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The perception of face gender was examined in the context of extending "face space" models of
human face representations to include the perceptual categories defined by male and female faces. We
collected data on the recognizability, gender classifiability (reaction time to classify a face as male/fe­
male), attractiveness, and masculinity/femininity of individual male and female faces. Factor analyses
applied separately to the data for male and female faces yielded the following results. First, for both
male and female faces, the recognizability and gender classifiability of faces were independent-a re­
sult inconsistent with the hypothesis that both recognizability and gender classifiability depend on a
face's "distance" from the subcategory gender prototype. Instead, caricatured aspects of gender
(femininity/masculinity ratings) related to the gender classifiability of the faces. Second, facial attrac­
tiveness related inversely to face recognizability for male, but not for female, faces-a result that re­
solves inconsistencies in previous studies. Third, attractiveness and femininity for female faces were
nearly equivalent, but attractiveness and masculinity for male faces were not equivalent. Finally,we ap­
plied principal component analysis to the pixel-coded face images with the aim of extracting measures
related to the gender classifiability and recognizability of individual faces. We incorporated these
model-derived measures into the factor analysis with the human rating and performance measures.
This combined analysis indicated that face recognizability is related to the distinctiveness of a face
with respect to its gender subcategory prototype. Additionally, the gender classifiability offaces related
to at least one caricatured aspect of face gender.

Human faces provide us with a plethora of information
that is valuable and necessary for social interaction. When
we encounter a face, we can quickly and efficiently decide
whether it is one we know. For faces ofpersons we know,
we can often retrieve semantic and identity information
about the person. Additionally, from both familiar and
unfamiliar faces we can make judgments about the gen­
der, approximate age, and race of the person. The infor­
mation we use to accomplish these latter judgments has
been referred to by Bruce and Young(1986) in their model
offace processing as "visually derived semantic" informa-
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tion. The importance ofvisually derived semantic informa­
tion for understanding human performance on face pro­
cessing tasks has become increasingly evident in recent
attempts to bridge the gap between the perceptual and
memory-based components ofthe face processing system
(Hancock, Burton, & Bruce, 1996; O'Toole, Abdi, Deffen­
bacher, & Valentin, 1995; O'Toole, Deffenbacher, Valen­
tin, & Abdi, 1994).

In the present study, we concentrate on the categorical
dimension of face gender. We begin by reviewing briefly
the basic psychological findings supporting a prototype­
based, face space conceptualization of human face pro­
cessing. This abstract representational framework pro­
vides a parsimonious account of several well-established
psychological findings concerning face typicality (Light,
Kayra-Stuart, & Hollander, 1979; Valentine, 1991; Val­
entine & Bruce, 1986). We then consider the implications
of extending this representational framework to include
natural, perceptual categories of faces, such as face gen­
der. These categories share the configural base of a face
prototype, but differ in the nature of the visually derived
semantic information that specifies the subcategorical
face configurations.
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Face Spaces, Typicality, and Gender Categories
The internal representation ofa facial prototype, aver­

age face, or common facial configuration has played a
prominent role in many theories of human face process­
ing and has been called variously a "facial prototype" (Val­
entine & Bruce, 1986), "CONSPEC" (Morton & John­
son, 1991), and a "face schema" (Goldstein & Chance,
1980). The psychological evidence supporting a face
prototype comes from the well-established relationships
reported between facial ratings and human performance
on face processing tasks. For example, it is well known
that faces judged to be typical are less accurately recog­
nized than are faces judged to be unusual (Light et al.,
1979). This occurs under the assumption that the theo­
retical face space is more "crowded" close to the proto­
type, and so typical faces are more confusable with other
faces than are distinctive faces. Additionally, faces judged
to be typical are classified as faces more quickly than are
facesjudged to be unusual (Valentine& Bruce, 1986).This
result occurs under the assumption that typical faces are
closer to the prototype than are unusual faces, and so can
be compared to the prototype more quickly than can un­
usual faces (Valentine & Bruce, 1986).

In addition to the basic findings concerning face typ­
icality, human observer ratings of facial attractiveness
have also been shown to vary inversely with face recog­
nizability (Light, Hollander, & Kayra-Stuart, 1981), in­
dicating, by implication, that attractive faces may in
some ways be "average." Data from an earlier study by
Shepherd and Ellis (1973), however, are not entirely con­
sistent with the results ofLight et ai. (1981). Shepherd and
Ellis examined the effects ofattractiveness (high, medium,
and low) on recognizability at three delay periods (1, 6,
and 35 days). In the short and intermediate delay condi­
tions, they found no effects of attractiveness on recog­
nizability. In the 35-day delay condition, however, they
found a U-shaped relationship between attractiveness
and recognizability, with very attractive and very unattrac­
tive faces better recognized than moderately attractive
faces. An important difference between the study of Light
et al. and that ofShepherd and Ellis, however, is the gen­
der of faces used as stimuli; Light et al. used only male
faces, whereas Shepherd and Ellis used only female faces.

The relationship between perceived attractiveness and
computationally defined facial averages has been de­
bated vigorously in a number of recent papers (Alley &
Cunningham, 1991; Langlois & Roggman, 1990; Lang­
lois, Roggman, & Mussleman, 1994; Langlois, Rogg­
man, Mussleman, & Acton, 1991; Pittenger, 1991). Lan­
glois and Roggman (1990) found that composite faces,
created by arithmetically averaging the images of several
male or female faces, were judged to be more attractive
than almost any single male or female face. On the other
hand, Perrett, May, and Yoshikawa (1994) found that
composites of faces judged to be "attractive" were them­
selves judged to be more attractive than composites
made ofan equal number of faces chosen randomly from
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the sample. Combined, these data suggest that although
the "averageness" or (proto )typicality of a face may re­
late to its attractiveness, it is not likely to be the only de­
termining factor.

Despite the central importance ofthe average/prototype
face to theories ofhuman face processing, little is known
about how face configurations/prototypes specific to sub­
categories of faces, such as male or female faces, or faces
of different races, relate to this theoretical construct. In
addition to the common configuration that all faces share,
there exist several subcategories offaces with somewhat
different configural bases. These include the visually de­
rived semantic subcategories associated with race, gen­
der, and perhaps age.' Although faces within these sub­
groups share the general face configuration (i.e., the
relative position of eyes, nose, and mouth), different vi­
sually derived semantic subgroups can be distinguished
from one another by normative and variational differences
in (I) feature-based information, (2) "second-order" con­
figural information (see Rhodes, 1988), or (3) in some
combination ofboth. For example, faces ofdifferent races
differ in the norm and variability offeatures like eye color,
hair color, and eye shape, and may also differ in norms
related to general face shape such as the degree of pro­
trusion of the facial features. Likewise, male and female
faces differ normatively in feature-based information such
as the size of the nose and prominence of the brow and
also in more global facial shape characteristics such as
"fleshiness" (Enlow, 1982). We will refer to these norma­
tive differences between male and female faces as "stim­
ulus structure differences."

Stimulus Structure Differences Between
Male and Female Faces

Psychological studies. Questions concerning the na­
ture of stimulus structure differences between male and
female faces can be considered both from a psychologi­
cal and a computational perspective. From a psycholog­
ical perspective, in recent years there has been an intense
interest in determining the information human observers
use to determine the gender ofa face (e.g., Brown & Per­
rett, 1993; Bruce et aI., 1993; Bruce & Langton, 1994;
Burton, Bruce, & Dench, 1993; Chronicle et aI., 1995;
Roberts & Bruce, 1988; Yamaguchi, Hirukawa, & Kana­
zawa, 1995). These researchers have measured or manip­
ulated facial aspects/features potentially relevant for de­
termining the gender of a face and have related these
measures or manipulations to human performance in clas­
sifying faces by gender. Several approaches have been
taken, including (I) relating human gender classification
performance to geometrically based "facial features"­
that is, 2-D and 3-D2 distances and ratio measures among
facial landmarks (Burton et aI., 1993); (2) examining the
importance of individual discrete features (e.g., noses)
in the gender decision (Brown & Perrett, 1993; Chroni­
cle et aI., 1995; Yamaguchi et al., 1995); and (3) varying
the mode of presentation of information in faces (e.g.,
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by presenting photographic negatives of faces, inverted
faces, and 3-D head data from laser scans, Bruce & Lang­
ton, 1994).

