets, (2) the items within a set
cannot be combined, (3) all possible combinations of the
items across sets must be considered, and (4) the links
between items in the different sets are nondirectional (also
see Day, 1988, concerning the first and third features).
An in-depth discussion ofthe applicability conditions for
the three spatial diagram representations, and hence the
nature of the abstract schemas, if they exist, is beyond
the scope of this article. We are currently working on this
topic (Novick & Hurley, 1997).

This distinction between schematic and example­
specific forms ofknowledge is closely related to the cur­
rent debate about whether people reason and solve prob­
lems (in particular domains) using general principles or
specific examples (e.g., Malt, 1989; Medin & Ross, 1989;
Smith, Langston, & Nisbett, 1992). This is a complex
issue whose resolution is likely to depend on the domain
being considered, as well as on the level of expertise of
the problem solver. It is also possible that people at a given
level of expertise in a domain reason using both general
principles and specific examples (e.g., Malt, 1989; Me­
din & Ross, 1989; Novick & Holyoak, 1991; Reed &
Bolstad, 1991). This may be especially likely in domains
in which abstract schemas are induced from the earlier
use of examples by analogy (e.g., Anderson, Farrell, &
Sauers, 1984; Chi, Bassok, Lewis, Reimann, & Glaser,
1989; Novick & Holyoak, 1991; Ross & Kennedy, 1990).
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With respect to the spatial diagrams of interest here, our
goal is not to try to pit the exemplar and schema views
of knowledge representation against each other. We as­
sume that people have exemplar knowledge, and our own
research (Novick, 1990; Novick & Hmelo, 1994) has
shown that they are able to transfer such knowledge to
new situations. Rather, our goal is to determine whether
people also have abstract, schematic knowledge con­
cerning the applicability conditions for the three spatial
diagram representations.

Representations With and Without
Canonical Spatial Embodiments

We believe that solvers might have such knowledge
about these representations, in part because of S. H.
Schwartz and Fattaleh's (1972) results, in part because
students from certain academic backgrounds are able to
verbalize some of the applicability conditions (Novick
& Hurley, 1997), and in part because each of these rep­
resentations has a consistent, canonical spatial embodi­
ment (e.g., see the diagrams shown in Figure 1) to which
it would be easy to "attach" the applicability conditions.
The existence of a canonical spatial embodiment means
that specific instances of these representations can be
generated as simple parametric (i.e., quantitative) varia­
tions of each other or of a prototype. Other important
types of representations (e.g., parity, parts and wholes)
do not have a consistent, canonical spatial embodiment.
For example, as shown in Figure 2, the part-whole rep-

A hierarchy or branching structure

A matrix with rows and columns

A network or system of paths

Figure 1. Representation category probes used in Experiments
1-3 for the three spatial diagram representations.

Wholes divided into parts

Figure 2. Alternative representation category probes for the
part-whole representation. The final probe was used in Experi­
ments 1 and 2.

resentation, which we used in our earlier work on repre­
sentational transfer (Novick & Hmelo, 1994), has a va­
riety ofqualitatively different spatial embodiments. Which
one, ifany, is most appropriate depends on the type ofpart­
whole relation being considered (see Winston, Chaffin,
& Herrmann, 1987). Because we used the part-whole rep­
resentation in our earlier research, we included it in Ex­
periments 1 and 2 as a contrast case. We excluded it from
Experiment 3, however,because it is not needed for draw­
ing conclusions about the three spatial diagram repre­
sentations. Moreover, differences between representations
with and without canonical spatial embodiments, al­
though interesting, are not of central concern in this article.

Nevertheless, we want to briefly explain why we be­
lieve the part-whole representation is different in kind
from the three spatial diagram representations, because
we did not necessarily expect the same results for that
representation as for the others. The results ofsome pilot
work in our laboratory (Francis, 1995) support this dis­
tinction. Subjects were given one of two different dia­
grams or a verbal label for each of the four representa­
tions, and their task was to generate as many examples as
they could of situations for which that type of represen­
tation could be used to organize information. We coded
the number ofappropriate examples, as well as the num­
ber ofdifferent kinds ofexamples, generated (the coding
scheme will be described later). For the three spatial



diagram representations, performance was comparable
across the three category probes, suggesting that the two
versions ofthe spatial diagram and the verbal label caused
subjects to access a single, at least semicoherent set of
knowledge about the corresponding representation.

In contrast, for the part-whole representation, sub­
jects generated more examples and more different kinds
of examples when given the verbal label as opposed to a
diagram (one of the first two shown in Figure 2). In ad­
dition, performance varied for the two diagrams. These
results suggest that the totality ofone's knowledge about
parts and wholes cannot adequately be captured by a sin­
gle, canonical spatial diagram. Moreover, the superiority
of performance in the verbal label condition suggests
that subjects' knowledge about this type of representa­
tion may not be tied to a spatial embodiment at all. This
conclusion seems consistent with the varied interpreta­
tions of parts and wholes discussed by Winston et al.
(1987). In fact, some oftheir interpretations seem purely
conceptual, without a possible spatial embodiment.

Overview of the Present Research
To assess the nature ofpeople's knowledge concerning

the applicability conditions for the three spatial diagram
representations, we devised what we will refer to as the
selection task. In this task, we asked subjects to select
the most appropriate type ofrepresentation, from a list of
alternatives presented, for each of 12-15 short story
problems (the number of problems varied across stud­
ies). We manipulated across subjects the type of infor­
mation they were cued to use to help them make their
representation selections: (1) whatever general informa­
tion they had in memory about these types of represen­
tations (Experiments 1-3); (2) a single, detailed example
problem for each representation that we provided for
them (Experiments 1 and 3); or (3) both general category
information and the specific examples (Experiment 1).
Briefly, our prediction was that if subjects had abstract
schematic knowledge about the three spatial diagram
representations, their selection accuracy would be greater
when they were led to rely on that knowledge than when
they were led to rely on the specific examples we pro­
vided. On the other hand, if subjects did not have abstract
schematic knowledge in memory, the opposite pattern of
results would be obtained. These predictions will be dis­
cussed in more detail shortly.

It is important to note that our question concerning
solvers' knowledge is really one oftheir competence rather
than their performance. It is quite possible that students
have some rudimentary knowledge of the applicability
conditions for the three spatial diagram representations,
but because that knowledge is somewhat fragmented and
not completely specified, they are not always able to
bring it to bear in solving relevant problems. Thus we do
not take subjects' absolute level ofperformance in select­
ing appropriate representations on our multiple choice
test as a measure of their ability to select appropriate rep­
resentations when such cues are not available.
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The results of Experiment 1 suggest that college stu­
dents do have some abstract, schematic knowledge in
memory about the three spatial diagram representations.
In particular, when they were led to base their represen­
tation selections on this information, they were more ac­
curate than when they were led to base their selections on
detailed worked-out examples. In Experiments 2 and 3,
we cast doubt on three alternative explanations of the re­
sults of Experiment 1. Experiment 3 also replicates the
results ofExperiment 1 using a very different method of
cuing subjects to access the abstract knowledge they
have in memory.

EXPERIMENT 1

Method
Subjects. Sixty Vanderbilt University undergraduates partici­

pated in partial fulfillment ofcourse requirements. Ten men and 10
women were randomly assigned to each of three conditions.

Selection task. As indicated earlier, on the selection task sub­
jects had to decide which, if any,ofthe four types of representations
was most appropriate for each of 15 story problems. Each type of
representation provided the best structural model for three prob­
lems. For the remaining three problems, none of the four represen­
tations was appropriate. The correct answer for each problem was
determined by considering factors such as whether the concepts were
combined factorially and whether pairs of concepts were linked by
only one versus multiple paths (see Novick & Hurley, 1997). It has
been our experience (also see Novick & Hmelo, 1994) that in many
situations the type of representation that provides the best structural
model is unambiguous. We tried to choose such problems for this
task, as indicated in Appendix A, where we have reprinted one se­
lection problem from each category.

Subjects were told to select the type of representation they thought
would be most helpful for understanding each problem. If they
thought that more than one type ofrepresentation could be used, they
were to pick the one that best captured the structure of the problem.
If they thought that none of the representations was appropriate,
they were to select "none of the above." Subjects rated their confi­
dence in their choices on a 4-point scale (I == not at all sure; 4 ==
very sure). Subjects indicated their responses on a separate answer
sheet. The four types of representations, and the none-of-the-above
alternative, were indicated at the top of the answer sheet. Exactly
how the representation choices were presented varied across con­
ditions, as described in the Procedure section. Subjects were given
I min, 45 sec to make their selection for each problem.

The 15 problems were collated into booklets in one of four dif­
ferent orders. The orders were essentially random, except for the
constraint that the two deductive reasoning problems had to be sep­
arated by at least four other problems.' To help subjects become fa­
miliar with the selection task, the 15 experimental problems were
preceded by two practice problems. "None of the above" was the
correct representation choice for both of those problems. Subjects
were given 2 min to make their selection for the first practice prob­
lem. They were given I min, 45 sec for the second practice prob­
lem, just as they were for the experimental problems.

Design. We varied, across subjects, the type of knowledge sub­
jects were cued to use to help them determine the best type of rep­
resentation for the problems on the selection task: general category,
specific example, and category + examples.

