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Probit analysis was applied to the problem of threshold estimation from psychometric func-
tions derived from the two-alternative forced-choice (2AFC) method of constant stimuli. Threshold
estimates from 2AFC experiments are surprisingly poor: They are about twice as variable as
corresponding estimates based on the traditional yes-no method of constant stimuli, and their
asymmetrical confidence limits are not readily predicted from conventional standard error for-
mulas. All of these faults are exacerbated in small samples. Computer simulations demonstrated
that, for small samples, the probit analysis equations do not give a valid estimate of threshold
variability. The variability of staircase estimates of threshold cannot be less than the variability
of threshold estimates derived from the method of constant stimuli given an optimum placement
of trials. Hence our findings also define the minimum variability of all staircase estimators un-

der the assumptions of probit analysis.

Forced-choice techniques, in combination with the
method of constant stimuli, are increasingly common in
modern psychophysical studies. In a typical two-
alternative forced-choice (2AFC) experiment, a stimulus
is presented in one of two possible positions on each of
a series of trials, and the subject judges the position of
the stimulus on each trial. Several different stimulus
levels, varying along some physical dimension (such as
intensity), are presented in random order for a substan-
tial number of trials each. In an orderly data set, the sub-

This work was supported by NIH Grants 5 P-30-EY00186, RO1-
EY03976, RO1-EY04776, and RO1-EY02920 and by the Smith-
Kettlewell Eye research Foundation. We thank Polly Feigel, Lou Godio,
Jacob Nachmias, Walter Makous, and Roger Watt for their helpful critical
commentary on an earlier version of this manuscript, and Donald
MacLeod for useful conversations on this topic. Gerald Westheimer wrote
the original probit program for the yes-no case. This program served
as a model for subsequent programs that employed different strategies
to handle the 2AFC case and the simulations. We also want to ac-
knowledge considerable assistance from Martha Teghtsoonian and an
anonymous reviewer in the editing of the final version. A computer pro-
gram for 2AFC probit analysis is available from the first author on written
request. Another program, available from the second author, works with
several shapes of the psychometric function; it has several options for
estimating confidence limits and an option for estimating the upper
asymptote.

S. P. McKee’s mailing address is: Smith-Kettlewell Institute of Visual
Sciences, 2232 Webster St., San Francisco, CA 94115.

Copyright 1985 Psychonomic Society, Inc.

ject’s percent correct will vary from near 50% (chance)
for stimuli too weak to be detected to near 100% for stim-
uli that are readily detected. Some empirical or theoretical
curve is fitted to the data and used to estimate one or more
parameters of the assumed underlying population. The
most commonly estimated value is the threshold, T;s,
which is the stimulus value needed for the subject to be
correct 75% of the time. This threshold depends on the
location along the abscissa of the whole psychometric
function. The slope of the function may also be of interest.
If the cumulative normal curve is used as the theoretical
function, the threshold, T,s, corresponds to the mean, u,
and the slope, 8, corresponds to the reciprocal of the stan-
dard deviation, o, of the normal curve (i.e., ¢ =1/8).

With normal adult subjects, it is feasible to run 100 or
more trials for each stimulus level. Then error variance
is small, the location and slope of the psychometric func-
tion can be judged by eye, and typically no elaborate
curve-fitting or statistical analyses are needed. However,
with less docile subjects, such as infants and clinical pa-
tients, the number of trials may be restricted, and the
statistical properties of threshold] estimates derived from
small samples become important. These properties are
surprisingly weak: Threshold estimates derived from
forced-choice data may have unacceptably large standard
errors, and the confidence limits may be asymmetrical
and significantly larger than would be naively predicted
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from the standard error. More than 100 trials are required
before confidence limits become well behaved.

The purpose of this paper is fourfold: (1) to explicate
the reasons for these statistical properties at a simple
graphical level; (2) to describe a common statistical
approach—probit analysis (Finney, 1971)—that is often
applied to yes-no psychophysical data, and to explain its
use in the 2AFC case; (3) to check the validity of the
probit analysis equations by computer simulation of the
sampling distribution of the statistic T,s; (4) to explore
the implications of these results for the use of 2AFC tech-
niques.

GRAPHICAL ANALYSIS

This section provides the reader with an intuitive un-
derstanding of the statistical properties of estimates of Ts
derived from 2AFC data, given the assumptions of probit
analysis. Although the results of this graphical analysis
are inexact in certain respects (see the appendix), this ap-
proach will introduce several concepts that are important
to later sections of this paper. We will begin with an ex-
planation of the notation used on the axes of these 2AFC
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graphs.

On each trial in the traditional method of constant
stimuli as applied to a detection task, the subject is shown
one sample from a set of stimuli that vary along some
physical dimension and is asked whether the presented
sample exceeds his criterion (‘‘yes or no?’’). Data from
many trials are used to determine the stimulus level needed
to produce a particular positive response percentage,
usually 50% “‘yes,’” corresponding to the midpoint of the
psychometric function. Because the psychometric func-
tion generated by this yes-no procedure often resembles
a normal ogive, probit analysis can be used to estimate
the statistical properties of these thresholds.

Probit analysis can also be used to estimate threshold
statistics from 2AFC data by rescaling the cumulative nor-
mal function to extend from a lower asymptote C to an
upper asymptote D. In an ‘“‘ideal’” 2AFC task, the per-
centage correct varies from 50% to 100% so that C =
0.5 and D = 1.0. C and D are incorporated into probit
analysis by assuming an underlying function in which the
probability (P) goes from O to 1.0, and, using Abbott’s
formula to obtain a probability (or percentage correct),
P*, whose limits are C and D:

P*=C + (D-C)P. 1)
For the ideal 2AFC case, where C =0.5 and D = 1.0,
the midpoint of the psychometric function occurs at P*
= (.75 and the corresponding stimulus value is desig-
nated Ts.