Combined, these approaches have indicated the diffi­
culty ofreducing gender-relevant features to simple geo­
metrically defined interlandmark facial distances (Bur­
ton et al., 1993) and have highlighted the importance of
a broad range of shape and image intensity facial cues to
human face gender judgments (Bruce & Langton, 1994).
The work with discrete features has also indicated a spe­
cial role for features like the nose (Chronicle et al., 1995),
eyebrows and facial outline (Yamaguchi et al., 1995),
and jaw (Brown & Perrett, 1993). Additionally, it has
been suggested that gender-specific features may not be
completely constant across different races of faces (Ya­
maguchi et al., 1995; see also, O'Toole, Peterson, & Def­
fenbacher, 1996, who demonstrated an "other-race ef­
fect" for classifying faces by gender).

Computational studies. The recent efforts to deter­
mine the features used by human observers to classify
faces by gender have been complemented by equally in­
tense computational efforts aimed at developing com­
puter models that can classify faces by gender (e.g.,
Abdi, Valentin, Edelman, & O'Toole, 1995; Cottrell &
Fleming, 1990; Golomb, Lawrence, & Sejnowski, 1991;
Gray, Lawrence, Golomb, & Sejnowski, 1995; O'Toole,
Vetter,Troje, & Biilthoff, 1997). In contrast to the psycho­
logical studies, which begin by postulating a priori a set
of gender-specific features, most computational studies
have applied statistical pattern recognition procedures to
relatively raw or unprocessed 2-D image or 3-D shape data
about faces. These procedures have been implemented
frequently with connectionist networks, but are usually
equivalent to standard statistical analyses (frequently, prin­
cipal component analysis [PCA]) of the raw face image
or shape data.

In the present study, we used a PCA model because it
has been applied most commonly to faces and has been
shown to relate reliably to human recognition perfor­
mance and typicality ratings of faces (Hancock et al.,
1996; O'Toole et al., 1994). The purpose ofapplying PCA
to faces is to derive a set of independent or orthogonal di­
mensions (principal components, eigenvectors t) with
which faces can be described efficiently and completely.
As such, PCA models can been used to quantify the sta­
tistical structure of the information in faces, including
aspects of the visually derived semantic structure. Indi­
vidual faces in this model are represented with "fea­
tures"-that is, principal components (PCs) or eigen­
vectors, derived from a set of face images. When both
male and female faces are included in the set, individual
PCs have been shown to capture information useful for
determining the gender of a face (O'Toole, Abdi, Def­
fenbacher, & Valentin, 1993). Additionally, simple face
representations based on combinations of the PCs have
been shown to support excellent gender classification
performance when input to a simple linear classifier net­
work (Abdi et al., 1995; O'Toole et al., 1997).

Despite the rather nontraditional nature of PCs as fea­
tures, this kind ofrepresentation fits easily into the basic
conceptual structures posited in face space models. Spe­
cifically, PC-based representations are founded on the con­
cept of a multidimensional space and can accommodate
a prototype. This representational framework simply sup­
plements abstract psychological theories, which have not
generally been specific about the dimensions of the face
space, with a set ofconcrete, quantifiable (analyzable) di­
mensions derived from a set offaces. More formally, rep­
resenting faces via their coordinates on these dimensions
defines a face space. Thus, PCA provides one possible
instantiation of a face space model that yields a set of
stimulus-derived dimensions (see Hancock et al., 1996;
O'Toole et al., 1995). PCA can be thought of, therefore,
as a perceptual front-end for more abstract models offace
processing (O'Toole et al., 1995).

Extending the concepts ofa face space and face proto­
type to accommodate natural face categories such as gen­
der raises a number of interesting issues concerning the
nature offace typicality and its effects on human perfor­
mance in recognizing and categorizing human faces. The
structure of a face space that accommodates visually
derived semantic subcategories of faces is substantially
different from that resulting from a face space accommo­
dating only a single homogeneous set offaces. For exam­
ple, imagine individual faces represented by points in an
n-dimensional face space, with the distances between any
two points being a measure of the perceived similarity
between the two faces. When applied to a single homoge­
neous group of faces (e.g., young adult Caucasian male
faces), the points are likely to form a single cluster. Ap­
plied to both male and female faces, it is likely that two
gender-based clusters will result. Accordingly, the simple
assumption that the face space close to the average face
is "crowded" is not likely to be true when both male and
female faces are included in the space. Rather, the face
space close to the average male and average female faces
should be crowded, with relatively few faces around the
overall average face. In this case, the recognizability or
confusability of a face should be most related to its dis­
tance from the subcategory average. Likewise, ifthe clas­
sification of a face as an exemplar of a gender subcate­
gory involves a comparison to the subcategory prototype,
the recognizability of a face should be inversely related
to the time required to classify it as male or female.

Alternatively, the addition of subcategorical structures
to a face space raises psychological issues concerning
the importance of the "contrastive" nature of gender cat­
egories in a space. Although the average male or female
face may be considered to be the most typical version of
these categories, there is some evidence to suggest a spe­
cial psychological role for subcategory caricatures that
express maximally contrastive aspects of categories
(Rowland & Perrett, 1995; Yamaguchiet al., 1995). Highly
feminine faces are likely to be faces that are most differ­
ent from male faces, and vice versa. In the simple face
space conceptualization, feminine faces might be repre-



sented by the points that are farthest from the male sub­
category prototype. Ifthese contrastive aspects of the cat­
egories of male and female are perceptually important
for the categorization task, then we might expect to see
a dissociation of face recognizability and gender classifi­
ability, with the latter tied more to the perceived feminin­
ity/masculinity of the face.

In the present study, we have undertaken a systematic
exploration of human performance in a more realistic
face space containing gender categories. As in previous
work, in which the structure of human face space repre­
sentations has been probed by establishing relationships
between facial rating data and human performance on in­
dividual faces (e.g., Light et al., 1979; Valentine & Bruce,
1986), we began by collecting these data for a large num­
ber of individual male and female faces. Because of the
well-established and complex interrelationships among
these rating and performance measures (Hancock et al.,
1996; Light et al., 1979; O'Toole et al., 1994; Valentine
& Bruce, 1986; Vokey & Read, 1992), we have applied
a factor analysis to describe the structure or pattern of
interaction among a set of human rating and performance
variables collected on individual faces. This approach has
been taken successfully in several recent papers and has
yielded insight into the multidimensional structure of fa­
cial ratings and human performance measures (see Han­
cock et al., 1996; O'Toole et al., 1994; Vokey & Read,
1992). Such structure would not be evident from only
pairs of correlated variables.

The variables assessed in the present study consisted
of (1) two facial ratings potentially related to the gender
appearance of the faces (femininity/masculinity and at­
tractiveness) and (2) the human performance measures
offace recognizability and gender classifiability (i.e., re­
action time to classify a face by gender). As noted, al­
though attractiveness ratings have been shown to relate
to average faces, there are still questions surrounding the
biasing role of face gender in these judgments. We in­
cluded measures of the perceived femininity of female
faces and the perceived masculinity ofmale faces, which
we considered (tentatively) as caricatures of the sub­
groups offemale and male faces.' Factor analyses ofthese
ratings and performance measures indicated a surprising
independence of the recognizability and gender classifi­
ability of faces.

Wenext compared the consistency ofthese findings for
male and female faces and found important differences
in the structure ofthe rating/performance space as a func­
tion of face gender, especially with respect to the attrac­
tiveness rating. Finally, we anchored the human measures
to stimulus structural properties ofthe face categories by
adding face measures extracted from a PCA ofthe face im­
ages to the factor analysis on human measures. These com­
putational model measures contained information that
related reliably to face gender and face recognizability.
This combined analysis of the model and human face
measures gave insight into the nature of the facial infor-
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mation underlying some ofthe human rating and perfor­
mance data.