In the general category condition, we gave subjects a task that
was designed to help them access whatever general knowledge they
had in memory about each type ofrepresentation. Subjects received
a category probe for each type of representation, which consisted of
a verbal label and a diagram (see Figure I and the last diagram in



292 NOVICK, HURLEY, AND FRANCIS

Figure 2). Their task was to generate as many examples as they
could of situations for which the indicated type of representation
could be used to organize information. Because the labeled dia­
grams were intended to stand for the type of representation in gen­
eral, subjects were told that they might need to modify the diagrams
somewhat to make them work for their examples. Subjects were
given 5 min to generate examples for each type of representation.
Given our pilot work (Francis, 1995), we felt that the diagram/label
combination provided the best cue we could devise for accessing
the breadth of subjects' knowledge about these types of represen­
tations (as indicated by the number of appropriate examples and the
number ofdifferent kinds ofexamples generated). Because neither
diagram used for the part-whole representation in the earlier work
was particularly effective, we created a new diagram involving
overlapping and embedded circles that seemed more relevant to the
problems on the selection task.

In the specific example condition, subjects were cued to focus
on a single detailed example problem illustrating the use of each
type of representation. This was accomplished by giving subjects
four example problems to solve-one for each type of representa­
tion. A partially constructed representation was provided with each
problem, and the subjects' task was to complete the representation
and then use it to solve the problem. Subjects were given 5 min to
solve each problem. The problems were pretested to ensure that
subjects understood how to complete the representations and were
able to use them to get the answers. Previous work, using three of
the four example problems (all except the hierarchy problem, which
is reprinted in Appendix B), has shown that college students are
able to use these problems as the basis for transferring the indicated
type of representation to new problems like those used on the se­
lection task (Novick & Hmelo, 1994). Moreover, representational
transfer from a specific example problem has been found for all
four types of representations (Novick, 1990; Novick & Hmelo,
1994). Thus it seems reasonable to believe that subjects would find
the example problems helpful for completing the selection task.

The hierarchy example involved determining a player's starting
level in a fantasy game. Differentnumbers of points were awarded
depending on the outcome of spinning a spinner, then rolling a die,
then flipping a coin. Different ranges of total points indicated dif­
ferent starting levels, and subjects had to determine how many dif­
ferent combinations of actions enabled the player to start the game
at each level. The matrix example involved a girl who was going to
get one ofthree pairs ofpants and one ofsix shirts for her birthday.
She preferred certain combinations of shirts and pants, and subjects
had to determine the probability that she would get an outfit she
preferred. The network example involved a couple who were plan­
ning a trip to some tropical islands. Various of the islands were con­
nected by bridges, and the couple wished to go over each bridge ex­
actly once. Subjects were to plan a route to accomplish this. For the
part-whole example, subjects were given a list of all the children in
a fourth-grade class who collected rocks and a list ofall the children
in the class who collected shells. They were to determine who col­
lected only rocks, who collected only shells, and who collected both
rocks and shells.

Finally, in the category + examples condition, subjects were cued
to use both their general knowledge of the four types of represen­
tations and the specific example problems. Subjects generated ex­
amples for each type of representation; then they solved the four
example problems. .

Procedure. Subjects participated in small groups of2-6 (except
for I person who participated individually) in a single session that
lasted approximately 90 min. By necessity, all subjects in a group
participated in the same condition.

Because subjects in the general category and specific example
conditions completed only one knowledge cue task, it is possible
that they could have had an advantage on the selection task because

they would have been less fatigued. Therefore, subjects in those two
conditions began the experiment by completing two filler tasks that
together took approximately the same amount of time as each
knowledge cue task. For the first task, subjects spent 12 min rating
the pronounceability of some anagrams. Then they were given
10 min to unscramble 20 anagrams.

After the anagram solution task, subjects in the general category
and specific example conditions completed either the example gen­
eration or the problem solution task, respectively. When the knowl­
edge cue task was introduced, subjects were told that we were in­
terested in the different types of representations people use to help
them understand and solve problems.They were further told that their
main task was going to be to determine which of several types of
representations would be most helpful for understanding a variety
of problems. So that subjects would know what we meant by type
ofrepresentation, they were given the example shown in Figure 3a.
They were also shown how this type ofrepresentation could be used
in several specific contexts (Figure 3b). The cue task (example gen­
eration or problem solution) was then introduced as a preliminary
task to help subjects become familiar with the four types of repre­
sentations we were interested in for the main task. The order for
presenting the four labeled diagrams or example problems was
counterbalanced across subjects so that each representation was en­
countered equally often in each position and was preceded and fol­
lowed by each other representation equally often.

Subjects in the category + examples condition were told that they
would be completing two preliminary tasks to help them become fa­
miliar with the four types of representations. They did the example
generation task first, followed by the problem solution task, so that
the problems would not affect the examples generated. Representa­
tion order was counterbalanced, as in the other two conditions. Sub­
jects encountered the four representations in the same order for the
two tasks.

After completing the knowledge cue task(s), subjects completed
the selection task. The representation choices for this task were pre­
sented differently for subjects in the different conditions. For the
general category condition, we printed the four category probes
(i.e., the labeled diagrams) at the top of the selection task answer
sheet. For the specific example condition, we printed short names
referring to each of the example problems (namely, fantasy game
example, clothing example, islands example, rock and shell exam­
pIe) at the top of the answer sheet. We also provided reduced-size
copies of the problems themselves (clean copies, not the ones sub­
jects solved) for reference. For the category + examples condition,
the labeled diagrams and the example problem names appeared at
the top of the answer sheet. As in the specific example condition,
subjects in the category + examples condition also received the
reduced-size versions ofthe example problems. In all conditions, the
representation choices given at the top ofthe selection answer sheet
were printed in the same order in which the subject encountered
them during the preliminary task(s). The none-of-the-above option
was always printed last.

Predictions
We are interested in investigating whether typical col­

lege students have some general (i.e., relatively abstract)
knowledge about spatial diagram representations that in­
cludes at least rudimentary information about their ap­
plicability conditions, or whether their ability to determine
the appropriate representation for a problem depends
solely on the availability ofan appropriate example. The
latter hypothesis of solely example-specific reasoning
yields two predictions concerning the results of the pre­
sent experiment: First, we should see very poor selection
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(a) Labeled diagram for the example representation:

A Scale With Marked Intervals

(b) Applications given for the example representation:

1. A TIME LINE

Paleozoic

Protists Early Fish Insects Amphibians Reptiles

Mesozoic

Dinosaurs

Cenozoic

Mammals

2. A RULER

~
3. A THERMOMETER

80 F

70F

60F
50 F

40F
30 F

20 F

10 F

OF

4. A SPEEDOMETER

0--"-----------1_-----........110

Figure 3. The labeled diagram (a) and applications (b) for the example representation used in Ex­
periments 1-3.

performance in the general category condition, perhaps
near chance for some representations, because whatever
category information subjects have does not include in­
formation about the applicability conditions for the rep­
resentations. Second, performance in the specific exam­
ple condition should be better than performance in the
general category condition, because even if subjects do
not have (accessible) abstract knowledge about when to
use the various representations, as argued earlier they
should be able to compare the selection task problems to

the readily available, and appropriate, example problems
and make their selections on the basis of similarity (see
Novick, 1990, and Novick & Hmelo, 1994, for relevant
data on this issue).

On the other hand, the hypothesis that subjects have
rudimentary schemas for the three spatial diagram rep­
resentations that include some information about their
applicability conditions yields a different set ofpredicted
results. First, selection performance in the general cate­
gory condition should be significantly above chance. Sec-
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ond, performance in that condition should be better than
performance in the specific example condition, because
the diagrams presented as part of the category probes
provide a good summary of the canonical spatial embod­
iment for each type ofrepresentation. Thus they should be
effective in helping subjects access the breadth of their
knowledge about those representations. Although relying
on a single appropriate example to guide representation
selections may be effective, relying on more generalized
knowledge should be more effective. Third, performance
in the general category condition is likely to be signifi­
cantly below ceiling, reflecting the rudimentary nature
of subjects' knowledge of the applicability conditions.

These predictions are based on the fact that abstract
schemas provide a more reliable source ofknowledge for
problem solving than do specific examples. As dis­
cussed by Holyoak (1985), abstract schemas do not con­
tain the potentially irrelevant information that specific
examples do. Abstract (i.e., context-free) schemas con­
tain only structurally relevant information, so when rea­
soning using abstract schemas, people need to concern
themselves only with whether the current problem fits
the structure of the schema. In contrast, if people reason
about a problem with reference to a specific example,
they must take into account both the structural similari­
ties and the superficial differences between the two prob­
lems. Not only does considering superficial differences
between the problems (e.g., between their cover stories)
add an extra step to the comparison process, but also it
may interfere with the attempt to align the problems'
structures. Hence schema-based transfer should be more
effective than example-based transfer (Holyoak, 1985).

The three problems for which the correct answer is
"none of the above," however, do not belong to a coherent
category. The only thing they have in common is that
none of the four cued representations is helpful, and the
example generation task does not cue subjects to access
any abstract schemas they might have that would be rel­
evant for these problems. Thus, for this set of problems,
there is no basis for predicting any difference between
the general category and the specific example conditions.