The top row of Figure 1 shows the two idealized psy-
chometric functions for yes-no and 2AFC. The right-hand
ordinate of Figure 1B gives the probabilities (P) of the
underlying cumulative normal function that have been re-
scaled to fit the left-hand ordinate P*, the percentage cor-

Stimulus (Z Units) Stimulus (Z Units)

Figure 1. Graphical illustration of cumulative normal curves and
binomial variability, for both yes-no (A and C) and 2AFC (B and
D) cases, on both linear (A and B) and probability (C and D) or-
dinates. In each case, error bars represent +1 standard error for
n=100. The abscissa is scaled in Z-units, that is, units of o, the stan-
dard deviation of the cumulative normal curve. In C and D, equal
distances on the ordinate represent equal standard deviations of the
cumulative normal curve, so that the cuamulative normal is converted
into a straight line. Zero on the abscissa corresponds to the classi-
cal threshold, that is, P=0.5 for the yes-no case and P*=0.75 for
the 2AFC case. The hypothetical stimuli are placed at —1, 0, and
1 Z-unit; this condition represents the “standard case” for the re-
mainder of this paper.

rect. Usually, the abscissa of a graphed psychometric
function is scaled in units of the stimulus parameter. Here,
the abscissa is scaled in units of the standard deviation,
g, of the cumulative normal function, commonly called
Z-score units. Thus, the stimulus values of —1, 0, and
1 correspond to the percentages correct (P*) of 58%,
75%, and 92% for the 2AFC function and percentages
“yes’’ (P) of 16%, 50%, and 84 % for the yes-no function.

Standard errors for n= 100 trials per sampling point
have been plotted on both functions at the stimulus values
of —1, 0, and +1. These standard errors are calculated
from the usual formula for a standard error of a propor-
tion for random samples of size n drawn from a binomial
distribution: +/PQ/n for the yes-no case or /P*Q*/n for
the 2AFC case, where Q=1—P and Q*=1-—P*,

For yes-no data, the sampling variability is largest near
50% and is symmetrically smaller as one moves toward
the lower and upper asymptotes. But forced-choice data
span only the range from P*=.5 upward. The sampling
variability is largest at C and smallest at D. Forced-choice
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data thus have a strong asymmetry, with the data points
near 50% being likely to deviate more from their cor-
responding population values than do points near 100%.

When a theoretical curve is fitted to the data by probit
analysis, the individual data points are weighted inversely
with their intrinsic binomial variability. Thus, in the 2AFC
case, data points sampled from the lower part of the func-
tion will be weighted less heavily, and hence constrain
the fitted curve less, than data points sampled from the
upper part of the function.

A second factor influences the degree of constraint ex-
erted by a given data point on the curve-fitting process—
the slope of the normal ogive at that point. Consider trans-
lating a normal ogive laterally until the curve intersects
the upper or lower end of the error bars. Given error bars
of a fixed size, the curve could be moved over a much
larger range where the slope is shallow than where it is
steep. Points far in the tail may have much smaller
binomial variability than those near the midpoint, yet their
influence on the curve-fitting process may be negligible.
For forced-choice data, points near 50% constrain the fit-
ting of the curve very litle indeed, since they suffer both
from large error bars and minimal slope.

Linearizing Transformations

The fitting of a curvilinear function to a set of data is
simplified if the function can be converted into a straight
line. In psychophysical practice, data are often plotted on
‘‘probability paper,’’ transforming a cumulative normal
curve into a straight line. Equal distances on the ordinate
are equal standard deviations of a normal distribution
(equal Z-units). Linearized versions of Figures 1A and
1B are shown in Figures 1C and 1D. For these curves,
the abscissa is also scaled in Z-units, so the slope of the
lines is 1.0.

When the cumulative normal ogive is transformed into
a linear function, differences in the value of the slope are
expressed by differential ‘stretching’’ along the ordinate.
The ends of the error bars are tied to the ordinate and
stretch along with it; thus the relative lengths of the error
bars change. For the transformed yes-no case, the error
bars are smallest near 50% and largest in the tails. In the
2AFC case, the smallest error bars are at 83% and the
largest errors are found in the lower tail, where the in-
fluence of a shallow slope, now translated into a magni-
fied distance on the ordinate, is superimposed on the al-
ready large binomial variation. The intrinsic variability
of these functions depends on the magnitude of these er-
ror bars. Given the same number of trials, the variability
of threshold estimates derived from 2AFC data is greater
than the variability of thresholds based on “‘yes-no’’ data
provided that both types of data are adequately described
by cumulative normal functions with the same value of o.

Confidence Limits

The 2AFC case is examined further in Figure 2, where
the vertical error bars now represent the 95% confidence
limits, +1.96, /P*Q*/n. Throughout this paper, n is the
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Figure 2. Graphical approximation of confidence limits for the
estimate of T in the 2AFC case, as influenced by the number of
trials and the assumption of a fixed (or known) slope vs. a variable
(or unknown) slope. A—N=300, fixed slope; B—N =300, variable
slope; C—~N=120, fixed slope; D—N=120, variable slope. Error bars
represent +1.96 binomial standard errors for each point. The dot-
ted lines represent the outer limits of straight lines that can be fit-
ted through the error bars. The horizontal arrow through the data
point at Z=0 spans the distance between the dotted lines, and
represents a graphical estimate of the confidence limits. The two

-~ arrows above the abscissa mark the estimated confidence limits.

number of trials per point, k is the number of stimuli,
and N = nk is the total number of trials. Figure 2 shows
the effect of varying n (100 vs. 40) and consequently N
(300 and 120) for three stimulus values. The graphical
approach for two cases—fixed (or known) slope and vari-
able (or unknown) slope are shown in the left and right
columns of Figure 2, respectively. In the fixed-slope case,
the assumed slope equals 1 and only the location parameter
is to be estimated; in the variable-slope case, both the lo-
cation and the slope are to be estimated.