We have carried out three human experiments, a com­
bined analysis of these experiments, and a computer sim­
ulation. Wepresent the experiments first. We then present
a factor analysis of the faces using the variables gathered
in the experiments. Finally, we present the computational
model and incorporate gender-related model measures
directly into the factor analysis with the human judgment
and performance data.

EXPERIMENT 1
Reaction Time to Classify Faces by Gender

Method
Observers. Eighteen observers (8 males and 10 females) from

the University of Texas at Dallas (UTD) undergraduate population
were recruited in exchange for a core psychology course research
credit.>

Stimuli. One hundred and fifty-two (half male and half female)
Caucasian faces were digitized from slides to a 150- X 225-pixel
image with a resolution of 16 gray levels using a digitizer attached
to a PC with a TARGA board (True Vision). Faces were of young
adults, without facial hair or glasses, and were photographed in front
of a homogeneous light background. All of the face images were
aligned with each other by eye height and by the center point be­
tween the eyes. Face images were not normalized explicitly for size,
but were all taken from the same camera distance and thus were
roughly equal in size. These stimuli were used in all experiments
and in the simulation."

Procedure. Observers were instructed that the purpose of the
study was to determine the speed with which they could accurately
determine whether a face was that of a male or a female. Each ob­
server read a short description of the experiment explaining that
faces would appear on a computer screen one at a time and would
remain visible until a response was made by pressing a button on a
three-button computer mouse. Observers pressed the left-most but­
ton for one gender and the right-most button for the other gender.
The assignment of left/right to gender categorization was counter­
balanced across observers and was labeled appropriately in all
cases. When the observer responded, the face disappeared and a com­
puter prompt appeared instructing observers to rate their certainty
(I = very sure, 2 = moderately sure, and 3 = guessing). They again
indicated their rating using the three-button mouse, labeled with a
paper overlay above the "male" and "female" button labels. All ob­
servers participated in a short practice session using Japanese faces
in order to acquaint themselves with the task and with the equipment.

Results
The primary purpose of this study was to obtain mea­

sures of the speed with which individual faces are cate­
gorized by gender. However, for comparison with other
related studies, we present a standard analysis ofvariance
(ANOVA) on the observer data in this experiment. Sim­
ilar analyses are presented also in Experiments 2 and 3.

Mean reaction times (RTs) to classify male and female
faces were computed individually for male and female
observers. The group means appear in Table I,7 These
data were analyzed using a two-factor ANOVA,with gen­
der of observer as a between-subjects factor and gender
of face as a within-subjects factor. The analysis revealed
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EXPERIMENT 2
Masculinity/Femininity and Attractiveness Ratings

Table I
Human Rating and Recognition Performance of Observers

as a Function of Gender and Faces

Method
Observers. Thirty-five observers (18 males and 17 females) from

the UTD undergraduate population were recruited in exchange for
a core psychology course research credit. These observers had not
participated in Experiment I or 2.

Procedure. The final experiment was a standard old/new recog­
nition memory study. Observers were instructed to pay close atten­
tion to the faces presented because they would be asked to remem­
ber the faces in the second part of the experiment. During the
learning part of the study, 76 (38 male and 38 female) faces were
presented one at a time on the computer screen for 3 sec. Observers
took a short break and then viewed 152 faces (76 male and 76 fe­
male) one at a time. Half of these faces had been seen by the ob­
server in the learning part of the study and half were new faces.
Each face remained on the screen until the observer responded
"old" or "new," using labeled mouse buttons. The order of faces
presented in both the learning and testing phases was randomized
individually for each observer. Due to the fact that we wished to use
these data for computing the recognizability of male and female
faces for male and female observers, elaborate counterbalancing
schemes were implemented so that each face appeared equally often
as old and new across observers, and also su that each face was seen
equally often as old and new by equal numbers ofmale and female
observers. Because of the slight imbalance in the number of male
and female observers tested, this was not achieved precisely.
Nonetheless, the d's and C values were calculated from hit and false
alarm rates that were based on very close to equal numbers of old
and new presentations.

[F(l,I6) = 2.17,p > .05], and a significant interaction
between face gender and observer gender [F(l, 16) =
7.13,p < .05]. As can be seen in Table 1, this interaction
was due primarily to female observers rating female faces
as more attractive than male faces. Male observers rated
male and female faces to be about equally attractive.

Because only male faces were rated for masculinity
and only female faces were rated for femininity, we ana­
lyzed the male and female face data in separate one-fac­
tor ANOVAs with observer gender as the independent
variable. No differences were found in either case as a
function of observer gender [F(l, 16) < 1 in both cases;
see Table 1 for means].

EXPERIMENT 3
Recognition

Results and Discussion
A d' and criteriont? were computed individually for

each male and female observer recognizing male and fe­
male faces. The group means appear in Table 1. These data
were analyzed using a two-factor ANOVA with the gen­
der of observer as a between-subjects factor and gender
of face as a within-subjects factor. The d' analysis re­
vealed no main effect of face gender [F(l,33) = 1.33,
p> .05], a main effect ofobserver gender [F(l,33) = 4.82,
P < .05], with female observers more accurate than male
observers, and an interaction between face gender and ob­
server gender [F(l,33) = 8.72,p < .01], with female ob­
servers more accurate with female faces. These data are
consistent with those of most previous work considering
the effects of face and observer gender on face recogni­
tion accuracy (see Shepherd, 1981, for a thorough re-
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Femininity
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Experiment I, Speeded Gender Classification
Reactiontime to classify 1,141.31 1,286.80 1,161.08 1,440.06

by gender (msec)
Accuracy (% correct) 94.9 94.9 98.7 95.3

Experiment 2, Ratings
.69 .65

-0.96

d'
Criterion

Method
Observers. Eighteen observers (10 males and 8 females) from

the UTD undergraduate population were recruited in exchange for
a core psychology course research credit. These observers had not
participated in Experiment I.

Procedure. Observers viewed the faces one at a time on a com­
puter screen and rated each face for attractiveness using the three­
button computer mouse (0 = unattractive, I = somewhat attractive,
and 2 = very attractive).8 After the response, the face remained on
the screen and observers then rated the male faces for masculinity
and the female faces for femininity (0 = not veryfeminine, I = some­
what feminine, and 2 = very feminine). For the male faces, "femi­
ninity" was replaced in the computer prompt by "masculinity,"? Male
and female faces in this experiment were blocked and the order of
these blocks was counterbalanced across observers.

no main effect of observer gender [F(I, 16) < 1], but did
reveal a main effect of face gender [F( 1,16) = 4.82, p <
.05], with female faces classified more slowly than male
faces. The pattern of data is consistent with the presence
of an interaction between face gender and observer gen­
der, but this conclusion was not supported statistically
[F(l,I6) < 1].

The accuracy ofgender classification for male and fe­
male observers on male and female faces was high in all
cases (overall average = 95.9%). There was no indication
of a speed-accuracy tradeoff. Furthermore, an ANOVA
on errors revealed no main effects or interactions.

Results
Mean attractiveness and masculinity/femininity rat­

ings were computed individually for male and female
observers. The group means appear in Table 1. The attrac­
tiveness rating data were analyzed using a two-factor
ANOVAwith the gender ofobserver as a between-subjects
factor and gender offace as a within-subjects factor. The
analysis for attractiveness revealed no main effect ofob­
server gender [F( 1,16) < 1], no main effect of face gender



view). Shepherd (1981) noted that although face and ob­
server gender effects have not been found consistently in
the literature, when main effects have been found, they
have tended to indicate an advantage for female observers.
When interactions have been found, they have tended to
indicate that female observers are particularly good at
recognizing female faces.

The criterion analysis showed no main effect of ob­
server gender [F(1,33) < 1], a main effect offace gender
[F(I,33) = 26.20,p < .01], with observers using a stricter
criterion for female faces than for male faces, and no
interaction between face gender and observer gender
[F(I,33) < 1].