We expect a similar pattern ofperformance for the part­
whole problems and for the none-of-the-above problems,
because, as discussed earlier, no single diagram is able to
span the entire category for that type ofrepresentation. To
summarize, the schema-based reasoning hypothesis would
lead us to expect an interaction between the type of rep­
resentation (spatial vs. nonspatial) and the cue condition.

Results
The results provide support for the hypothesis that sub­

jects have rudimentary schemas for the three spatial di­
agram representations that include some information
about their applicability conditions over the hypothesis
that subjects rely solely on example-specific reasoning
to select the appropriate representation for a problem.
Several aspects of our data support this conclusion.

Absolute level ofperformance on the selection task.
First, we compared accuracy on problems requiring spa­
tial versus nonspatial representations to both chance and
maximum performance. The observed means and t sta­
tistics for each condition are shown in Table I, In all
cases, actual performance was reliably better than would
be expected by chance but reliably worse than the maxi­
mum. More importantly, this pattern was obtained in the
general category condition for each of the three spatial
representations [for the comparisons to chance, smallest
t(l9) = 4.75, P < .001, and for the comparisons to the
maximum, smallest t(l9) = -4.00,p < .001].

Selection task performance as a function of condi­
tion and type ofrepresentation. Our critical analysis of
performance for spatial versus nonspatial representa­
tions across conditions was based on discrimination
scores. These scores provide a more fine-grained indi­
cation than does simple accuracy ofa subject's ability to
discriminate the situations for which each type ofrepre­
sentation is most appropriate. The discrimination score
for each representation was calculated as the proportion
of appropriate choices of that representation minus the
proportion of inappropriate choices. For example, for the
matrix representation, the proportion of appropriate
choices was computed by counting the number of times

Table 1
Observed Performance on the Selection Task

in Each Condition of Experiment 1 Compared to
Chance Expectation and to Maximum Performance

Typeof Proportion Comparison Comparison
Representation* Correct to Chancet to Maximum

t(l9) = 9.73,p < .001 t(l9) = -10.58, P < .001
t(l9) = 7.16,p < .001 t(l9) = -11.94, P < .001

t(l9) = 6.06,p < .001 t(l9) = -24.03, P < .001
t(l9) = 9.25,p < .001 t(l9) = -11.40, P < .001

.36

.56

.58

.50

Specific example
Spatial
Nonspatial

General category
Spatial
Nonspatial

Category + Examples
Spatial .61 t(l9)=15.74,p<.001 t(l9)=-14.89,p<.001
Nonspatial .61 t(l9) = 10.54,p < .001 t(l9) = -10.11, P < .001

*Spatial refers to hierarchy, matrix, and network, whereas nonspatial refers to part­
whole and none of the above. "Chance performance is .20 correct.



the subject selected the matrix representation for matrix
problems and dividing that sum by three, which is the
number of matrix problems. Similarly, the proportion of
inappropriate choices was computed by counting the
number of times the subject selected the matrix repre­
sentation for nonmatrix problems and dividing that sum
by 12, which is the number of nonmatrix problems. On
this scale, a score of 0 represents chance performance,
and a score of 1 represents perfect discrimination. (A
score of -1 indicates consistent confusions among all
the representations.) Collapsed across representations and
conditions, the mean discrimination score was .42.

For our analysis, we averaged the discrimination scores
across representations to get means by condition for both
spatial (hierarchy, matrix, network) and nonspatial (part­
whole, none-of-the-above) representations. We then con­
ducted a 3 (condition) X 2 (type ofrepresentation) mixed
analysis ofvariance (ANOVA)with repeated measures on
the second factor. There was a reliable effect ofcondition
[F(2,57) = 8.68, MSe = 0.0430, p < .001] and a margin­
ally reliable effect of type of representation [F(l ,57) =
3.40, MSe = 0.0237, p < .08]. More importantly, these
two factors interacted [F(2,57) = 8.8l,p < .001], as shown
in Figure 4.

To determine whether the interaction followed the pat­
tern predicted by the hypothesis that subjects have rudi­
mentary schemas for the three spatial diagram represen­
tations, we performed a separate contrast analysis for

.6
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performance on each type ofrepresentation. In each analy­
sis, we tested two orthogonal contrasts. The first contrast
compared performance in the general category and spe­
cific example conditions. Recall that the prediction is
that there should be a difference between these two con­
ditions, in favor ofthe general category condition, for the
spatial representations only. As expected, performance
was reliably better in the general category condition than
in the specific example condition for the spatial repre­
sentations[F(l,57) = 23.3l,MSe = 0.027l,p<.001].But
for the nonspatial representations, there was no difference
between the two conditions [F(l,57) < 1,MSe = 0.0395].

The second contrast compared performance in the
category + examples condition with that in the other two
conditions combined. For the nonspatial representations,
subjects who were cued to make their representation se­
lections on the basis ofboth their general knowledge and
the specific example problems showed better discrimi­
nation than subjects who received either type ofcue alone
[F(l,57) = 4.19,p < .05]. That is, adding the detailed ex­
ample problems to subjects' general knowledge and add­
ing subjects' general knowledge to the detailed example
problems improved performance. For the spatial repre­
sentations, it was also the case that performance in the
category + examples condition was better than the average
performance in the two single-cue conditions [F(l,57) =
l3.10,p < .001]. In this case, however, the effect can be
attributed entirely to the benefit ofadding subjects' gen-
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Figure 4. Mean discrimination scores for spatial and nonspatial representations as

a function of experimental condition in Experiment 1.
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Figure 5. Mean discrimination scores for each type of representation as a function of
experimental condition in Experiment 1. The results for the spatial representations are
shown in (a), and the results for the nonspatial representations are shown in (b).

eral knowledge to the example problems, because there
was no difference between the general category and cat­
egory +examples conditions [F(l,38) < 1,MSe = 0.0285].
Figure 5 shows that the patterns observed for the spatial
and nonspatial representations hold for each of the spe­
cific representations entering into the composite measures.

Performance on the example problems. It is impor­
tant to note that the poor performance in the specific ex­
ample condition for the spatial representations was not
due to our use ofexamples that subjects could not under­
stand. For each example problem, we coded separately
whether subjects (1) constructed the representation cor­
rectly and (2) got the correct answer. For the matrix, net-

work, and part-whole representations, each measure was
scored on a 011 scale. Because the hierarchy problem was
longer and required more work, and subjects' responses
were therefore more variable, we added a partial credit
score of 0.5 for each measure for that representation. As
shown in Table 2, performance was quite high for both
measures for all problems. Averaged across the three prob­
lems with spatial representations, 93% of the subjects
used the representations correctly, and 76% of the sub­
jects correctly solved the problems. Also, as mentioned
earlier, three of the four example problems had been
used previously in transfer experiments (and a different
hierarchy example was used as well), and the subjects in



Table 2
Performance on the Example Problems in Experiments 1 and 3

Representation/Measure Experiment 1 Experiment 3

Hierarchy
Representation use .92 .73
Accuracy .70 .62

Matrix
Representation use .93 1.00
Accuracy .83 .86

Network
Representation use .93 .95
Accuracy .75 .86

Part-whole
Representation use .97
Accuracy .95

Note-The part-whole representation was not used in Experiment 3.

those experiments were able to use each of the example
problems as the basis for representational transfer (No­
vick, 1990; Novick & Hmelo, 1994).

Discussion
In interpreting the results of this experiment, we have

assumed that asking subjects to generate examples of sit­
uations for which each type of representation could be
used to organize information is an effective way of get­
ting them to access whatever general information they
have in memory about these types of representations.
Under this assumption, the results support our hypothe­
sis that subjects have rudimentary schemas for the three
spatial diagram representations that include some infor­
mation about their applicability conditions. The key
finding in this respect is that performance was better in
the general category condition than in the specific ex­
ample condition for the spatial but not the nonspatial
representations.

However, the generation task we used in the general
category condition differs in multiple ways from the prob­
lem solution task we used in the specific example con­
dition, so a variety ofalternative explanations for the su­
perior performance in the general category condition are
possible. We consider three such explanations here, which
will be tested and rejected in Experiments 2 and 3. One
possibility is that subjects were able to induce some of
the applicability conditions for the spatial diagram rep­
resentations by generalizing over the examples they gen­
erated. According to this explanation, selection perfor­
mance in this condition was based on abstract knowledge,
as we hypothesized, but that knowledge was learned in
the experiment rather than being preexisting. This ex­
planation seems implausible to us, because we know of
no other study in which subjects were able to do signifi­
cant generalization and abstraction in less than 5 min
(figuring that some of the 5 min was spent in generating
the examples), especially without a specific request to
attempt to do so. Nevertheless, we evaluated this expla­
nation more formally in Experiment 3 by reducing the ex­
ample generation time by 70% from 5 to 1.5 min. If the
good performance in Experiment I was due to learning
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that occurred during the generation task, performance in
this condition in Experiment 3 should have been consid­
erably lower due to the large reduction in the time avail­
able for learning.

A second alternative explanation comes from the ob­
servation that in the general category condition, subjects
spent much of their time linking specific examples to
particular types of representations. Because this is ar­
guably what is required for good performance on the se­
lection task, one might expect better performance on that
task in this condition due to transfer appropriate process­
ing (Morris, Bransford, & Franks, 1977). We evaluated
this explanation in Experiment 3 by adding a "purer"
knowledge elicitation task in which subjects were asked
to spend 20 sec familiarizing themselves with each type
of representation.