In the fixed-slope cases, the outer dotted lines delimit
the family of possible lines of slope = 1 that will fall en-
tirely within the binomial error bars for the three chosen
stimulus values. Similarly, in the corresponding variable-
slope cases, the outer dotted lines delimit the family of
all possible straight lines, of whatever slope, that will fall
entirely within the same three error bars. The arrows
dropped from the limiting dotted lines to the abscissa pro-
vide graphical estimates of the 95% confidence limits for
T,s. It must be emphasized that these graphical estimates
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of the confidence limits are inexact (too large) and are
presented only as an intuitive guide.*

Several inferences can be drawn from Figure 2. First,
in each pair of graphs, confidence limits for T,s are larger
in the variable-slope case. The need to estimate the slope
parameter results in greater uncertainty in the estimate
of T,s than does estimating the location parameter alone.
Second, obviously, the confidence limits become larger
with smaller values of N. Third, the confidence limits are
asymmetrical. This asymmetry also implies that the con-
fidence limits cannot readily be calculated from commonly
used (symmetrical) formulas such as +1.96 standard er-
rors, and that intuitive statistical comparisons based on
values of the standard error will be misleading.

The optimum placement of trials along the stimulus con-
tinuum will vary somewhat for different values of N, and
with the choice of a fixed or variable-slope approach.
When the slope is known, it makes sense to place all trials
near the point that provides maximal information on the
location of the curve, and this point is the same (83 %)
for all values of N. When the slope is unknown, the choice
of stimulus locations involves a careful balancing of two
factors—the magnitudes of the error bars, which are them-
selves asymmetrical about T,s, and the vertical separa-
tion between the tested points—in order to minimize the
confidence limits for the estimated T,s. The balance will
vary with N: the smaller N, the farther displaced from
the center of the distribution will be the optimal stimulus
values.

Asymmetrical Placement of Trials

Since the binomial errors associated with a 2AFC psy-
chometric function are asymmetrical, sampling above the
center of the distribution is generally a better choice than
sampling below its center. This effect is illustrated in
Figure 3 for the variable-slope case.

Figures 3A and B show, for n = 100 trials and a stimu-
lus spacing of 1, the effect of choosing the stimuli on the
high side of the distribution. The asymmetrical choice dia-
gramed in Figure 3A slightly increases the confidence in-
terval for Ts, relative to the symmetrical case shown in
the previous figure (2B). Note, however, that, if the up-
per asymptote were less than 1.0, the confidence limits
could increase dramatically. There are some asymmetri-
cal choices, such as the one shown in Figure 3B, that
produce estimates of T,s with a variance nearly equal to
symmetrical sampling. On the other hand, sampling much
below the center of the function can have disastrous ef-
fects on the variance, as shown in Figure 3D.

In summary, graphical analysis illustrates the follow-
ing properties of 2AFC psychometric functions:

(1) The variability of the estimated threshold (T,s) in
the 2AFC case is greater than the variability of the esti-
mated threshold (Ts,) in the yes-no case.

(2) Estimating both the threshold and the slope in-
troduces greater uncertainty in the estimate of T,s than
does estimating the threshold when the slope is assumed
to have some fixed value.

(3) Although the choice of symmetrically placed stimuli
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Figure 3. Graphical illustration of the effect of stimulus placement
on the confidence limits of T,s estimated from 2AFC data. All lines
and symbols as in Figure 2. Sampling above T, (A and B) produces
only a small increase in the uncertainty of the estimated T,;, and
is a better strategy than sampling below T,; (C and D).

will often produce the smallest estimated variance of Ts,
a range of stimuli placed somewhat asymmetrically above

-Tys will work as well (if the upper asymptote is near

100%), whereas displacement of the stimuli much below
T;s leads to a deterioration of the estimates of Ts.

PROBIT ANALYSIS APPLIED
TO THE 2AFC EXPERIMENT

Probit analysis is an iterative procedure for fitting a cu-
mulative normal curve to a set of data, estimating the best
choice for the parameters of the function according to a
maximum likelihood criterion. If there are sufficient
degrees of freedom in the data set and a sufficient num-
ber of trials, all parameters associated with the psycho-
metric function (u, o, C, D) can be estimated (see Fin-
ney, 1971, chap. 7), but for purposes of the present dis-
cussion we assume that C and D are known, so that only
estimates of x and o are required.

In the computational scheme described by Finney
(1971), the observed probabilities are initially transformed
into Z-units (cf. Figure 1) and a provisional line is fit to
the data either by eye or through some more quantitative
approach such as a least squares estimate of the y-intercept
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and the slope. Since observations with smaller error bars
(Figure 1) reduce uncertainty about the location and slope
of the best-fitting function more than do observations with
large error bars, differential weights are then assigned to
the points on the provisional line. The weighting coeffi-
cients, w, depend directly on the slope of the cumulative
normal function at the tested stimuli and inversely on
P*Q*. Each point is also weighted in direct proportion
to n, the number of trials for that stimulus. The probit
calculation can now employ the statistical structure of
weighted linear regression to estimate a best-fitting func-
tion. The regression procedure is performed repeatedly
so that successive estimates of the parameters converge
on the maximum likelihood estimates of the y-intercept,
«, and the slope, 8. These parameters are simply related
to the mean and standard deviation of the normal func-
tion: u=—a/B and o=1/8.