Next, we computed a d' and C value for each face by
compiling data across the different observers. Although
the recognizability ofindividual faces has been measured
frequently in the literature using methods based on sig­
nal detection theory (SDT; see, e.g., Hancock et al., 1996;
Light et al., 1979; O'Toole et al., 1994), these studies did
not make the assumptions of this model explicit as they
apply to individual stimuli, rather than to individual ob­
servers. For completeness, we do so in the appendix. In
the present section, we detail only the procedure used to
compute the SDT measures on faces and refer readers in­
terested in the SDT model assumptions to the appendix.

Hit rates and false alarm rates for individual faces were
computed as follows. When a face was learned by an ob­
server and was later recognized by that observer as "old,"
a hit was recorded for that face. The hit rate for the face
was the proportion oftimes the face was recognized as old
across all of the observers who had learned the face.
When a face was not learned by an observer and the ob­
server incorrectly recognized the face as old, a false alarm
was recorded for that face. The false alarm rate for the
face was the proportion oftimes the face was recognized
as old across all of the observers who had not learned the
face. A d' and criterion were computed in the standard
way for each face.

COMBINED ANALYSIS ON FACES

Male and Female Faces
Using data from all three experiments, we assigned

each face a value on the following five variables: (I) RT
(i.e., mean latency to categorize the face by gender),
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Table 2
Correlations Among Human Rating and Recognition

Performance Measures: Upper Triangle Contains
Correlations for Female Faces, Lower Triangle for Male Faces

Reaction Femininity!
Time Attractiveness Masculinity d' Criterion

Reaction time 1.00 -.37t ~.sst -.07 .02
Attractiveness -.24* 1.00 .88t .08 .13
Femininity! -.62t .23* 1.00 .07 .05

masculinity
d' .09 -.30t .10 1.00 .46t
Criterion .10 -.17 -.15 .28t 1.00

*p < .05. tp<.OOI.

(2) mean attractiveness, (3) mean femininity iffemale or
mean masculinity if male, (4) d', and (5) criterion. In the
first three cases (RT, attractiveness, and masculinity/
femininity), means were computed across all observers
in the appropriate experiment. In the latter two cases (d'
and criterion), numbers of hits and false alarms were com­
piled across observers in Experiment 3 and a single d'
and criterion were calculated for each face. Note that for
the facial attributes of attractiveness, masculinity, and
femininity, high variable values indicated high levels of
the attribute in question (e.g., high numbers indicated
highly attractive faces).

The faces were then separated by gender and a varimax­
rotated PCA was applied separately to the correlation
matrices of the raw rating and performance data for male
and female faces. For completeness, we present these
raw correlation matrices in Table 2. Correlations for the
female faces appear in the upper triangle of the matrix,
whereas correlations for the male faces appear in the
lower triangle of the matrix. Note that an interpretation
of PCA data requires a decision about the number of
axes/factors to retain. We based this choice on the struc­
ture of the resultant data and presented as many axes as
we were able to interpret easily. Additionally, because
there is no significance test to indicate the size of the
loading to be considered important, it is useful to choose
a loading value for all analyses that will be considered as
a threshold for interpreting the variable loadings. For
comparison with past work (O'Toole et al., 1994), we will
restrict our conclusions to loadings greater than or equal
to .30, which are marked with an asterisk in the tables.

Table 3
Human Rating and Recognition Performance for

Male and Female Faces for the First Two Rotated Factors

Female Faces Male Faces

Classification Recognition Classification Recognition

Reaction time -.71* .04 -.85* .13
Attractiveness .89* .11 .32* -.61
Masculinity! .96* .04 .90* .00

femininity
d' .05 .84* -.15 .83*
Criterion .01 .86* .10 .65*

Proportion of variance .45 .28 .37 .26
accounted for by axis
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The results of the PCA analysis appear in Table 3. We
retained the first two axes, which explained 73% of the
variance for female faces and 63% of the variance for
male faces. Several points are worth noting. First, in
terms of the performance measures, RT and d' appear
independently on the first and second axes, respectively,
for both male and female faces. For convenience and
brevity, we will henceforth refer to these two axes as the
"classification" and "recognition" axes, respectively. The
independence of d' and RT is at odds with our simple con­
ceptualization of human classification and recognition
performance being dependent on a face's distance from
a local subcategory prototype. We consider this question
in more detail in the discussion.

Second, beginning with female faces, it is clear from the
first axis that the attractiveness and femininity judgments
were strongly related to RT to classify the faces as female.
Faces rated as highly feminine and highly attractive were
classified as female more quickly than faces judged to be
less feminine and less attractive. The similarly sized load­
ings for attractiveness and femininity on this axis suggest
that observersused the attractivenessand femininity ratings
in very similar ways. The similar usage of these ratings sits
uncomfortably with our tentative conceptualizations ofat­
tractiveness as "average" and femininity as a "caricature"
offemale (i.e., its contrast from male faces).

The classification axis for male faces is more compli­
cated. In general, faces judged to be masculine and attrac­
tive were classified as male more quickly than faces judged
less masculine and unattractive. However, the difference
in the size of the loading for attractiveness and mascu­
linity suggests that for male faces "attractive" did not
equal "masculine." Masculinity proved more closely tied
to the speed required to classify the face as male than did
attractiveness. As expected from Light et al. (1981), the
attractiveness rating loads in the opposite direction from
d' on the recognizability axis for male faces, indicating
that attractive faces were not well recognized. In contrast
to the female face data, the dissociation ofthe attractive­
ness and masculinity ratings is reasonably consistent with
the notion that at least part of the attractiveness rating for
male faces captures "averageness," and that masculinity
captures something caricatured about male faces.

The recognition axis for both the male and female faces
is dominated by the relationship between d' and crite­
rion. Additionally, the attractiveness rating did not load
on the recognizability axis for female faces, as it had for
male faces. This result replicates Shepherd and Ellis's
(1973) finding that attractiveness and recognizability for
female faces are unrelated. The present data, combined
with the results of Light et al. (1981) and Shepherd and
Ellis, suggest that the negative relationship between at­
tractiveness and recognizability holds only for male faces.

Finally,d' and criterion were not independent for either
the male or the female faces. This result seemed inconsis­
tent with earlier data collected on these faces (O'Toole
et al., 1994). This earlier study indicated that d' and cri-

terion were independent for same-race Caucasian faces
but not for other-race Japanese faces. The major differ­
ence between the recognition experiment carried out in
that study and the one performed here was the balance of
male and female observers. In the O'Toole et al. (1994)
study, approximately 80% of the observers were female,
whereas here, the proportion was close to 50%.

Male and Female Observers and
Male and Female Faces

To examine the possibility that the difference in the
balance of male and female observers between O'Toole
et al. (1994) and the present study was responsible for the
nonindependence between d' and criterion found here,
and also to extend the present results to look at differ­
ences between male and female observers, we repeated
the PCA analysis, separating the data further by the gen­
der ofobserver. Thus, we performed four PCA analyses:
(1) female observers with female faces, (2) female ob­
servers with male faces, (3) male observers with female
faces, and (4) male observers with male faces. Again, in
all four of these analyses, the first axis was interpretable
as a classification axis. Since these data were similar to
those found previously with male and female observers
combined, we will not consider the first axis further. The
second axis, however, although again identifiable as a
recognition axis, differed as a function of observer and
face gender. This axis appears in Table 4 for each of the
four analyses. First, in all cases, it is clear that d' and cri­
terion were not independent. The pattern ofnonindepen­
dence differed as a function of observer and face gender.
For male observers of both male and female faces, well­
recognized faces tended to be recognized with strict (more
conservative) criteria. This was also true for female ob­
servers with female faces. For female observers viewing
male faces, however, the relationship between d' and cri­
terion was in the opposite direction. Well-recognized faces
tended to be recognized with looser (more liberal) crite­
ria. Thus, it seems that this opposing relationship for fe­
male observers on male and female faces, combined with
the preponderance of female observers in O'Toole et al.
(1994), can explain why the data from that study showed
independence between d' and criterion.