A third alternative explanation is that subjects used the
examples they generated as the basis for representational
transfer. That is, subjects transferred their knowledge
about these particular cases to the problems on the selec­
tion task. Because subjects in the general category con­
dition had more examples for each representation to use
as the basis for transfer than did subjects in the specific
example condition (who had only one example per rep­
resentation), it makes sense that they would perform bet­
ter on the selection task. Although the absence of a dif­
ference between these two conditions for the part-whole
representation is somewhat problematic for this alterna­
tive explanation, this account ofthe results seems to have
considerable face validity. Averaged across the four types
of representations, subjects generated 3.60 appropriate
examples per representation, which was 74% ofthe total
number ofexamples generated. Although the results var­
ied somewhat across representations, all representations
had more than just a single appropriate example gener­
ated (M = 4.55 for the hierarchy representation, M =

3.40 for the matrix representation, M = 4.10 for the net­
work representation, and M = 2.35 for the part-whole
representation). We evaluated this example-based rea­
soning explanation in Experiment 2.

EXPERIMENT 2

If subjects use the examples they generate as the basis
for representational transfer, then variability in charac­
teristics of the examples generated should predict vari­
ability in performance on the selection task. For example,
(1) subjects who generate a larger number ofappropriate
examples should do better because they have more pos­
sibilities for successful transfer; and (2) to the extent that
different types of examples can be identified for each
representation, subjects who generate a larger proportion
of the possible types should do better because it is more
likely that they will have generated a type that matches
one of the selection problems. In contrast, if the exam­
ple generation task gets subjects to access the relevant
part of their abstract knowledge base, and they use that
abstract knowledge about the properties of the represen-
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tations to guide their later representation selections, then
we would not expect reliable correlations between as­
pects of the examples generated and selection perfor­
mance. This prediction follows from the fact that the ab­
stract properties ofa representation (e.g., for the matrix,
two sets of items, factorial combination of items across
sets, and nondirectional links between items) apply
equally to any of the examples of that representation (e.g.,
multiplication table, restaurant seating chart, calendar,
or police map), so more examples generated does not
translate into more abstract properties accessed.

It is difficult to provide a strong test of these hypothe­
ses with the Experiment 1 data because there were only
20 subjects in the general category condition. Ifwe were
to find null results, as predicted by the schema-based rea­
soning hypothesis, this could easily be attributed to the
small sample. Combining the data across the general cat­
egory and category + examples conditions is problem­
atic, because in the latter condition selection task per­
formance also might be affected by the examples we gave
subjects. Therefore, to provide a better (more powerful)
test of the example-based reasoning explanation, we con­
ducted a second experiment in which all subjects partic­
ipated in the general category condition. Wewill report the
correlational results for the Experiment 1general category
condition alongside the results of Experiment 2.

Method
Subjects. The subjects were 38 Vanderbilt University under­

graduates (17 women and 21 men). They were paid $15 to partici­
pate in a single session that lasted approximately 2 h, 15 min.

Materials and Procedure. As in Experiment I, subjects partic­
ipated in small groups. The generation and selection materials were
the same as those used in Experiment 1.To reduce the length ofthe
experimental session, subjects were given 4 min to generate exam­
ples for each type of representation rather than 5 min. The genera­
tion probes were presented in one of four orders, as before. After the
generation task, subjects completed the selection task, which was
conducted exactly as described earlier. Each of the four generation
probe orders was combined with each ofthe four orders for present­
ing the selection problems. Two to 3 subjects received each combi­
nation. After the selection task, subjects completed several other
tasks that were part ofa separate investigation. Only the generation
and selection data are relevant to the issue being addressed here.

Results
Example-based reasoning predictions. This experi­

ment was designed to determine whether the example
generation task facilitated performance on the selection
task by providing exemplars that could be compared with
the selection problems. If this example-based reasoning
explanation of the Experiment 1 results is correct, we
would expect characteristics of the examples generated
to predict performance on the selection task. In particu­
lar, subjects who generated a greater number of appro­
priate examples, or more different categories of exam­
ples, should be more likely to have generated examples
that were similar to the selection problems and therefore
should have performed better on the selection task. Thus
for each type of representation, we counted the number

of appropriate examples that were generated, as well as
how many different categories of examples were gener­
ated. A more fine-grained analysis looked at the relation
between generation responses ofa particular type and per­
formance on selection problems of that same type.

Coding the generation data. On the basis of exam­
ples generated by pilot subjects, we developed a coding
scheme that had four to seven categories ofexamples for
each type of representation. The different numbers of
categories for the different representations reflect differ­
ences in the diversity of the examples generated by our
subjects. We make no claim that the categories coded
here constitute all possible types of situations for which
each type ofrepresentation is appropriate. Detailed cod­
ing criteria for each of the categories may be obtained
from L.R.N. A short description of each category is pro­
vided in the next paragraph.

There were seven types of hierarchy examples: de­
scent (e.g., family tree), categorical classification (e.g.,
trees broken down into deciduous and coniferous and
then into oaks, firs, etc.), power structure (e.g., division
ofpower in a corporation), subcomponents (e.g., mathe­
matical factoring: 32 is the product of 8 and 4,4 is the
product of2 and 2), series ofchoices (e.g., decision tree),
exponential growth (e.g., chain letter), and elimination
(e.g., basketball tournament bracket). There were five
types ofmatrix examples: binary (e.g., restaurant seating
chart to keep track of which tables have been seated),
logical consequence (e.g., multiplication table), associ­
ated characteristic (e.g., daily planner), game (e.g., chess
board), and graphs, grids, and maps (e.g., grid for pin­
pointing military targets). There were four types of net­
work examples: maps (e.g., airline routes), associative
relationships (e.g., diagram of alliances among a group
of nations), flow through a network (e.g., flow chart for
a computer program), and directed movement (e.g., dia­
gram of a football play). Finally, there were six types of
part-whole examples (based on the analysis provided by
Winston et aI., 1987): portion/mass (e.g., an hour is part
ofa day), component/integral-object (e.g., a wing is part
of a bird), member/collection (e.g., a juror is part of a
jury), place/area (e.g., an oasis is part ofa desert), feature/
activity (e.g., proofreading is part ofwriting a paper), and
stuff/object (e.g., sugar is part of apple pie).

L.R.N. and M.E independently coded the generated
examples from 30 subjects (from Experiments 1 and 2,
plus the experiment reported by Francis, 1995). The
agreement between coders was fairly high: a mean cor­
relation between coders (collapsed across the four rep­
resentations) of .81 for the number ofappropriate exam­
ples (i.e., tokens) generated, a mean correlation of .76
for the number of different categories (i.e., types) of ex­
amples generated, and a mean level of agreement on the
categorical coding of individual responses of 78%.
Analyses of the generation data from Experiment 1 were
based on M.E's coding of the data. Because the generally
low correlations in that experiment could have been due
in part to unreliability in the coding, especially given that



KNOWLEDGE OF SPATIAL DIAGRAMS 299

Table 3
Descriptive Data for the Number of Tokens and the Proportion of Types
Generated for Each Representation in Experiment 2 and in the General

Category Condition of Experiment 1

Representation

Hierarchy
Matrix
Network
Part-whole

M

Number of Tokens Proportion of Types

Experiment 2 Experiment I Experiment 2 Experiment I

M W M W M W M W
3.66 1.55 4.55 1.85 .36 .15 .41 .12
3.61 1.78 3.40 1.27 .46 .19 .36 .14
3.08 1.60 4.10 2.22 .53 .23 .54 .30
2.08 1.19 2.35 1.50 .18 .12 .19 .08

3.11 1.10 3.60 0.92 .38 .11 .38 .12

Note-N = 38 for Experiment 2; N = 20 for Experiment I.

one set of analyses we conducted required agreement at
the level ofthe number ofexamples generated in specific
categories, all of the generated examples from Experi­
ment 2 were coded independently by both L.R.N. and
M.E, and disagreements were resolved by discussion.?
As will be shown below, these coding differences seem
to be largely irrelevant, because the results are remark­
ably consistent across studies for all measures.

Table 3 shows the number of tokens and types gener­
ated for each representation by all subjects in Experi­
ment 2 (N = 38) and by the general category subjects in
Experiment 1 (N = 20). The types measure is expressed
as a proportion because the number ofpossible types var­
ied across representations. As mentioned earlier, an aver­
age of74% ofthe examples generated per representation
by the Experiment 1 general category subjects were ap­
propriate. In Experiment 2, an average of 81% of the ex­
amples generated were appropriate.

Global correlations between the generation and se­
lection tasks. One set ofanalyses correlated the number
of tokens (i.e., appropriate examples) generated for a par­
ticular representation with the selection discrimination
score for that representation. A second set ofanalyses cor­
related the number of different types of examples gener­
ated with selection performance. The results of these
analyses for both experiments are shown on the right­
hand side of Table 4. Table 4 also provides descriptive
data for the selection task for both experiments. The cor­
relations can be summarized simply: None were reliably

different from zero. Moreover, correlations that were pos­
itive and relatively large in one experiment were either
zero or slightly negative in the other experiment. Thus, nei­
ther set ofanalyses provides any support for the example­
based reasoning explanation ofselection performance in
the general category condition of Experiment 1.