Standard Errors

An attractive feature of probit analysis is that it can pro-
vide quantitative estimates of the standard error of esti-
mation of T,s. In probit analysis, the simplest analytic for-
mula for the standard error of the mean (Finney, 1971,
p- 33) is

1
bvInw

@

where b is the sample estimate of the slope 8 of the trans-
formed function, and Znw is the sum of the products of
the probit weights w and the number of trials n for each
tested stimulus. _

This formula is a variation of the common statistical
formula s/+/N used to estimate the standard error of the
mean, because b is the reciprocal of the sample standard
deviation, s, and Inw, the weighted sum of the number
of trials at each point, is used in place of N. In other
words, in probit analysis, as in other realms of paramet-
ric statistics, the standard error of estimation of the mean
depends directly on the sample standard deviation, s, and
inversely on the square root of the number of trials. Use
of this simple ‘‘fixed slope’’ formula for the standard er-
ror will result in a serious underestimation of the true
value of the standard error if the total number of trials
is small, or if the sampled observations are not centered
near T,s. A better estimate of the standard error is given
by the following *‘variable-slope’” formula (Finney, 1971,
p- 34):

(T75 _7_()2
Taw(x—X)*’

1
SE = l/b\/):nw + 3

where X is the weighted mean of the sampled stimulus
array, and 1/Znw(x—X)?* is the variance of the slope.
Predictably, the most important parameter controlling
the magnitude of the standard error is sample size. Using
Equation 3, we calculated the standard error as a function
of the total number of trials (N) for one condition, which
we call the standard case (see Figures 1A and 1B). For

these calculations, we assumed a cumulative normal curve
with =0 and 0=1, so the slope of the function is 1. Thus,
for the standard case, the sampled stimuli fall at — 1, O,
and +1 Z-units, corresponding to percents correct (P*)
of 58%, 75%, and 92% for 2AFC and to percents yes
of 16%, 50%, and 84 %, for yes-no. Because the stimu-
lus values are given in Z-units, the calculated standard
error will also be in Z-units. For example, if the stan-
dard error is 1 Z-unit, then the uncertainty about the lo-
cation of T;s extends over most of the region covered by
the psychometric function, that is, from the stimulus value
corresponding to 58% to the value corresponding to 92%.

In Figure 4, we have plotted the calculated standard er-
rors for the yes-no and 2AFC techniques as a function
of N, along with a line that falls as «/N. The line is dis-
placed rightward by a factor of about 4 for the 2AFC case;
about 4 times as many trials must be used in 2AFC as
in yes-no to achieve the same value of the standard er-
ror. For any particular sample size, assuming that the
value of ¢ remains constant across changes in psy-
chophysical technique, the standard error for 2AFC is
roughly twice the size of the standard error found with
yes-no techniques. In a sense, this relationship is expected
because the slope of the 2AFC technique is half the value
of the slope for the yes-no technique, as is apparent when
Figures 1A and 1B are compared.

Sampling Strategies

Clearly, the experimenter wishes to sample the stimu-
lus domain in a way that provides unbiased, minimum var-
iance estimates of Ts. In principle, the experimenter can
choose the range, the number of sampled stimuli, and the
region of the stimulus domain sampled with respect to the
psychometric function. To compare sampling strategies,
we compute the standard error of T for different ranges
(R), different numbers of stimuli (k), and different regions
of the stimulus domain, as specified by the center (X) of
the sampled stimulus set. These choices are diagramed
in Figure 5. Calculations were performed with 60, 120,
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Figure 4. The standard error as a function of the total number
of trials for the standard case of Figure 1. The continuous lines show
predicted change if standard errors decreased as a function of
/N. The standard error of T, estimated from 2AFC data is about
twice the size of the standard error of T, estimated from yes-no
technique, assuming the same value of ¢ for both techniques.
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Figure 5. Graphical illustration of possible sampling strategies.
In principle, experimenters can control the range (R), the number
of stimuli (k), and the placement of the stimuli with respect to the
psychometric function (X).

and 300 total trials in the sample. Over a reasonable range
of variations, manipulations of the value of R, k, and X
had a relatively small effect on the value of the standard
error. In the variable slope case, assuming a reasonable
choice of stimulus placement, the standard error for 2AFC
is approximately:

30/N.

Confidence Limits

In most statistical contexts, when a sample size of 30
or more observations is used, the 95% confidence limits
of the mean extend from about 2 standard errors below,
to about 2 standard errors above, the mean. This simple
assumption often guides inferences about the significance
of the differences observed between experimental condi-
tions. In the case of 2AFC experiments, such an estimate
may be misleading, because, as the graphical analysis sug-
gests, the true confidence limits are sometimes large and
are frequently asymmetrical, with the lower limit usually
being farther from T,s than the upper limit.

Finney recommends the use of the general formula
given below to calculate the fiducial limits for T,s:

T +L(T —4 \/1—g+ (T7s—%)? @
T —g "t Ib(l—g) Znw ILnow(x—-Xx)*’

where t is the normal deviate corresponding to the desired
limits, for example, t=1.96 for the 95% fiducial limits,
and
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t2
&= PTawx—%7

We have calculated the 95% fiducial limits using this equa-
tion for many combinations of stimulus placement and
sample size (Teller, 1985). In many cases, the calcu-
lated 95% fiducial limits estimated by Equation 4 were
very large. For N ranging between 60 and 100 trials, the
fiducial limits extended from 2 to 4 Z-units in size, and
for N smaller than 50-60 trials, the fiducial limits were
indeterminate, even for optimal stimulus placement.
Fiducial limits are indeterminate when the value of g
exceeds 1.0, and g will generally exceed 1.0 for small
samples (N < 60), using the 2AFC experimental
procedure.

SIMULATIONS

Our major concern in this paper has been an adequate
description of the variability of 2AFC thresholds, partic-
ularly for small samples. To check the validity of the
standard error estimated from Equation 3 and the fiducial
limits estimated from Equation 4, we used two computer-
simulation techniques to examine the sampling distribu-
tion of Tys.

In the first technique, enumeration, all possible
outcomes for each of the stimuli were weighted by the
binomial probability that such an outcome could occur.
For example, if the number of stimuli were 2, with 30
trials each, then the possible outcomes for each stimulus
included: O correct, 30 wrong; 1 correct, 29 wrong; 2
correct, 28 wrong, etc. Each of the possible combinations
of outcomes for the two stimuli defined a psychometric
function and a threshold estimate, T,s. In the second
technique, Monte Carlo simulation, the computer gener-

.ated a sample percent correct for each value of P* by

calling a random-number generator biased at the P* value
n times. Probit analysis was then used to fit a best-fitting
cumulative normal curve to the computer-generated data
and to provide an estimate of T,s. This sequence was
repeated 1,200 times to yield 1,200 estimates of T,5. For
both simulation techniques, the upper and lower threshold
values that would exclude the upper and lower 2.5% of
the simulated population, respectively, were taken as the
95% confidence limits.