Table 4
Recognition Axis as a Function of Face and Observer Gender

Observers

Female Male

Female Male Female Male
Faces Faces Faces Faces

Reaction time -.17 .00 .12 .10
Attractiveness .10 -.64* .04 -.64*
Masculinity/femininity .02 -.10 .02 -.01
d' .83* .78* .77* .71*
Criterion .82* -.49* .81* .68*

Proportion of variance
accounted for by axis .25 .26 .26 .26



At present, we can offer neither an explanation nor an
interpretation of the nonindependence ofd' and criterion
in these data. We are further unsure as to why there were
differences in the pattern of nonindependence as a func­
tion ofgender of observer and gender of face. The result
is important, however, because it suggests that correla­
tions between facial attribute ratings and single compo­
nents ofd' (i.e., hit rate and false alarm rate) can be very
difficult to interpret and can be misleading in some cases
(see O'Toole et aI., 1994, for a discussion ofthe problem).
Because of the complexity of the issue and the fact that
it is not central to the theme ofthe present paper, we will
not consider criterion further, though we believe it (and
its relationship to d' in standard face recognition studies)
to be worthy of further study in its own right.

Results, Summary, and Conclusions
From the combined analysis of the first three experi­

ments, several points are worth noting. First, indepen­
dence was found between the recognizability of a face
and the speed in classifying it as male or female. As noted,
nonindependence might be predicted by a model that
(I) considers the RT to classify a particular face by gen­
der as a measure of the distance of that face to the sub­
category center or prototype (i.e., in this case, to the av­
erage male or female face), and that (2) assumes that
faces are more densely clustered (and hence, less distin­
guishable) close to this subcategory center. Independence
of RT and d' is more consistent with a model in which
caricatured rather than prototypical aspects ofgender ap­
pearance underlie gender classification performance,
whereas the similarity structure or density ofstimuli (pre­
sumably highest around the subcategory prototype) under­
lies face recognizability. Weconsider these issues further
after presenting our computational model.

Second, for female and male faces, speed ofclassifying
faces by gender was related both to the attractiveness and
femininity/masculinity ofthe faces. The similarity ofthe
attractiveness and femininity loadings indicates that to a
first approximation, observers tended to use the attractive­
ness and femininity ratings in very similar ways-a find­
ing that is inconsistent with the conceptualization of at­
tractiveness as "average" and femininity as our tentatively
conjectured "caricature" of female.

Third, consistent with the findings of Shepherd and
Ellis (1973) for female faces, attractiveness ratings and
recognizability were not related. Formale faces, attractive­
ness ratings were made of two independent components,
one related to the masculinity of the face and to the speed
of classifying it as male, and a second related to the rec­
ognizability of the face. This suggests that observers
base attractiveness ratings ofmale faces on two kinds of
information about the faces, one related to masculinity
and RT, and the other to recognizability and criterion. The
latter component is consistent with the findings of Light
et al. (1981), using male faces. Combined with the findings
of Shepherd and Ellis, the present data suggest that the
negative relationship between recognizability and at-
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tractiveness holds only for male faces. The differences
seen between the pattern ofrating and performance mea­
sures for male and female faces indicate that caution
should be exercised in interpreting the results of experi­
ments using these ratings with both male and female faces.

Finally, differences in the way male and female ob­
servers processed these faces were confined primarily to
the recognition axis, on which male and female observers
showed different patterns of relationships between rec­
ognizability and response bias.

MODEL DESCRIPTION

The psychological data indicated differences in the pat­
tern of interrelationships among gender-related facial
ratings and recognition performance measures for male
and female faces. How do stimulus structure differences
between/among male and female faces relate to these dif­
ferences? Answering this question requires an ability to
quantify the information in faces in a way that captures
the visually derived semantic information relevant for cat­
egorizing faces by gender. We coded each individual face
as a vector of pixels created by concatenating the rows
of the face image. We then applied a PCA to the cross­
product matrix made from the set offace vectors. As noted,
a face is represented in this model as a weighted combi­
nation of"features" (PCs, eigenvectors, axes, and dimen­
sions). Because the PCA is applied to images, each ei­
genvector is interpretable or "displayable" as an image.
Figure 1 shows the first nine eigenvectors extracted from
a matrix made ofmale and female faces. In (re)construct­
ing a particular face, these eigenvectors are combined
linearly along with the remaining eigenvectors in the set.

In the context ofrepresenting faces, eigenvectors have
two defining characteristics. First, eigenvectors can be
ordered according to the amount ofvariance (referred to
as the eigenvalue of the eigenvector) each explains in the
cross-product matrix made from the set of faces. This is
a measure of the importance of the eigenvector for rep­
resenting all faces in the set and is important for under­
standing properties ofthe representation that relate to the
heterogeneity ofthe face set. Second, different "amounts"
of each eigenvector are required to reconstruct particu­
lar faces. These amounts measure the importance of the
individual eigenvectors for representing individual faces
and are important for understanding how a particular
face differs from other faces in the set. We refer to these
amounts for a particular face as the face's "weights" with
respect to the eigenvectors.

We have concentrated on eigenvectors explaining
large proportions ofvariance in the face set, since a num­
ber of studies have indicated that these eigenvectors con­
tain reliable information for predicting the gender of a
face (Abdi et aI., 1995; O'Toole et aI., 1993; O'Toole
et aI., 1997). This is not surprising, given that gender is
one of the basic "features" on which faces can be con­
trasted, and hence is likely to explain a large proportion
of variance in a set of faces.
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Figure 1. Schematic ofthe combination of eigen-images to create a face. The first nine eigen-images are displayed. For illustra­
tion purposes, the weights for these first nine eigen-images for the particular face shown are as follows: .89 x the first eigen-image
(e l ) + .30e2 + .07e3 -.04e4 + Oes -.0ge6 + .03e7 + Oes - .02e9 + ... + w.e•.

The relationship between individual eigenvectors and
the gender ofa face has been established in previous work
by computing a point biserial correlation between the
weights of faces on particular eigenvectors and the gen­
der of the faces!' (O'Toole et aI., 1993). Using the same
set offaces that we used in the present study, O'Toole et al.
found statistically reliable relationships for 12 eigenvec­
tors with relatively large eigenvalues. The strongest rela­
tionship was found for the second eigenvector (r = .66,
df = 157,P < .0001). In general, a positive weight on this
eigenvector was required to reconstruct male faces,
whereas a negative weight was required to reconstruct
female faces. Accordingly, O'Toole et al. showed that
adding the second eigenvector to the first produced a face
with a male appearance, whereas subtracting the second
eigenvector from the first produced a face with a female
appearance.I? This demonstration is reproduced in Fig­
ure 2. The first row of the figure illustrates, from left to
right, the first three eigenvectors. Row 2 of the figure
shows the result of adding the first eigenvector to the
second (left face) and the result of subtracting the second
eigenvector from the first (right face). This eigenvector
captures hair length and face shape differences between
male and female faces (see also Abdi et aI., 1995, and
O'Toole et aI., 1997, for an analysis ofthe computational
utility and generalizability ofeigenvectors for the gender
classification task).

O'Toole et al. (1993) also found the third eigenvector
weight to be a reliable, though much less powerful, pre­
dictor offace gender (r = .21, df = 157,P < .006). Again,
male faces generally required positive values of this
eigenvector, whereas female faces generally required

negative values. We then combined this eigenvector with
the first eigenvector in positive and negative combina­
tions. The results appear in row 3 of Figure 2. The face
on the left is the result of adding the third eigenvector to
the first, whereas the face on the right is the result of sub­
tracting the third eigenvector from the first eigenvector.
Surprisingly, the eyes and head of the "female" face are
turned very slightly in comparison to the "male" face.'!
This would indicate that some female subjects did not
gaze directly at the camera, but rather, just to the side­
a surprising result in that the pictures of males and fe­
males in this set were taken under identical pose conditions
and with identical instructions (A. Goldstein, personal
communicationj.t- Nevertheless, this difference proved
a reliable discriminator of face gender.