A finer grained comparison ofperformance on the
generation and selection tasks. It is possible, however,
that a finer grained analysis might yield evidence of
example-based reasoning. One might argue that generat­
ing many examples or many different types of examples
will be helpful only if the examples generated belong to
the same categories as the problems on the selection task.
Therefore, we categorized the selection problems using
the generation coding guides described earlier. The three
hierarchy problems belonged to three different cate­
gories: descent, series ofchoices, and categorical classi­
fication. The matrix problems belonged to two different
categories: associated characteristic (two problems) and
logical consequence. The network problems belonged to
two different categories: associative relationships and
flow through the network (two problems). The part-whole
problems belonged to three different categories: mem­
ber/collection, component/integral-object, and place/area.
A final set of analyses correlated the number of exam­
ples generated of a particular type with accuracy on se­
lection problems of that type (computed as proportion
correct to maintain the same scale across categories). In
addition to displaying these correlations, Table 5 pro-

Selection Task
Discrimination Score

Table 4
Performance on the Selection Task and Correlations Between the Generation and

Selection Tasks for Each Representation in Experiment 2 and in the
General Category Condition of Experiment 1

Correlation Between Correlation Between
Experiment 2 Experiment I Tokens and Selection Types and Selection

Representation M SD M SD Experiment 2 Experiment I Experiment 2 Experiment I

Hierarchy .26 .29 .36 .27 .07 .12 .27 -.08
Matrix .61.32 .56.34 -.02 .33 -.15 .15
Network .32 .20 .48.31 .14 -.26 .01 .05
Part-whole .46 .32 .37 .26 .23 -.04 .15 -.19

Note-In Experiment 2, the critical value ofr forp < .05 with df= 36 is approximately .32. In Experiment I,
the critical value of r for p < .05 with df = 18 is approximately .44.
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Table 5
Correlations Between the Number of Tokens of a Particular Type Generated and

Accuracy on Selection Problems of That Type in Experiment 2 and the General Category Condition of Experiment 1

Representation

Hierarchy

Matrix

Network

Part-Whole

*p < .05.

Type of Example

Descent
Series of choices
Categorical classification
Associated characteristic
Logical consequence
Associative relationships
Flow through the network
Member/collection
Component/integral-object
Place/area

No. Tokens
Generated of This Type

Experiment 2 Experiment I

M SD M SD

1.16 0.82 1.50 0.76
0.34 0.58 0.25 0.91
0.26 0.55 1.00 1.12
1.74 1.13 1.30 1.49
0.47 0.60 0.35 0.59
0.42 0.68 0.50 0.69
1.29 0.96 1.85 1.42
0.24 0.49 0.25 0.55
0.66 0.94 0.70 1.17
0.16 0.44 0.05 0.22

Proportion Correct on This
Type of Selection Problem

Experiment 2 Experiment 1

M SD M SD

.61 .50 .85 .37

.26 .45 .25 .44

.29 .46 .30 .47

.82 .32 .70 .38

.66 .48 .80 .41

.39 .50 .45 .51

.47 .31 .60 .31

.47 .51 .45 .51

.63 .49 .65 .49

.53 .51 .30 .47

Token by
Selection Correlation

Experiment 2 Experiment 1

.29 -.09

.16 .36

.01 .30

.09 .07

.11 -.13

.29 -.23

.26 -.02

.41* .51*

.07 -.10

.10 -.15

vides descriptive data for both experiments for the num­
ber of tokens generated and the proportion of correct
selections.

Again, the correlational results are easy to summarize:
With only one exception, discussed in the next paragraph,
none of the more specific correlations were reliably dif­
ferent from zero. And again, correlations that were pos­
itive and relatively large in one experiment were small
or negative in the other experiment. Thus the more fine­
grained analysis also fails to support the example-based
reasoning explanation of selection task performance, at
least for the three spatial diagram representations that are
of primary interest here.

The only reliable correlation between performance on
the generation and selection tasks involved the part-whole
member/collection category. As predicted by the example­
based reasoning explanation, the number of member/
collection examples generated was reliably associated
with accuracy on that type ofselection problem (r = .41,
P < .02, in Experiment 2; r = .51, P < .03, in Experi­
ment 1;the member/collection selection problem is printed
in Appendix A). However, there was no relation between
performance on the generation and selection tasks for the
other two types ofpart-whole selection problems. These
results will be discussed in the next section.

Discussion
In interpreting the results of Experiment 1, we made

the assumption that the generation task facilitated per­
formance on the selection task for the three spatial dia­
gram representations (hierarchy, matrix, and network) by
helping subjects access their general knowledge about
(i.e., abstract schemas for) those types of representa­
tions. That is, we interpreted the results as providing ev­
idence for the existence of schemas for the three spatial
diagram representations that contain at least some rudi­
mentary information about their applicability conditions.

An alternative explanation for the results can be of­
fered, however. In particular, the generation task might
have facilitated performance by providing subjects with

several examples for each type of representation to use
as the basis for representational transfer. In contrast, sub­
jects in the specific example condition had only a single
example for each type of representation. The present
study was designed to test this alternative explanation. If
the example-based reasoning explanation is correct, we
would expect characteristics of the examples generated
to predict performance on the selection task. All analy­
ses conducted on the Experiment 2 data were also con­
ducted on the data from the general category condition of
Experiment 1.Without exception, the two data sets showed
the same results.

For the three spatial diagram representations, there was
no evidence that subjects in the general category condi­
tion relied on example-based reasoning to choose the
most appropriate representation for the selection prob­
lems. In the global analyses, neither the number of ap­
propriate examples nor the proportion of types of exam­
ples generated was reliably correlated with selection
accuracy. In the fine-grained analyses, the number ofap­
propriate examples generated of a particular type was
not reliably correlated with accuracy on the selection
problem(s) of that type. Note that we are not claiming that
students do not have exemplar-based knowledge for the
three spatial diagram representations or that they never
use such knowledge. We believe that they do have such
knowledge and that they do use it in certain circumstances
(e.g., especially when the known example and the current
problem share salient superficial features). Weare arguing
only that this was not the basis for the superior performance
in the general category condition in Experiment I.

We believe we are justified in drawing this conclusion
from the null results for several reasons. First, the results
were obtained in two independent replications. Second,
we had adequate reliability for our coding of the exam­
ples subjects generated. Third, our data are powerful
enough to detect a reliable relation between the variables
under consideration when one exists: The one pair of
variables (involving the part-whole representation) that
was reliably correlated was reliably correlated in both



experiments. Thus these correlations cannot easily be
dismissed as Type I errors.

It is less clear how to interpret the results for the part­
whole representation. Students may have some abstract
knowledge about this type of representation, but we did
not see strong evidence of that in Experiment 1. Weknow
from Novick and Hmelo's (1994) research that they can
use example-based reasoning (although they may need
some help to do so), and the one reliable correlation in
Experiment 2 here supports this conclusion, but we did
not find overwhelming evidence for example-based rea­
soning from the other correlational analyses in this study.
It may be that students' knowledge about the part-whole
representation is particularly fragile or fragmentary. Ad­
ditional research is needed to address this issue, but it
will not be our focus here.

EXPERIMENT 3

As described in the Discussion section ofExperiment 1,
there are two additional alternative explanations for the
superior selection task performance in the general cate­
gory condition ofExperiment 1. The training explanation
proposes that subjects in that condition formed general­
izations from the examples they generated and therefore
learned new abstract information as a result of complet­
ing our knowledge cuing task. According to this expla­
nation, subjects relied on abstract knowledge to guide
their performance on the selection task, as we claimed,
but that knowledge was learned in the experiment rather
than being preexisting. Another alternative explanation
is that subjects in the general category condition performed
better on the selection task due to transfer appropriate
processing. In particular, the generation task gave them
practice at linking specific examples to types of repre­
sentations, which arguably is the main goal of the selec­
tion task.

Experiment 3 was designed to evaluate these two al­
ternative explanations while replicating the general pat­
tern ofresults found in Experiment 1. Subjects completed
the selection task after having their knowledge cued in one
ofthree ways. The specific example condition was essen­
tially the same as that condition in Experiment 1. Subjects
were given a single detailed example problem to solve
for each representation. The general category (generate)
condition was the same as the general category condi­
tion in Experiment 1 except for a large reduction in the
amount of time allotted for generating example uses for
each representation, from 5 to 1.5 min. If the training ex­
planation is correct, performance in this condition should
be much worse in this experiment than in Experiment 1,
and likely worse than performance in the specific exam­
ple condition as well, because the time available for
learning has been drastically reduced. Finally, we added
a new general category (familiarize) condition to address
the transfer appropriate processing explanation. For this
condition, we devised an orienting task that seemed
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likely to provide a "purer" cue for subjects' general knowl­
edge about the spatial diagram representations. Subjects
were shown the labeled diagram category probes and were
simply asked to familiarize themselves with each of the
representations for 20 sec. If the transfer appropriate pro­
cessing explanation is correct, then we would expect per­
formance to be significantly worse in the general cate­
gory (familiarize) condition than in the specific example
condition, because the former subjects are highly un­
likely to have had the benefit of having performed a task
with similar processing demands prior to the selection
task.