We first simulated the sampling distribution of T, for
the case of the two stimuli and a sample size of 60 trials
(30 trials per stimulus), exploring the effect of range and
stimulus placement on the confidence limits. Figure 6
shows the 95% fiducial limits (X symbols) calculated
from Equation 4, and the 95% confidence limits based
on the simulated distributions from the enumeration tech-
nique (squares) and from the Monte Carlo technique (filled
circles). The fiducial limits from Equation 4 were indeter-
minate for all other values of stimulus placement (X) for
which no points are plotted.

All three methods were in rough agreement on the mag-
nitude of the upper confidence (or fiducial limit),
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Figure 6. Confidence limits of the estimated value of T, for N=60, k=2 for different ranges
R=1.5, 2.0, 2.5, 3.0) as a function of stimulus placement as indicated by the center of sam-
pled set (X). The dotted line (X) shows the confidence limits calculated from equation (4).
The dashed line (0) shows the simulated confidence limits found with the enumeration tech-
nique. The continuous line (¢) shows the simulated confidence limits found with the Monte

Carlo technique.

which hovered at a value of about twice the calculated
standard error for values of X near the center of the
psychometric function or above it. The lower fiducial limit
from Equation 4 was typically much larger than the
simulated values. We concluded that this equation failed
to give an accurate estimate of the confidence limits of
small 2AFC samples.

Equation 4 is based on an approximation that could be
inappropriate for small samples and a high value of C,
for example, 0.5 for the 2AFC case. Finney (1971) states
that well-behaved data almost always give a value of g
substantially smaller than 1.0 and usually less than 0.4.
For the 2AFC case, we found that the value of g gener-
ally exceeds 0.4 when the total number of trials is less
than 130, and often is greater than 1.0 even for optimally
placed stimuli when N is less than 60 trials.

The patterns of results from the two simulation tech-
niques were quite similar, although generally the Monte
Carlo technique produced somewhat smaller values.? The
confidence limits estimated by enumeration are a more
accurate representation of the true characteristics of the
underlying sampling distribution of T,s. However, the
enumeration approach sometimes led to counterintuitive
conclusions. Consider the confidence limits from the
enumerations shown in the right-hand corner of Figure 6

for R=3 and X=1.5. The true percents correct for the
two stimuli falling at O and 3 corresponded to 75% and
99.9%, respectively, and, therefore, the most common
value associated with the stimulus at 3 Z-units was 30
correct, 0 wrong. Mathematically, 100% correct is
infinitely far from the center of a cumulative normal distri-
bution. Thus, the psychometric function for this enumer-
ated condition was often infinitely steep. The estimated
value of T,s was the stimulus value corresponding to the
other percent correct, which in this case was 0, since the
best-fitting function frequently consisted of a vertical line
through 0. The residual variation in T,s depended only
on those cases in which the percent correct at 3 Z-units
was less than 100%, so the confidence limits estimated
by enumeration for this point were very small.

This peculiar case revealed a danger in small-
sample-variable-slope estimation, particularly for k=2.
As the number of trials per stimulus is decreased, the
chance of infinitely steep functions is increased. If, for
example, only 10 trials had been used for each of two
stimulus levels corresponding to true percents correct of
58% and 92 %, then more than 80% of the functions would
be infinitely steep, because one of the stimuli would have
produced a percent equal to or below 50% or equal to
100%. Infinitely steep psychometric functions contain lit-
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Figure 7. The simulated sampling distributions of the estimated value of T, for the stan-
dard case for four different values of N, the total number of trials. Distributions based on
1,200 simulated values using the Monte Carlo technique. The curve drawn through the points
is a normal distribution with a standard deviation equal to the calculated standard error
(Equation 3) for the indicated sample size. The vertical lines show +1 and +2 standard er-
rors. The arrows under the abscissas indicate the stimulus values that correspond to cu-
mulative percentages of simulated values of 2.5%, 16%, 84%, and 97.5%. The arrow la-
beled “mean” is the average of all simulated values falling between +4 Z-units.

tle information about the location of the mean and should
be avoided, either by increasing the number of stimuli
and the number of trials or by constraining the slope’s
upper limit.?

Because of the substantial agreement between the two
simulation techniques, we used only the Monte Carlo
technique (1,200 simulations) to explore other questions
related to sampling strategies. The influence of the total

number of trials N on the shape of the sampling distribu-
tions of T,s is shown in Figure 7 for the standard case.
We have plotted the number of simulated values falling
within intervals 0.25 Z-units wide for a range extending
over +2 Z-units. The arrows on the abscissas, labeled
‘‘Mean,’’ point to the average of all the simulated values
of T,s falling between +4 Z-units for each distribution.
The curve superimposed on each set of points is a normal
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distribution with a standard deviation equal to the standard
error calculated from Equation 3 for this sample size. The
vertical lines cutting through the normal curves demar-
cate +1 and 42 calculated standard errors. On the abscissa
of each graph, arrows have been drawn to show the value
that includes +34% of the simulated distribution and
147.5% of the stimulated distribution, that is, at the
cumulative percentages of the simulated distribution
corresponding to 2.5%, 16%, 84%, and 97.5%. If the
sampling distribution is normally distributed, the arrows
should fall near the vertical lines denoting +1 and 12
standard errors, and clearly they do not for the three lower
distributions.

Three trends were apparent in the simulated sampling
distributions as N decreased. First, the width of the dis-
tributions increased; second, the confidence limits were
no longer equal to twice the calculated standard error; and
third, the distributions were asymmetrical. In short, the
simulations confirmed our qualitative observations based
on the graphical approach. For N=150 trials, the
simulated sampling distribution is close to a normal distri-
bution, but for N=60, 45, or 30, the distributions are
badly skewed, a skew sufficient to produce a small bias
in the mean of the distribution toward the negative side.
The observed asymmetry is a property of 2AFC distri-
butions, since the simulated sampling distribution for
thresholds estimated from the yes-no psychometric
functions is perfectly symmetrical and is well fit by a

normal curve even when the total number of trials (N)
is as small as 60.