We concentrated on 3 of the 12 eigenvector weights
found to be predictive of face gender by O'Toole et al.
(1993)-the first, second, and third eigenvector weights.
Combined, these three weights explained 58.86% ofthe
total variance in gender prediction, and 65.4% of the
variance explained by the 12 weights that were statisti­
cally significant gender predictors. We have chosen to
include these three eigenvector weights in the present
analysis because they were the most strongly predictive
of face gender and because we can offer a prima facie in­
terpretation of the information they capture. We have
mentioned our interpretation of the second and third
eigenvectors. The first eigenvector also related to face
gender in the study of O'Toole et al. (1993); (r = .33,
df= 157,p < .0001). Due to the fact that we did not sub­
tract the mean face prior to the extraction of eigenvec­
tors, the highly similar nature of the face images is such



Figure 2. The first three eigen-images of a face matrix composed
of equal numbers of male and female faces (row 1). The first eigen­
vector plus the second eigenvector appears on the left of row 2,
making a face with a male appearance. The first eigenvector minus
the second eigenvector appears on the right of row 2, making a face
with a female appearance (row 2). The first eigenvector plus the
third eigenvector appears on the left of row 3. The first eigenvector
minus the third eigenvector appears on the right of row 3. The face
on the right appears more feminine than the face on the left.

that this eigenvector approximates the average face (for
more details, see Valentin, Abdi, & O'Toole, in press).
Accordingly, unlike the positive/negative image differ­
ences we saw for the second and third eigenvectors, both
male and female faces required large positive values of
this eigenvector to be reconstructed, with the recon­
structions of male faces requiring a significantly larger
amount of this eigenvector (i.e., the average) than the fe­
male faces. The fact that the "amount" of the average
face required to reconstruct a face correlated signifi­
cantly with the gender of the face suggests an interesting
aspect of the stimulus structure of our particular set of
male and female faces. Specifically, it would seem that,
on the average, male faces were "closer" to the general
face average than were female faces. IS
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SIMULATION
Quantifying Gender Information in Faces

The present methods are very similar to those applied
in previous studies, and so we provide only a brief over­
view of the computational analysis. A more detailed de­
scription appears in O'Toole et al. (1994) and a tutorial
explanation can be found in Abdi (1994).

Method
Stimuli. The same 152 faces used in Experiments 1-3 were used

for the simulation as well. For the model, these faces were 151 pix­
els in width and 225 pixels in length, and were digitized to 16 gray
levels. These faces constitute 152 ofthe 159 faces used by O'Toole
et al. (1993).

Procedure. For model-predicted gender information, we extracted
the weights for each face with respect to the first, second, and third
eigenvectors. These three weights for a given face served as a model­
derived measure of the gender-related information in that face with
respect to the information captured by these eigenvectors.

For model-predicted recognizability information, the recogniz­
ability measure should capture the extent to which individual faces
are distinctive or unusual with respect to other faces in the set-in
this case, distinctive with respect to the basic categorical structure
defined by gender. In short, our measure tries to answer the ques­
tion, "How distinctive is a face once we have partialed out some of
this basic categorical structure information?" Or, "How different is
it from the gender subcategory average?" This was determined in
two steps. First, because we know that the first three eigenvectors
or eigen-irnages relate to face gender, we can reconstruct faces
eliminating these eigen-images. Second, we computed the cosine or
normalized correlation between each reconstructed face vector and
its original face vector (see O'Toole et aI., 1994). This measures the
similarity between the two vectors and provides an indication of
how much information is "left over" after eliminating most of the
useful gender information in the faces. Relatively high similarity
of these reconstructions to the originals (i.e., the cosine is high) in­
dicates that there is a relatively large amount of information leftover
for distinguishing a particular face from the gender subcategory to
which it belongs. Relatively low similarity ofthese reconstructions
to the originals indicates that there is a relatively little information
leftover for distinguishing the face from the category prototype.

Canonical correlation analysis. Before examining the struc­
ture among the variables, we assessed the strength and reliability of
the relationship between model and human measures. Canonical
correlation can be used to assess the statistical reliability of the lin­
ear relationship between two sets ofvariables. In this analysis, a lin­
ear combination within each set of variables was computed so as to
maximize the correlation between the two sets of variables (Kshir­
sagar, 1972). We carried out separate analyses for male and female
faces 16 so that the "gender" of the face alone could not be respon­
sible for any correlation found. The model measures were the
weights on the first three eigenvectors and the cosine, computed as
indicated previously. The human measures were attractiveness,
masculinity/femininity, RT, and d'.17 This yielded a canonical cor­
relation of.49 (maximum likelihood ratio test, p < .03) for the fe­
male faces and .52 (maximum likelihood ratio test,p < .001) for the
male faces. The results ofthis analysis indicate that there is a statis­
tically reliable relationship between the model and human measures.

Divided further by the gender ofobserver, the canonical correla­
tions were not significant, possibly due to the loss ofpower incurred
in dividing the number of cases by 2. Given the lack ofsignificance
and the minor differences due to observer gender in the psycholog­
ical data, we do not present these analyses.
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Table 5a
Human and Model Data for Female Faces

for the First Three Rotated Factors

Classification Recognition Axis 3

Reaction time -.68* -.14 .34*
Attractiveness .89* -.10 .19
Femininity .96* -.04 .00
.r .18 .65* .20
EV 1 weight .05 -.57* .76*
EV 2 weight -.04 .08 .88*
EV 3 weight -.31* .48* .09
Cosine -.01 .80* -.27

Proportion of variance
accounted for by axis .30 .27 .13

Varimax peA analysis combining human and model data.
Next we examined the structure of the relationship among model
and human measures by applying a varimax-rotated PCA to the
combined model and human data for the male and female faces. We
simply supplemented the human rating and performance measures
for each face with the four additional model-derived measures for
each face. The results of the varimax-rotated PCA analysis appear
in Table 5. Note that for all three of the eigenvector weights, high
numbers indicate values toward the male end ofthe scale, low num­
bers indicate values toward the female end (see Figure 2), and high
cosines indicate high-quality reconstructions (reconstructions sim­
ilar to the original faces).

In both the male and female analyses, we retained three axes, ac­
counting for a total of70% ofthe variance for female faces and 68%
of the variance for male faces. The classification and recognition
axes seen in the psychological data are again identifiable as the first
two axes. We discuss the third axis individually for the male and fe­
male faces. Because there is no appropriate common label for this
axis, in Tables Sa and 5b we simply label it "Axis 3."

Several points are worth noting. First, for both male and female
faces, the strongest overlap between model and human measures
occurred on the recognition axis, which shows roughly equally
sized loadings for model and human measures (see Tables Sa and
5b). The common structural element of this recognition axis for
male and female faces is a loading of d' and cosine in the same di­
rection, opposing an inverse loading ofthe first eigenvector coeffi­
cient.l'' The direction ofthe cosine-d' relationship loading indicates
that faces with higher quality model representations were better rec­
ognized by human observers. That is, these faces were more read­
ily distinguished from their subcategory prototype and were, there­
fore, presumably more distant from it in the face space. This
replicates a similar finding by O'Toole et al. (1994) when identity­
specific information in the face representations was preserved (i.e.,
when faces were reconstructed with eigenvectors with relatively
smaller eigenvalues).'?

Table 5b
Human and Model Data for Male Faces

for the First Three Rotated Factors

SUMMARY AND DISCUSSION

The first eigenvector coefficient, or "amount of the average face
required to reconstruct the face," also loaded in opposition to d',
Faces more similar to this common face base were less recognizable
than were faces less similar to this base. This is consistent with
common interpretations of prototype theory for faces .