Because our main interest is in the nature of people's
knowledge concerning the three spatial diagram repre­
sentations, there is no compelling reason to include the
part-whole representation in this experiment. Therefore,
to reduce the length of the experimental session, we re­
moved that representation from this study. That meant
that subjects performed the knowledge cue task for only
three representations, and the three part-whole problems
were removed from the selection task.

Method
Subjects. Sixty-five Vanderbilt University undergraduates par­

ticipated in partial fulfillment of course requirements. Approxi­
mately equal numbers of males and females were randomly as­
signed to each of three conditions.

Design. We varied across subjects the type of knowledge sub­
jects were cued to use to help them determine the best type of rep­
resentation for the problems on the selection task. Two conditions
used orienting tasks that were intended to cue subjects' general (i.e.,
abstract) knowledge about the three spatial diagram representa­
tions: general category (generate) and general category (familiar­
ize). The third condition gave subjects specific example problems
to use to help them perform the selection task. Twenty-three sub­
jects participated in the general category (generate) condition, and
21 subjects participated in each of the other two conditions.

The specific example condition was identical to the specific exam­
ple condition in Experiment I except that subjects were given 6 min
to complete the example problem for each type of representation
instead of5 min. Extra time was allowed for this task because a num­
ber of subjects were not able to complete the hierarchy example
problem within 5 min. Also, with additional time to study the ex­
ample problems, subjects may form richer representations of them
that would improve their performance on the selection task. The
general category (generate) condition was identical to the general
category condition used in Experiments I and 2, except that sub­
jects were given only 1.5 min to generate as many examples as they
could for each type of representation.

Finally, the general category (familiarize) condition was devised
to provide a way to cue subjects' general knowledge about the spa­
tial representations without encouraging them to perform a specific
task with the representations that could affect their performance on
the selection task for reasons other than those hypothesized. Sub­
jects were shown the labeled diagram category probes used in the
general category (generate) condition. However, their instructions
were to simply familiarize themselves with the given representation
for 20 sec "so that you'll have clearly in mind what each one is like
when you do the next task."

To determine how subjects interpreted these instructions, 9 ad­
ditional subjects completed just the familiarize task and then wrote
down what they had thought about for each representation. For all
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three representations, a majority ofthe subjects thought about prop­
erties ofthe diagrams (67% for hierarchy, 56% for matrix, 78% for
network). Sometimes these thoughts concerned structural proper­
ties ofthe diagrams (e.g., one-to-many breakdown for the hierarchy,
directional links for the network), and sometimes they involved
counting features of the diagrams (e.g., the number of rows and
columns for the matrix, the number of nodes and branches for the
hierarchy). In contrast, only a minority of subjects generated spe­
cific examples: I subject (11%) for the network (the path ofa jour­
ney), I subject (II %) for the matrix (a multiplication table), and
3 subjects (33%) for the hierarchy (probability problems, bureau­
cracy, and family tree). Ifwe include nonspecific example responses
(e.g., "It reminds me ofa biology class" for the network, "growth"
for the hierarchy), the counts remain at I subject each for the net­
work and matrix representations and increase by I to 4 for the hi­
erarchy representation. No other types of responses occurred with
notable frequency across representations.

Procedure and Materials. Subjects participated in small groups
of2-8 (except for I subject who participated individually) in a sin­
gle session that lasted about 60 min. All subjects in a group partic­
ipated in the same condition. Subjects first received the knowledge
cue task appropriate to their assigned condition. As in Experi­
ment I, the cue task was introduced as a preliminary task to help
subjects become familiar with the three types ofrepresentations we
were interested in for the main task. The cues relating to each ofthe
three spatial representations were presented in one of three orders,
with each order being used approximately equally often in each
condition. Thus each representation was encountered approximately
equally often first, second, and third.

After the knowledge cue task, subjects completed the selection
task, which was essentially the same as in Experiment I except for
a few minor changes. For the general category (generate) and spe­
cific example conditions, the representation choices were printed at
the top of the answer sheet, as described in Experiment I. Repre­
sentation choices for the general category (familiarize) condition
were presented in the same manner as for the general category (gen­
erate) condition. As mentioned earlier, the part-whole problems
were omitted. In addition, one ofthe network problems was replaced
with a new problem because performance on that problem was very
high in all conditions in Experiment I (M = 80% correct). It is more
difficult to find differences across conditions when performance is
very high or very low. Finally, one ofthe hierarchy problems was re­
placed with a new problem because the original problem had a
cover story that was similar to the cover story for the corresponding
example problem in the specific example condition (both problems
were about games). It is well known that problem solvers easily no­
tice and make use of superficial similarities between problems. In
contrast, our interest was in the type of knowledge solvers rely on
when there are no obvious superficial similarities available to guide
performance. The problem booklet consisted of 12 story problems,
3 for each ofthe spatial representations and 3 for none ofthe above.
Ten of the 12 problems were identical to problems used in Experi­
ment 1.

The 12 problems were collated into booklets in one of four dif­
ferent orders. The orders were random with the constraint that no
more than two problems with the same representation could appear
in each half of the problem booklet.

Predictions
This experiment was designed to replicate Experi­

ment 1 for the general category (generate) and specific
example conditions and to show that the general cate­
gory (generate) knowledge cuing task did nothing be­
yond cuing subjects' abstract knowledge for the three
spatial representations (i.e., to discredit the training and

transfer appropriate processing explanations described
earlier). Therefore, we predicted that subjects would per­
form better on the selection task in both the general cat­
egory (generate) and the general category (familiarize)
conditions than in the specific example condition. More­
over, we predicted that subjects in the two general cate­
gory conditions would perform similarly.

Results and Discussion
Selection task performance as a function of condi­

tion and type of representation. As in Experiment 1,
our analysis of selection task performance was based on
discrimination scores. Again, we averaged the discrimi­
nation scores for the hierarchy,matrix, and network repre­
sentations to get means by condition for the spatial rep­
resentations. In this experiment,the nonspatial means came
solely from the none-of-the-above problems. As shown
in Figure 6, the results support our predictions, thereby
replicating Experiment 1 while discrediting the training
and transfer appropriate processing explanations of the
earlier results. Thus the present results provide further
support for the hypothesis that subjects have rudimentary
schemas for the three spatial diagram representations.

To analyze the data, we conducted a contrast ANOVA
that enabled us to directly test the predictions outlined
earlier. In this analysis, the main effect of condition was
divided into two orthogonal pieces-(1) a comparison of
the two general category conditions, combined, with the
specific example condition and (2) a comparison of the
general category (generate) condition combined, with
the general category (familiarize) condition. The condi­
tion X type of representation (spatial vs. nonspatial)
interaction was similarly divided into two orthogonal
pieces-the interaction of representation type with each
of the two condition contrasts.

There was no overall difference between the spatial and
nonspatial representations [F(l,62) < 1, MSe = 0.0630]
or between the two general category conditions [F(I,62) <
1, MSe = 0.1240]. Moreover, the type of general cate­
gory condition did not interact with the type of repre­
sentation [F(l,62) < 1]. Thus, performance was statisti­
cally equivalent in the two general category conditions
for both representation types. There was a reliable over­
all difference between the general category condition and
the specific example condition [F(l,62) = 4.4I,p < .04],
with better performance occurring in the two general cate­
gory conditions. More importantly,as predicted, there was
a reliable interaction between the general category versus
specific example conditions and the type of representa­
tion [F(l,62) = 6.37,p < .02]. As shown in Figure 6, sub­
jects in the two general category conditions performed
much better than subjects in the specific example condi­
tion for the spatial representations but not for the non­
spatial none-of-the-above category. As in Experiment I,
the large difference between the general category and
specific example conditions was obtained for each of the
spatial representations separately: means of .58 versus
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Figure 6. Mean discrimination scores for spatial and nonspatial representations as
a function of experimental condition in Experiment 3.

.29, respectively, for hierarchy; means of .58 versus .32,
respectively, for matrix; and means of .46 versus .24, re­
spectively, for network.

Reconsidering the training and transfer appropriate
processing explanations. The comparable performance
in the two general category conditions supports our in­
terpretation that both the example generation and "famil­
iarize" tasks served as cues to subjects' abstract knowledge
in memory about the three spatial diagram representations.
Moreover, the better performance in the general category
(familiarize) condition than in the specific example con­
dition discredits the transfer appropriate processing ex­
planation of the Experiment I results, and the better per­
formance in the general category (generate) condition
than in the specific example condition discredits the train­
ing explanation. With respect to the generate examples
knowledge cue task, we find it highly implausible that
subjects would have had enough time (never mind the
inclination) to abstract out any of the applicability con­
ditions for the representations from the examples they
generated during the 1.5 min allotted for example gener­
ation. Moreover, the spatial diagrams we are investigating
are used frequently for representing information in news­
papers, textbooks, and elsewhere. If our college-student
subjects were able to form useful abstractions for these
representations during 1.5 min of generating examples,
surely they would already have done so on the basis of
their prior experiences.'