Sampling strategies (Figure 5) can markedly influence
both the magnitude of the confidence limits and their
asymmetry. In an extended series of simulations of N=60,
we manipulated the range (R), number of stimuli (k), and
the center of the sampled set (X). The results of these
simulations are plotted in Figure 8. Generally, the
simulated confidence interval is larger than +2 standard
errors, which, for 60 trials, should be equal to about +0.8
Z-units.

Range had a relatively small effect on the size of the
limits, but sampling with a small range placed a strong
constraint on the placement of the stimuli. For the smallest
range, small shifts in the position of the stimuli led to a
rapid increase in the limits, whereas for the largest range,
the limits remained roughly constant for large shifts in
the center of the sampled stimulus set. As expected,
displacements of the center of the sampled stimulus set
toward the high end of the psychometric function were
relatively innocuous, whereas equal displacements toward
the low end of the function typically produced large varia-
bility in the estimated threshold. '

For all ranges, the smallest and most symmetrical limits
were found with k=2. When a small number of stimuli
was used to estimate psychometric functions, the number
of trials per stimulus was obviously larger for k=2, with
the effect that the intrinsic binomial variability of each
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Figure 8. The confidence limits of the estimated value of T,s based on Monte Carlo simu-
lations of N=60 for four values of range. As a function of stimulus placement (X), the
continuous line (#) shows the limits for k=2; the dotted line () shows the limits for k=3;
the dashed line (A) shows the limits for k=5.
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sampled point was smaller. Thus, curves with very shal-
low slopes were less common the smaller the number of
tested stimuli. This benefit diminished as the range in-
creased. Because the chance of observing a psychomet-
ric function with an infinitely steep slope is substantial
for k=2, a better strategy for small samples is the choice
of three to five stimuli and a large range.

Our results from the simulations led to the following
conclusions about the statistical properties of 2AFC psy-
chometric functions:

(1) For N < 60, the sampling distribution of the esti-
mate of T,s is not normally distributed, but is skewed,
usually in a negative direction. The skew is sufficient to
introduce a small bias in the estimator.

(2) For small N, the probit analysis equations do not
adequately characterize the standard error and the confi-
dence limits associated with the estimate of Tjs.

(3) For small N, sampling with two stimulus values
(k=2) will produce the smallest confidence interval, but
the probability of encountering samples with percents
correct less than or equal to 50%, or equal to 100%, is
quite high. Since such samples cannot provide an adequate
estimate of the slope of the psychometric function, sam-
pling with three stimuli (k=3) is a better strategy.

(4) For small N, sampling with widely spaced stimuli
will generally yield more stable confidence intervals over
a broader range of stimulus placements, whereas sampling
with closely spaced stimuli will make the choice of stimu-
lus placement critical.

DISCUSSION

The statistical properties of thresholds estimated from
2AFC methods are surprisingly poor, a fact that is not
widely recognized. We have argued here that threshold
estimates derived from 2AFC techniques are about twice
as variable as corresponding estimates derived from yes-
no methods and that confidence limits are large, asym-
metrical, and not readily predictable from conventional
standard error formulas. All of these faults are exacer-
bated for small samples. The confidence limits for T,s
in 2AFC experiments do not become well behaved until
Ns of 100 or more trials are used. Two questions remain:
Are these conclusions inescapable? Are there alternative
approaches by which these characteristics can be mini-
mized or avoided?

The Stimulus Domain

The importance of these conclusions obviously depends
on the steepness of the psychometric functions expected,
the degree of accuracy sought in the estimate of Ts, and
the number of trials available. Throughout the present
paper, the stimuli, standard errors, and confidence limits
are scaled in units of g, the standard deviation of the un-
derlying cumulative normal curve. When psychometric
functions are steep in the stimulus domain (o is small),
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the standard error and the confidence limits are cor-
respondingly small in that domain, and a given error of
estimation of Ts in Z-units becomes less serious. On the
other hand, as psychometric functions become flatter or
the degree of accuracy needed becomes greater in the
stimulus domain, the statistical properties of estimates of
T,s become more important.

Experimental Design

Some practical guidelines for the design of 2AFC ex-
periments follow from the influence of various factors on
the magnitude of standard errors and confidence limits.
In the typical case, the only factors the experimenter can
control exactly are N and k; the range (R) and stimulus
placement (X) are defined with respect to T,s and o. The
optimal placement of trials depends on how much infor-
mation the experimenter brings to the experiment. If
values of T,s and o are already rather well known,
Figure 8 can be used as a guide to the optimal placement
of trials for small samples. If the value of T,s is known,
but the value of ¢ is less well known, the range covered
by the stimuli should be broadened, because, as Finney
(1971, p. 143) says, ‘‘a misjudgement causing the actual
responses to be a little closer to (Ts) than was intended
may be catastrophic, whereas responses a little wider apart
than intended will usually have less serious conse-
quences.”’

If T;5 is not known with any degree of accuracy—if one
must necessarily run the risk of a large difference between
the center of the sample set (X) and T,s—a larger num-
ber of more widely spaced stimulus values must, of
course, be used, with the expectation that some of the
stimuli will be essentially wasted. What is perhaps less
obvious is that when T, is not known with any degree
of accuracy, it is better to err in the direction of positive
values of X, that is, in the direction of placing one’s

- stimuli too high rather than too low. The asymmetries of

binomial variability lead to the fact that standard errors
and confidence intervals change less for positive than for
negative shifts of equal magnitude.

Data Selection Rules

At the end of the experiment, the experimenter has a
new source of knowledge, the data themselves. In prac-
tice, experimenters do not apply statistical analysis blindly
to data; rather, they apply ad hoc or explicit criteria to
each data set, discarding those data sets that do not yield
reasonable estimates of the threshold. For this reason, the
simulated distributions of threshold estimates will not be
matched in practice.