The pattern of results for male and female faces diverged on the
recognition axis in two ways. For male faces, attractiveness loads on
this axis in the direction expected-that is, with the first eigenvec­
tor coefficient, and against d' and cosine. This is consistent with the
suggestion that one component of attractiveness in male faces
makes for a less recognizable, and in part, more "average" face. For
female faces, the third eigenvector coefficient also loaded in the same
direction as d' and cosine, so that female faces with more mascu­
line values of this weight-that is, more frontal-looking faces­
were more recognizable. It might be possible that the latter compo­
nent captures something related to the attractiveness-recognizability
relationship found for male faces, with these female faces being
treated like unattractive (more discriminable) male faces, rather than
female faces.

For the classification axes (see Tables Sa and b), the pattern of
human data is again characterized by the opposition of RT and the
combination ofattractiveness and masculinity/femininity. Note that
in contrast to the recognition axis, where model and human measures
had roughly an equal foothold, this classification axis was primarily
dominated by the human measures. Surprisingly, the model mea­
sure that loaded most strongly on this axis, and the only model mea­
sure to load above our criterion, was the weight on the third eigen­
vector. Despite its modest size, this loading appears for both male
and female faces. For female faces, femininity and attractiveness
loaded in a direction opposing the third eigenvector weight and RT.
Thus, feminine and attractive faces, which were classified as female
relatively quickly, tended to have smaller (more negative) values of
the third eigenvector and hence tended to be slightly turned from the
camera. For male faces, masculinity and attractiveness loaded in the
same direction as the third eigenvector weight. In other words, mas­
culine and attractive faces tended to have larger (more positive) val­
ues of the third eigenvector and hence tended to gaze directly at the
camera.

Finally, the third axis retained in this analysis (see Tables Sa and
b), though dominated by model measures, is interesting for female
faces in that it contains a second orthogonal component of RT, re­
lated only to model measures. RT appears on this axis in the same
direction as the first and second eigenvector weights. This indicates
that faces requiring larger amounts of the average face to be recon­
structed (i.e., female faces with more male values of this eigenvec­
tor weight) were classified as female more slowly than were faces
requiring less of the general average. Additionally, female faces
with more male values ofthe second eigenvector weight were clas­
sified more slowly as female. In general, these are female faces with
short hair and more male-shaped faces, as defined by this eigen­
vector (see Figure 2). This second component ofRT was detected in
this analysis, but not in the analysis of the purely psychological data,
due to the presence of model measures relevant to the information
on which it was based. This information was apparently not cap­
tured in the facial characteristic ratings or recognition performance
measures.

For male faces, the third axis was completely dominated by
model measures and shows only that the second and third eigen­
vector weights loaded in opposition for male faccs-" Since no human
measure loaded in this axis at a level meeting our criterion, this sim­
ply indicates an axis dissociating typically masculine values on the
second and third eigenvectors.

In summarizing the specifics of these results for female
faces, "attractive" was very nearly synonymous with "fern-
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inine" and was related to the time required to call the face
"female." This finding indicates that our tentatively ad­
vanced conceptualizations of "attractiveness as average"
and "femininity as a caricature" cannot both be correct. We
would argue that "caricature," rather than "average," may
be a better descriptor of the information captured by these
ratings. Supporting this conclusion, the model data indi­
cated that the distinguishability of the face when some of
the basicgender informationwaseliminated(distinctiveness
with respect to the prototype femaleface) was not related ei­
ther to the attractiveness/femininity rating or to the RT to
classify the face as female. By contrast, this model-based
distinctiveness information was quite strongly related to
the recognizability of the face. The premise here is that a
caricature is built by opposition to a contrastive category.
For example, a "caricatured female" emphasizes/exagger­
ates the features that most distinguish it from male faces.
Recognition memory performance, on the other hand,
would be more concerned with the local category structure
(i.e., female), since it is presumably most related to the
number of similar distracting items for an individual face.

In summarizing the specifics of these results for male
faces, "attractive" was not synonymous with "mascu­
line." Rather, attractiveness was a 2-D entity, one dimen­
sion of which mirrored the unidimensional attractiveness
rating seen for female faces and related to masculinity
and the time required to classify the face as male. The
second dimension ofattractiveness related to the model­
derived measure of the distinguishability of the face
from the male prototype and, importantly, to the recog­
nizability of the face for human observers. These results
indicate that although masculinity may be seen as an "at­
tractive" property of male faces, it is possible that ex­
treme masculinity in a face may render it a bit too "strong"
looking. It is possible, therefore, that the masculine com­
ponent of attractiveness may need to be tempered or
toned down somewhat for a male face to be judged attrac­
tive. By contrast, it is somewhat hard to imagine extreme
femininity rendering a female face unattractive.

In relating these findings to past work, our psycho­
logical data clear up the disagreement in the literature
concerning the relationship between attractiveness and
recognizability, replicating the findings of both Light
et al. (1979) and Shepherd and Ellis (1973). The critical
factor explaining the difference in results between these
studies is face gender, which dissociates two subcompo­
nents of attractiveness for male, but not for female, faces.
This dissociation is important for interpreting results that
draw on rating and performance measures gathered on
both male and/or female faces.

Additionally, with reference to past work, the fact that
we did not find a relationship between attractiveness and
"average" for the female faces is not necessarily incon­
sistent with the claim that an averaged or composite fe­
male face is more attractive than most single noncompos­
ite faces. In contrast to past work (Langlois & Roggman,
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1990; Langlois et al., 1994), the attractiveness ratings used
in the present study were collected on "unprocessed" faces
(i.e., single noncomposite faces), rather than on com­
posite or averaged faces. The process of averaging faces
can selectively obliterate relatively low-contrast, high­
spatial-frequency (i.e., finely detailed) information that
is specific to only one or a few of the faces in the set to
be averaged (cf. Langlois et al., 1994). This could in­
clude small skin irregularities such as blemishes, which
may render a face less attractive, as well as dimples or
long eye lashes, which may render a face more attractive
(see also Perrett et al., 1994, for more discussion of this
issue). Primarily, with respect to the model proposed here,
this kind ofinformation is likely to be contained in eigen­
vectors with relatively small eigenvalues (see O'Toole
et al., 1993). The presence ofthis low-contrast, high spa­
tial frequency information, by its very definition, is likely
to have a negligible effect on the arithmetically computed
distance of a face to the average face. This information
may be, nonetheless, clearly detectable for human ob­
servers in a single or unaveraged face and may have very
important consequences for perceived attractiveness. In
other words, although averaged faces may be generally
judged to be more attractive than single faces, single faces
that are close to the average may contain low-contrast,
but detectable, features that are very important for the hu­
man judgment of attractiveness.

One last speculative point we wish to make refers to
the nature of stimulus information contributing to mas­
culinity and femininity judgments. This concerns the
small but consistent loading of the third eigenvector co­
efficient on the classification axis for both male and fe­
male faces. Our interpretation ofthe information provided
by this model measure is that it conveys information about
a facial mannerism. Thus, it seems possible that a face
can be made to appear (at any given instant) more femi­
nine or more masculine via some very simple facial man­
nerisms. For example, looking straight ahead and seeking
direct eye contact may lend any face a more masculine ap­
pearance, whereas averting the eyes and gazing downward
may lend a face a more feminine appearance. These are
simple, though subtle, changes in the orientation offaces,
which (I) were useful in explaining variance in the face
set (i.e., were captured by the third eigenvector), (2) were
useful in predicting the gender of a face in purely com­
putational terms, and (3) related to the human measures
captured by the classification axis.

Examining the interrelationships among commonly
assessed facial rating and performance measures can
give insight into the potentially multidimensional compo­
nents of these measures. The consistency of this relation­
ship across groups of faces that vary in base configural
properties such as gender, race, or age may be an impor­
tant element in developing and refining face processing
theories to fit the heterogeneous nature of the faces we
encounter in the course of our social experience.
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NOTES

I. However,age may have less ofa "categorical" and more ofa con­
tinuous structure than race and gender.

2. The 3-D features were derived from full and profile views of the
faces.

3. These have been referred to as "eigen-pictures" by Sirovich and
Kirby (1987) and "eigen-faces" by Turk and Pentland (1991).