Is the poor performance in the specific example
condition due to using misleading example problems?
Wehave argued that relying on abstract schemas improves
selection task performance compared to relying on spe­
cific examples. A possible alternative explanation for
our results is that the example problems were misleading
or difficult to understand and consequently impaired per­
formance. The results of several experiments reported in
Novick and Hmelo (1994), however, provide evidence
that having students solve the types ofexample problems
we used here does not interfere with performance, but in
fact improves performance. Novick and Hmelo had sub­
jects solve word problems for which a spatial diagram
representation would be useful for organizing the infor­
mation presented, after having solved a set of problems
that either included or did not include a relevant example
problem. Subjects had to figure out on their own which
of the example problems, ifany, was relevant to each test
problem. For test problems requiring each ofthe three rep­
resentations, subjects were more likely to use the appro­
priate spatial diagram representation after having solved
the relevant example problem.

These results are directly applicable to the present
study for several reasons. First, in both studies the exam­
ple problems differed from the test problems in terms of
the specific type of each representation used (according
to the coding scheme discussed in Experiment 2). Sec­
ond, Novick and Hmelo's (1994) subjects were told that
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the example problems might be helpful for solving the
test problems, which is similar to the experimental situ­
ation in the present experiments in which subjects knew
the possible representation choices. Thus, it is highly un­
likely that the poorer performance in the specific exam­
ple condition was due to the use ofmisleading examples.

Neither were our examples difficult to understand. As
in Experiment 1, we coded whether subjects in the spe­
cific example condition (I) correctly used the represen­
tations given for the example problems and (2) correctly
solved those problems. As shown in Table 2, performance
on the example problems was similar to that found in Ex­
periment I. The slight variation in performance across
the experiments (better for hierarchy in Experiment 1, bet­
ter for matrix and network in Experiment 3) was most
likely random. Averaged across the three problems, 89%
of subjects used the representations correctly and 78% of
subjects solved the problems correctly.

GENERAL DISCUSSION

Summary of Results and
Methodological Considerations

The results of the three experiments reported here pro­
vide evidence that students are able to reason about the
applicability of spatial diagram representations such as
matrices, hierarchies, and networks on the basis of ab­
stract schematic (i.e., general category) knowledge. In
particular, when subjects were led to rely on such knowl­
edge, they were more accurate at selecting the most ap­
propriate type ofrepresentation for a problem than when
they were led to rely on a single detailed example problem
for each representation (Experiments 1 and 3). More­
over, adding the detailed examples to subjects' schematic
knowledge produced no increment in selection perfor­
mance (Experiment 1). The results ofExperiment 3 indi­
cated that subjects possessed abstract schematic knowl­
edge about the three spatial diagram representations prior
to the start ofthe experiment and did not simply learn that
information during completion of the example generation
knowledge cue task. Experiment 3 also called into ques­
tion the alternative explanation that the good performance
in the general category condition of Experiment 1 was
due to transfer appropriate processing from the knowledge
cue task to the criterion (selection) task. Finally, several
analyses failed to provide any evidence for example­
specific reasoning when subjects were cued to use their
general category knowledge (Experiments I and 2).

In addition to providing greater insight into students'
knowledge and use ofspatial diagram representations in
problem solving, which we will discuss in more detail
shortly, the present results introduce two new methods
for cuing general category knowledge. First, asking sub­
jects to spend a few minutes (as few as 1.5 in Experi­
ment 3) generating examples of situations for which a
particular type of representation is appropriate enabled
them to access their general knowledge about that repre­
sentation. We are not aware ofany other research that has

used this paradigm for cuing general category knowledge,
so its range of application is unknown. Second, asking
subjects to simply spend 20 sec familiarizing themselves
with a representation was equally effective at cuing their
general knowledge. The effectiveness of these simple
tasks seems consonant with Smith et al.'s (1992) analysis
of the types of results that are likely to be obtained when
people possess abstract, rule-based knowledge in a domain.

On Schemas for Spatial Diagram Representations
Weinterpreted the present results as providing evidence

for the existence ofabstract schemas for the three spatial
diagram representations that contain at least some rudi­
mentary information about the applicability conditions
for those representations. These representation schemas
seem to be at an intermediate level of generality, much
like the pragmatic reasoning schemas studied by Cheng
and Holyoak (1985). They are not specific to a particu­
lar circumscribed domain, as are (for example) the per­
mutations formula, Newton's Second Law, or a diagram
ofa pulley system; nor are they extremely general, as are
rules of logic. Rather, each type of spatial diagram rep­
resentation works best for a particular type of relational
structure, regardless of the problem domain in which that
structure is embedded (also see Novick & Hmelo, 1994).
For example, a hierarchy is appropriate when the con­
cepts can be organized into levels and there is only one
route between any two concepts (Novick & Hurley, 1997).
This type of structure is applicable to situations in a va­
riety ofcontent domains, but there are strong constraints
on its use. For example, a hierarchy is not appropriate if
there are both one-to-many and many-to-one connec­
tions between the concepts, and therefore multiple paths
exist between at least some pairs ofconcepts. In such sit­
uations, one would likely use a network (or possibly a
matrix).

Because hierarchy, matrix, and network representa­
tions have a consistent, canonical spatial embodiment,
the problem structure best suited for each type of repre­
sentation can be easily summarized by a "prototype" spa­
tial diagram. Thus solvers could begin to construct rudi­
mentary representation schemas by using the prototype
diagrams as convenient "hooks" to which other relevant
information could be attached. For the three representa­
tions of interest here, relatively simple parametric varia­
tions are sufficient to modify a representation prototype
to capture the structure of essentially any problem for
which that type of representation is appropriate. For the
matrix representation, for example, solvers might have a
prototype in which the.numbers ofrows and columns are
represented by variables. Applying the prototype to a
particular problem would then simply require instantiat­
ing those variables with appropriate values from the
problem. Similarly, for the hierarchy representation, the
number of levels and the number of branches at each
level could be specified as variables. And, given a network
with a certain number of nodes and links, applying that
type ofrepresentation to a new situation simply involves



building the same kind of structure with different num­
bers ofnodes and links and different connections between
the nodes.

Nevertheless, there are clear limits to solvers' knowl­
edge about the applicability conditions for the three spa­
tial diagram representations, or to their ability to call
upon that knowledge, because solvers often do not spon­
taneously use these representations when appropriate (e.g.,
Novick, 1990; Novick & Hmelo, 1994; S. H. Schwartz,
1971). In the present experiments, subjects in the general
category conditions selected the appropriate spatial dia­
gram representation roughly 61% of the time. Part of the
difficulty solvers may have in determining what type of
spatial diagram to use is that these representations are quite
similar. A hierarchy is a special case of a network, and
any information that is most efficiently represented using
a hierarchy, matrix, or network can also be represented,
although less efficiently (often much less efficiently),
using either of the other two types of representations.
VanderStoep and Seifert (1993/1994) have shown that
greater similarity between principles makes it more dif­
ficult for students to learn their applicability conditions.

Reasoning About Conceptual Representations
The results for the conceptual part-whole representa­

tion provided an exception to the finding of strong ef­
fects of schema-based reasoning in the selection of an
appropriate representation for a problem. In a similar
vein, Novick and Hmelo (1994) found that transfer of a
part-whole representation from an example problem for
use in solving a test problem was more difficult than was
transfer of any of the three spatial diagram representa­
tions. Taken together, these results may indicate that
solvers' knowledge and use of conceptual representa­
tions in problem solving differ qualitatively from their
knowledge and use of spatial representations. Part of the
difficulty in constructing a good part-whole schema may
be that there are so many different kinds of part-whole
relations that have their own distinct structural features
(see Winston et aI., 1987). Additional research with other
types ofnonspatial representations will be required to bet­
ter understand the differences between solvers' knowledge
and use of spatial versus nonspatial representations in
reasoning and problem solving, and why those differences
occur. A parity representation (see Gick & McGarry,
1992; Kaplan & Simon, 1990) or compensation repre­
sentation (see Wertheimer, 1959/1982) might be a pos­
sible candidate for future research to supplement the pre­
sent findings using the part-whole representation.

Why are Students So Poor at Using
Spatial Diagram Representations?

We mentioned earlier that there are clear limits to
solvers' knowledge about the applicability conditions for
the three spatial diagram representations, or to their abil­
ity to call upon that knowledge in problem-solving situ­
ations. It is important to consider why students have dif­
ficulty reasoning diagrammatically. One possibility is
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that spatial diagram representations are too sophisticated
a tool for students with the level of mathematical and
logical training possessed by our subjects. We would not
be surprised to find that third graders cannot use alge­
braic representations or that seventh graders do not under­
stand integration. Perhaps the analogous situation exists
with respect to the use of spatial diagram representations
by college students. Alternatively, it may be that diagram­
matic reasoning is a neglected topic in math and science
(including social science) classes, so most college stu­
dents have had only limited opportunity to learn how to
use diagrammatic representations (e.g., Barwise & Etche­
mendy, 1991).

Several pieces ofevidence support the conclusion that
solvers' deficiencies in diagrammatic reasoning are likely
to reflect their lack of systematic instruction in this do­
main. The results ofthe study reported in Novick and Hur­
ley (1997) indicate that advanced computer science
majors and advanced students double-majoring in math­
ematics and secondary education know considerably
more about the applicability conditions for the three spa­
tial diagram representations than do students with non­
mathematics-related majors.