Discarding of data obviously has disadvantages. In it-
self, it is not a solution to the problem of small N, be-
cause when data sets are discarded, trials are wasted. In
addition, unless the criteria for discarding data are for-
mally defined prior to the experiment, discarding data
opens the door to experimenter bias. It might be interest-
ing to simulate the use of the 2AFC method of constant
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stimuli, generating artificial data sets and using a series
of formal criteria for the discarding of data. Some rules
for discarding data (e.g., discard data sets that do not con-
form to a previously designated goodness-of-fit criterion)
may create a sampling distribution for small samples with
more favorable dispersion properties—smaller standard
errors and confidence intervals.* It should be possible to
seck out and specify data selection rules that provide an
optimum benefit/loss ratio, maximizing the goodness of
the statistical distribution of estimates, while keeping small
the number of worthwhile data sets discarded.

Staircase Methods

The most popular strategy for estimating a threshold
from a small sample is the use of staircases or other adap-
tive' procedures (Cornsweet, 1962; Hall, 1981; Watson
& Pelli, 1983; Watt & Andrews, 1981). Staircases have
one obvious advantage over the method of constant
stimuli—the efficient use of trials when little is known
about the location of the desired threshold. A well-
designed staircase rule will usually place most of the trials
in the steeper part of the psychometric function rather than
far in the tails. It is sometimes assumed, erroneously in
our view, that because staircase estimates of thresholds
are efficient, they are always much less variable than any
estimate based on the method of constant stimuli. But stair-
cases have no magical power. The accuracy of estimates
derived from staircases is constrained by the same fac-
tors as is the accuracy of estimation from data collected
by the method of constant stimuli—the number of trials,
binomial variability, and the shape of the psychometric
function. The variability of estimates derived from stair-
case data can never be less than the variability of esti-
mates derived from the method of constant stimuli selected
Jor the optimal deployment of trials.

This assertion can be supported on numerical as well
as logical grounds. Rose, Teller, and Rendleman (1970)
used a computer simulation technique to generate stan-
dard errors of estimation for 2AFC staircase. These simu-
lated standard errors can be compared with the standard
errors estimated from Equation 3 in the present paper for

the 2AFC method of constant stimuli.® A selected com-
bination of parameters from the two studies, matched as
closely as possible in terms of stimulus spacing (step size)
and number of trials, is listed in Table 1. As expected,
the standard errors of the staircase estimates sometimes
approach, but are never smaller than, the standard errors
of estimates from the method of constant stimuli with op-
timal placement of trials when comparable step sizes and
number of trials are used.

Alternative Procedures When N Is Small

We have only a few suggestions for alternative ap-
proaches in situations allowing fewer than 100 trials. If
one can assume a cumulative normal function with the
upper asymptote D=100%, the threshold criterion can
be shifted from 75% to 83%, where the intrinsic error
is minimal. This shift is not advisable if the upper aymp-
tote is below 98%, as is common with inattentive sub-
jects. If the tested population is well characterized and
the slope of the psychometric function known, it might
be reasonable to use a fixed slope approach, where the
available data are used to estimate only the location
parameter. Any difference between the assumed fixed
slope and the true slope of the tested individual may in-
troduce a bias in the estimate, but this cost may be toler-
able given the necessary imprecision inherent in the use
of small N.

Instead of attempting to estimate a threshold with an
inadequate number of trials, one could test each subject
on only a single stimulus value. On the basis of prior nor-
mative data, that value could be chosen to be high on the
psychometric function, perhaps at 83%, in the region
where the intrinsic error is smallest for average normal
subjects. The distribution of performance levels for nor-
mal subjects could be established. An individual subject’s
or patient’s performance below the normal range at that
stimulus value would then indicate a deficit with respect
to the normal population. An approach similar to this one
has been used recently to screen infants for possible visual
deficits (Dobson, Teller, Lee, & Wade, 1978; Fulton,
Manning, & Dobson, 1978).

Table 1
Comparison of Standard Errors for 2AFC Staircases and 2AFC Method of Constant Stimuli

2AFC Staircases (Rose et al., 1971)

2AFC Method of Constant Stimuli

Step Size Number of Number of SE Step Size Number of Optimal SE*
(Z-units) Intervals Trials (Z-units) (Z-units) k Range Trials (Z-units)
0.26 10 50 0.30 0.25 5 1 50 0.33

200 0.20 200 0.16
0.51 5 50 0.40 0.50 5 2 50 0.37
200 0.26 200 0.18
0.64 4 50 0.40 0.66 5 25 50 0.40
200 0.20 200 0.20
1.28 2 50 0.66 1.25 3 25 51 0.42
200 0.20 201 0.21
2.56 1 50 0.97 2.50 2 25 50 0.49
200 0.56 200 0.24

*For given values of range and k, the SE given is the minimum value found over all values of X; that is,

the optimum placement of trials is chosen.
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In summary, the statistical properties of forced-choice
methods are poorer than might be wished. Although a few
alternatives remain to be explored, we believe that this
variability is largely unavoidable and will have to be taken
into account in the design and interpretation of forced-
choice experiments.

We conclude with the reminder that statistical sampling
fluctuations provide only one source of the variability in
real experiments, and that the minimization of other
sources of bias and variability must be combined with
statistical theory in the design of experiments to be per-
formed on real subjects.
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NOTES

1. Qualitatively speaking, the intervals are too large because the ver-
tical bars represent individual confidence intervals for n=100 trials per
point, whereas the confidence limits for T,s should reflect the joint prob-
ability of obtaining all three data points, with a total N of 300 (see ap-
pendix for quantitative formulation).