4. Although masculinity and femininity are considered orthogonal
dimensions in the personality literature, in the face perception litera-



ture, femininity/masculinity have assumed a single scale (see, e.g.,
Bruce, Ellis, Gibling, & Young, 1987; Burton et aI., 1993).

5. The number of observers may seem relatively small in Experi­
ments I and 2, but our primary analysis treats "cases" as faces, rather
than as observers. Additionally, of the eight possible main effects/
interactions tested in these two experiments, in all but one case, the
observer-based analyses of variance yielded F values that were either
less than I or proved statistically significant, indicating that it would be
unlikely that more observers would have changed results substantially.

6. For comparison purposes, it should be noted that these faces con­
stituted 152 of the 159 Caucasian faces used in O'Toole et al. (1993)
and O'Toole et al. (1994).

7. These mean reaction times are substantially longer than those re­
ported in other studies ofgender classification times (e.g., Bruce, Ellis,
Gibling, & Young, 1987, who found gender classification times of
slightly over 600 msec). Perhaps the major difference between this task
and similar ones was the inclusion of a certainty rating task intervening
between speeded classification trials in our study. This led us to won­
der if this intervening task could have "broken the stride" of the ob­
servers in the reaction time task. We thus tested an additional 5 ob­
servers in the classification task, eliminating the rating task, and found
that the mean reaction time dropped by 211 msec. Although still longer
than in other studies, the factor analysis will show that reaction times re­
lated to the other psychological measures of gender-related attributes in
interpretable ways.

8. In theory, a 5- or 7-point rating scale would have been better, but
a 3-point scale was sufficiently sensitive in this study to capture stong
and meaningful variations among the face measures (see Table 2). The
correlations between measures define lower bounds on the reliability of
the measures (Nunnally, 1978), thus allaying concerns about the con­
sistency with which observers rated faces.

9. We note that this method allows for possible order effects of al­
ways rating attractiveness before masculinity/femininity.

10. We used C, a measure of the displacement of the criterion in
z-score units, computed as -0.5(zH + zFA)' With this measure, smaller
values imply looser criteria (Snodgrass & Corwin, 1988).

II. Face gender was defined as 0 for female and I for male.
12. See also O'Toole et al. (1997) for a replication of this finding

with 3-D data from laser scans of human heads.
13. When we showed these faces to people informally, all agreed that

the face on the right appears female, but not all agreed that the face on
the left appeared male. In any case, all seemed to agree that the right­
hand face appears more feminine than the left-hand face.

14. It is worth noting that this is a very subtle cue. We have used this
set offaces in many experiments and have never noticed differences in
the gaze direction of the male and females in the photographs, though
our PCA model detected it. Although this may be considered a "prob­
lem" for the standardization ofthe photographs, it would apply perhaps
to other face sets that have not been similarly analyzed for systematic
"nonfeature" differences between male and female faces.

15. The weight on the first eigenvector is simply the dot product be­
tween the vector of pixel values specifying a face and the first eigen­
vector and hence is a direct measure of the physical similarity between
the two.

16. A joint analysis done over all faces was not necessary since we
knew already that the three model gender measures were correlated
with the sex of the face, which is embodied in the masculinity and fem­
ininity judgments. For completeness, however, when the male and fe­
male faces were combined, the canonical correlation between model and
human measures was .74 (maximum likelihood ratio test,p < .0001).

17. As noted, we omitted the criterion from further consideration. For
completeness, we carried out canonical correlations including criterion,
but the inclusion of criterion did not change the size of the correlation
substantially.

18. The opposition of the two model measures, cosine against the
first eigenvector coefficient, is in part artifactual because (I) the first
eigenvector is highly related to the mean, so all faces will have strong
positive values on it; (2) the larger this weight for a given face, the larger
the variation in the face explained by the first eigenvector, and the less
explained by the eigenvectors contributing to the cosine measure.
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19. In O'Toole et al. (1994), a much larger range of the eigenvectors
was eliminated in this identity-specific condition. It would appear,
therefore, that eliminating only the first three eigenvectors in the pre­
sent analysis was sufficient to replicate this finding.

20. For specialists ofPCA, who may be disturbed by a cross-loading
of two eigenvector weights from orthogonal eigenvectors, recall that the
PCA on faces was carried out for male and female faces combined,
whereas the varimax-rotated PCA on the face measures, where we see
this cross-loading, was done individually for male and female faces.

APPENDIX
Signal Detection Model Comparison

for Observers and Faces

Signal detection model for observers. When computing
the measures d' and C for a particular observer in a particular
condition of a recognition experiment, data from many differ­
ent faces are combined. Each hit that contributes to the hit rate
and each false alarm that contributes to the false alarm rate
comes from a different face. All the different faces that an ob­
server learned in the learning phase ofa recognition experiment
contribute to the old distribution, and all the faces that the ob­
server did not learn, but that are used as test faces, contribute
to the new distribution. In general, the dimension on which
these faces are distributed is thought to be an indication of the
level of familiarity that a particular observer experiences when
looking at faces. To be able to recognize faces at a level above
chance, the observer must experience generally higher levels of
familiarity when viewing faces he/she has seen before than
when viewing faces that he/she has not seen before.

The d' measures the overlap of evoked familiarity feelings
for an observer when old versus new faces are being viewed.
For observers with good recognition skills, there will be rela­
tively little overlap between the old and new distributions, and
for observers with poorer recognition skills, there will be rela­
tively more overlap between the distributions. The differences
in d' yielded by different observers under identical experimen­
tal conditions are thought to reflect the characteristics of the
individual observers such as their visual and perceptual abili­
ties, memory capacity, motivation, and experience with the
task.

The criterion measures the observer's level of conservative­
ness during the experiment for responding that he/she has seen
faces previously. In other words, how familiar must a face in the
experiment seem for the observer to be comfortable responding
"known." Criterion is generally thought to reflect both the char­
acteristics ofthe individual observers and the characteristics of
different situations. The former include inherent aspects of the
observer's personality such as the liberalness/conservativeness
ofguessing strategy, and the latter include aspects ofthe experi­
mental situation, including task demands and context, such as
the proportion of faces that are actually old versus new in rec­
ognition test.

Signal detection model for faces. When computing the mea­
sures d' and C for a particular face in a particular condition of a
recognition experiment, data from many different observers are
combined. Each hit that contributes to the hit rate and each false
alarm that contributes to the false alarm rate comes from a dif­
ferent observer. All of the observers in the experiment who
learned a particular face in the learning phase of a recognition
experiment contribute to the old distribution for that face, and
all of the observers who did not learn this face but see it in the
recognition test contribute to the new distribution for the face.
The dimension on which these observers are distributed is an
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indication of the level of familiarity people experience when
looking at the/ace in question. For the face to be recognizable
at a level above chance, observers who have seen the face be­
fore should generally experience higher levels of familiarity
than observers who have not seen the face before. More for­
mally, the distribution composed of the observers who have
seen the face before (old) should not overlap completely with
the distribution composed of the observers who have not seen
the face before (new).

The d' is a measure of the overlap offamiliarity levels expe­
rienced by the observers who have seen the face before and the
distribution of observers who have not seen the face before-s­
that is, its recognizability. For highly recognizable faces, there
will be relatively little overlap between the old and the new dis­
tributions, whereas for less recognizable faces, there will be
more overlap between the distributions. Differences in the d's

yielded by different faces under identical experimental condi­
tions are thought to reflect the characteristics ofthe individual
faces, including whether or not they have moles, buck teeth,
and so on.

The criterion measures the tendency of the face to evoke old
versus new responses from observers in a particular experiment.
Criterion reflects both the characteristics ofthe individual/aces
and the characteristics 0/ the experimental situation. An ex­
ample combining both factors might be as follows. Male faces
with long hair may evoke lots of old responses in a task in
which they constitute 80% of the faces used, but may evoke
many fewer old responses when they represent a small minor­
ity of the faces.
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