D. L. Schwartz (1993) found in one study that seventh
graders, in contrast to ninth graders, very rarely used a
network to represent many-to-one relations. Therefore,
in a second study, he taught an experimental group of
seventh graders three types of representations: matrices,
networks, and permutation lists. A control group of stu­
dents learned about cartesian graphs instead ofnetworks.
Several weeks later, during a weekly problem-solving day
in their class, all students were given problems to solve in­
volving the transmission of information. They were not
told anything about the helpfulness ofconstructing visual
representations for these problems. The effect of the ear­
lier instruction was remarkable: 50% of the experimental
subjects, but only 8% ofthe control subjects, constructed
network representations for the test problems.

It is likely that children are able to begin learning about
spatial diagram representations long before the age of 12.
For example, the teacher for a preschool class of 4-year­
olds helped her students construct a matrix representa­
tion to illustrate the ownership relations that existed be­
tween the students and shoes ofdifferent colors. The rows
were labeled with the children's names, the columns were
labeled with various shoe colors, and check-marks inside
the cells denoted ownership. After they constructed this
matrix, the teacher helped the children reason about the
information contained in it. In particular, the children de­
termined who had the most colorful shoes and which
shoe color was most popular.'

Future Directions
The present experiments have demonstrated that

(college-age) problem solvers have rudimentary schemas
for the three spatial diagram representations studied here
(hierarchy, matrix, and network), and that they use those
schemas to help them determine the most appropriate
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type of representation for a problem. That is, students have
some information about the applicability conditions for
these types ofrepresentations. On the basis ofthe present
data, however, we cannot say anything very specific about
what students know about each of the three spatial dia­
gram representations. Further progress in understanding
the processes of selecting, constructing, and using these
representations in problem solving, as well as the inter­
relations among these processes, would seem to be pred­
icated on the ability to more precisely assess solvers'
knowledge.

Before that issue can be addressed, it will be necessary
to have a theory that specifies the similarities and dif­
ferences among the three spatial diagram representations.
This theory must specify the types ofproblem structures
for which each type ofrepresentation is best suited. That
is, the theory must specify the applicability conditions
for each ofthe representations. We are currently working
on this topic (Novick & Hurley, 1997).
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NOTES

I. Weinitially constructed the orders to reflect the constraint that two
problems with the same type of representation had to be separated by at
least two other problems. This constraint was not completely realized,
however, due to an error in numbering the problems.

2. For the hierarchy,matrix, and network representations, an "appro­
priate example" category was added after the authors coded the Exper­
iment2 data to help resolve disagreements that reflected alternative rea­
sonable interpretations of a subject's response. (A "generic response"
category for the part-whole representation, which serves the same pur­
pose, already existed in the coding scheme.) The appropriate example
category was not counted in the computation of the proportion of types
for Experiment2 because in mostcases it was impossible to tell whether
these ambiguous responses reflected a new type of example for the sub­
ject. Thus the number of possible types for each representation was the
same in both experiments.

3. We would like to thank Tom Ward for suggesting this argument.
4. Wewould like to thank Mia Walkerfor providing this opportunity

for us to examine representation use in young children.

APPENDIX A
Examples ofthe Selection Task Problems

(One Problem per Representation)

Hierarchy representation. The following problem falls into
the descent category.

Fifty years ago, Alex Johnson and Martha Jennings got mar­
ried. Both of them had family heirlooms that were passed be­
tween the generations according to well-specified rules. At the
time of the marriage, Alex Johnson owned a Stradivarius vio­
lin and a summer house at the beach.

• The Stradivarius violin goes to the oldest male child. If the cur­
rent owner has no male children, then it goes to the oldest male
child of the current owner's oldest brother who has a male child. If
the current owner doesn't haveany brothers or ifthe brothers don't
have any male children, it goes to the oldest male child of the cur­
rent owner's oldest sister who has a male child.

• The summer house at the beach always goes to the oldest child,
but must alternate between male and female ownership. If the cur­
rent owner doesn't have a child of the appropriate sex, then it goes
to the current owner's oldest sister or brother whose oldest child is
the appropriate sex. Ifnone of the current owner's sisters or broth­
ers has an oldest child of the appropriate sex, it goes to the current
owner's oldest child regardless of sex.

At the time of the marriage, Martha Jennings Johnson owned a
jeweled brooch.

• The jeweled brooch goes to the youngest female child. If the cur­
rent owner has no female children, then it goes to the youngest fe­
male child of the current owner's youngest sister or brother who
has a female child.
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Alex and Martha have four children. The siblings, from oldest
to youngest, are Ellen, Peter, Richard, and Sarah. Ellen and her
husband have two children, Tony, the oldest, and Jessica, the
youngest. Peter is a Catholic Priest and therefore doesn't have
any children. Richard and his wife have two children: Susan
and her younger brother Joshua. Sarah and her husband have
three children: Alan, Becky, and Michael, in decreasing order
of age. All of Alex and Martha's grandchildren are either mar­
ried or ofmarriageable age, but none have any children yet. The
family treasures change hands as soon as an eligible child is
born. What was the order of passage of each of the three trea­
sures? That is, in order, which people received the Stradivarius
violin, the summer house at the beach, and the jeweled brooch?

Matrix representation. The following problem falls into the
associated characteristic category.

Samantha is an 8-month-old infant who is a very fussy eater.
She doesn't eat very much in one sitting, so her parents feed
her small meals at different times of the day. It turns out that
Samantha always eats on even-numbered hours (e.g., 8 a.m. or
2 p.m. but not 7 a.m. or 3 p.m.). She drinks 2 ounces of formula
every 4 hours beginning at 6 a.m. She eats a third of a 6-ounce
jar of fruit every 6 hours beginning at 6 a.m. She is fed a fourth
of a cup of cereal every 6 hours beginning at 8 a.m. Finally, she
eats half of a 6-ounce jar of baby vegetables at noon and then
again at 6 p.m. The family is going on an outing to the state
park. They are planning to leave the house at 7 a.m. and return
at 7 p.m. How many ounces of food and drink do Samantha's
parents need to bring for her?

Network representation. The following problem falls into
the associative relationship category.

Four sets of brother/sister (i.e., fraternal) twins attending a
baseball card show got together to trade cards among them­
selves. Each trade consisted of two children exchanging a sin­
gle card. In other words, no child ever gave up or received more
than one card in a trade. After all of the trading was completed,
you asked everyone in the group except Susan Post how many
cards he or she had traded. Each of the remaining seven chil­
dren gave a different answer to your question. That is, one ofthe
children you questioned traded 6 baseball cards (this child was
Andrew Corley), one traded 5 cards, one traded 4 cards, one
traded 3 cards, one traded 2 cards, one traded 1 card, and one
traded 0 cards. You also discovered that no child traded cards
with his/her twin, and no child traded cards with the same per­
son more than once. Given this information, how many cards
did Susan Post trade?

Part-whole representation. The following problem falls
into the member/collection category.

A famous story-teller, recently returned from the land of Par­
aval, is recounting her travels there. The inhabitants of Paraval
are most interesting and unusual. According to the story-teller:

All Bandersnatches are Boojums.
All Boojums are Snarks.
Some Snarks are frumious animals.
No Snarks breakfast at five o'clock tea.

A young boy and his friends are fascinated by the tale. After­
wards, they debate among themselves whether it is possible to
conclude that:

(a) No Boojums breakfast at five o'clock tea.
(b) No frumious animals breakfast at five o'clock tea.
(c) Some Snarks are Bandersnatches.
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points a player has after taking these three actions determines
the player's starting level in the game, as follows:

Starting Level # Points

alchemist (A) less than 4
magician (M) 4-10
juggler (J) 11-16

How many different combinations of actions enable the player
to start the game as an alchemist, as a magician, and as a juggler?

Complete the following representation to solve the problem:

The number ofdifferent combinations ofactions that enable the
player to start the game at each level are: Alchemist (A) __,
Magician (M) __, Juggler (1)__.

None of the above. Far away, across many seas, is the
island of Liars and Truars. Members of the Liars tribe al­
ways lie. The Truars always tell the truth. On the island of
Liars and Truars, you meet three people named Alice,
Ben, and Charlie. You ask Alice whether she is a Liar or a
Truar. She answers in the local dialect, which you do not
understand. Then you ask Ben what Alice said. Ben, who
speaks English, says "Alice said she's a Liar." You then ask
Ben about Charlie. "Charlie is a Liar too," Ben insists. Fi­
nally, Charlie adds, "Alice is a Truar." Which tribe does
each person belong to?

APPENDIXB
Hierarchy Example Problem

(d) Some frumious animals breakfast at five o'clock tea.
(e) Some Boojums are frumious animals.

Can you help the children answer these questions?

In a certain fantasy game, each player's starting level is deter­
mined by the following sequence of actions. First, the player
spins a spinner that is divided into two sections. The two sections
have the following words on them, which are worth the indicated
numbers of points:

Aardvark +4
Butterfly +7

Next, the player rolls a pyramidal (four-sided) die. The four
sides are marked with the following symbols, which specify the
indicated actions to be taken:

$ double existing points
* lose all points
? stay at same number of points
# +5 points

Finally, the player flips a coin marked win (+2 points) on one
side and lose ( - 2 points) on the other side. The total number of