2. The differences between the two techniques reflected differences
in programming strategies, choices usually made to prevent program
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“‘crashes’’ during the long simulation runs. For example, in the enumer-
ation approach, negative or zero slopes were replaced by a very small
Slope (0.001) in order to assign the estimated value of T, to the cor-
rect tail of the distribution. In the Monte Carlo approach, a special
problem arose in assigning a value to percents correct either equal to
100% or equal to or below 50%. Mathematically, these values lay in-
finitely far from the center of a cumulative normal distribution. In the
Monte Carlo simulations, these percentages were initially assigned a
value of 4 Z-units. Embedded in the probit analysis program was an
iterative routine which oscillated between functions corresponding to
these initial values and functions based on much larger values. For these
extreme percentages, the program failed to converge, and after six iter-
ations, the value of T;s from the last estimated psychometric function
was stored, and the program continued on to the next data set.

3. The probability of an infinite slope for k=2 is high even for N=60
and stimuli placed near the center of the psychometric function. There
is about a 30% chance that one of the two stimuli will fall at .5 or be-
low or at 1.0 if the true percents correct = .58 and .92 (—1 or +1 unit).
If k=3 and the tested stimuli cover the same range (—1, 0, 1), there
is only about a 6% chance of an infinite slope.

4. Alternatively, constraints can be placed on the slopes. For exam-
ple, consider the case of 20 trials at each of the locations Z=—0.5 and
Z=+1.5. Table 2 shows that confidence limits estimated by enumera-
ation are —1.9 and +1.5. These enumerations were calculated with the
slopes constrained to lie between 0 and oo. If the upper slope constraint
were strengthened to have the slope between 0 and 3, the confidence
limits would become —1.9 and 1.2. If the slope were further constrained
to be greater than .33, the confidence limits would become —1.35 and
1.2. Thus, a fairly loose constraint on the slope is able to produce a
significant reduction in the size of the confidence interval.

5. Since the parameter of range is unspecified in staircase techniques,
we have converted the units of both Rose et al. and the present paper
to *‘step size,”’ that is, to the spacing of adjacent stimuli along the stimulus
dimension. Conversion of units was carried out as follows. Rose et al.
used a ramp psychometric function, and scaled the stimulus axis in terms
of the interval I,—1I, between the lower and upper ends of the ramp.
Ancillary simulations showed that ramp and cumulative normal func-
tions yielded quantitatively similar standard errors of estimation. In-
spection of Rose et al.’s assumptions and the normal table shows that
the interval I, —I, corresponds to 2.56 Z-units in our terms. Rose et al.
used the number of intervals between I,~I, as their parameter of stimulus
spacing. That is, if adjacent stimuli were so spaced as to fall at I, and
1,, the number of intervals between L,, I, is 1 and the step size is 2.56
Z-units; if stimuli fall at I,, I,, and halfway between, the number of

" intervals is 2 and the step size is 1.28 Z-units. In the parameter space
of the present paper, the step size is the range divided by the quantity,
k—1; thus, if k=3 and R=2, the step size is 1 Z-unit.

APPENDIX

Graphical Analysis
In Figures 2 and 3, a qualitative graphical analysis was used
to determine confidence limits on the threshold estimate. These

Table 2
95% Confidence Limits
K=2,R=20,X=0 K=2,R=20,X=.5
Stimuli -1, 1 (-0.5, 1.5)
N 40 60 40 60
1.96 SE (Equation 3) -1.01, 1.01 —.83, .83 -.93, .93 -.76, .76
Finney (Equation 4) indeterminate -3.0, 0.7 indeterminate -1.6, 0.7
Enumeration -1.6, 1.0 -1.0,1.0 -19,1.5 -1.1, 1.5
Monte Carlo -1.4,08 -1.0, 0.6 -1.8,1.3 -0.9, 1.1
Graphical Analysis -1.4,1.0 -1.0, 1.0 -1.7, 1.5 -1.0, 1.5
(Maximum Likelihood)

Graphical Analysis -1.2,14 -0.9, 1.0 -1.6, 1.5 -1.0, 1.5

(chi-square)
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limits were obtained by shifting the position of a straight-line
fit in such a way that the threshold was brought to an extreme
value, subject to the constraint that the line not lie outside the
error bars of any data point. A modification of the constraint
based on the chi-square function enables graphical analysis to
have quantitative validity.

The chi-square function can be written as

x: = }:(POi—PF_i)z/Upiz, (A1)
i

where gpi? = Pgi(1—Pgi)/n; and Pg is the underlying expected
probability and Po; is the observed probability. If the difference

Ap = Po—Pg is small, then the numerator can be converted
to z-scores.

D-0

K3

AP =

exp(—Z*/2)AZ, (A2)

where D and C are the upper and lower asymptotes. Thus, Equa-
tion Al can be written as

x* = Z(Zoi—Zgi)/ 0z, (A3)
where

, _ 27Pi(1 —Priexp(Zi%)
Ozi" = ni(D—C)z

The weighting function 1/¢%; is precisely the weighting func-
tion w; defined and tabulated by Finney (1971).

The optimal values for threshold and slope would be those
values that minimize chi-square. When the threshold or slope
deviate from the optimal values, the chi-square will increase.
The threshold value that increases chi-square to 1.0 (allowing
the slope to adjust to a new optimal value) corresponds to the
68% confidence limit. An increase in chi-square to 4 corresponds
to the 95% confidence limit. One of us (Klein) has a probit anal-
ysis program available that includes an option for printing out
a two-dimensional array of values of chi-square for all values
of threshold and slope.

A similar discussion applies when using the likelihood func-
tion rather than chi-square, except that a change in the logarithm
of the likelihood function is half the corresponding change in
chi-square.

In Table 2, we compare the 95% confidence limits for several
stimulus locations and for several methods of analysis. The max-
imum likelihood graphical analysis corresponds quite closely
(within 15%) to the exact confidence limits given by the enumer-
ations. The chi-square analysis is almost as good, with signifi-
cant errors only for the case of 20 trials and stimuli at +1 and
—1 Z-units. Finney’s formula, given by Equation 4, has a large
disagreement with the enumerations, as does +1.96 SE. Thus,
maximum likelihood graphical analysis is a highly satisfactory
method for estimating confidence limits.

(Manuscript received October 29, 1982;
revision accepted for publication February 25, 1985.)



