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Genuine power curves in forgetting:
A quantitative analysis of individual subject

forgetting functions

JOHN T. WIXTED and EBBE B. EBBESEN
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La Jolla, California

Wixted and Ebbesen (1991) showed that forgetting
functions produced by a variety of procedures are often
well described by the power function, at- b, where a and b
are free parameters. However, all of their analyses were
based on data arithmetically averagedover subjects. R. B.
Anderson and Tweney (1997) argue that the power law of
forgetting may be an artifact ofarithmetically averaging
individual subject forgetting functions that are truly ex­
ponential in form and that geometric averaging would
avoid this potential problem. We agree that researchers
should always becognizant ofthe possibility ofaveraging
artifacts, but we also show that our conclusions about the
form offorgetting remain unchanged (and goodness-of-fit
statistics are scarcely affected by) whether arithmetic or
geometric averaging is used. In addition, an analysis of
individual subject forgetting functions shows that they,
too, are described much better by a power function than
by an exponential.

The idea that the power law offorgetting may be an ar­
tifact of averaging data over subjects is one that we have
encountered often since reporting our findings on the
form offorgetting several years ago (Wixted & Ebbesen,
1991). Although we investigated the possibility of aver­
aging artifacts in great depth at that time, we did not ac­
tually report the results ofthat investigation. R. B. Ander­
son and Tweney's (1997) recommendation that researchers
seriously consider the possibility of averaging artifacts
is one that we fully endorse, because, as they show, such
artifacts can arise under certain conditions (viz., when
high measurement error is combined with floor effects).
In hindsight, we also recommend that researchers report
the outcomes of their inquiries into the possibility ofav­
eraging artifacts lest they arouse the suspicions of a nat­
urally skeptical audience. Wefailed to do that in our earlier
report. The purpose of the present article is to address this
issue in some detail, in part by presenting a detailed
analysis of individual subject forgetting functions.

Another reaction we have encountered frequently, one
not specifically mentioned by R. B. Anderson and Tweney
(1997), concerns why anyone should care whether or not
the form offorgetting is consistent across different types
ofmemory tests and stimulus materials. The fact that the
form offorgetting may be a stable property ofmemory is
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interesting in its own right to some (Rubin & Wenzel,
1996). Nevertheless, to others, an apparent empirical reg­
ularity in the absence of detailed theoretical considera­
tions is little more than a mathematical curiosity (e.g.,
Simon, 1992). In this article, we also consider both the
practical utility and the theoretical implications of the
fact that forgetting is generally well described by functions
that involve time raised to a power.

The Effects of Averaging Over Subjects
Although Ebbinghaus (1885/1913) initiated inquiry

into the subject more than a century ago, only a few inves­
tigations into the mathematical form of forgetting have
ever been performed. In most of the relevant studies, only
a single procedure was used to generate a forgetting func­
tion. Ebbinghaus, for example, used savings for nonsense
syllables and found that a complex logarithmic function
described his data. Wickelgren (1970, 1972) generally re­
lied on recognition tests and found that an exponential
function described forgetting from short-term memory
but that a power function described forgetting from long­
term memory. Rubin (1982) used autobiographical mem­
ory tests in which subjects were asked to supply dates as­
sociated with personal memories. The power function
described performance on this task better than the expo­
nential. In the animal memory literature, White (1985) em­
ployed the delayed matching-to-sample task and found that
the exponential often provided a good fit to these data.

In an effort to test whether the mathematical form of
forgetting might be the same across tasks and species,
Wixted and Ebbesen (1991) collected forgetting functions
for the short-term recall ofwords, long-term recognition
offaces, and delayed-matching-to-sample in pigeons. In
addition, like 1.R. Anderson and Schooler (1991), we re­
analyzed the famous savings function reported long ago
by Ebbinghaus. Six different commonly used functions
were fit to these data, and a clear pattern emerged. Specif­
ically, the power and logarithmic functions described the
data accurately (with the edge going to the former), but
the exponential and hyperbola performed poorly.

Wixted and Ebbesen's (1991) analyses were all per­
formed on data arithmetically averaged over subjects (with
the exception of Ebbinghaus's savings function). We an­
alyzed averaged data because the resulting forgetting
functions were very smooth and were therefore particu­
larly suitable for discriminating between rival mathe­
matical models. However, researchers have long known
that averaging over subjects can produce a group func­
tion with mathematical properties that are not represen­
tative of the individual subject data (e.g., Estes, 1956;
Sidman, 1952). R. B. Anderson and Tweney (1997) ob­
served further that arithmetic averaging of exponential
functions in particular can yield a group curve that is fit
better by the power function than by the exponential if
the data are variable and near the floor. At the very least,
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Figure 1. Upper panel: mean d' scores arithmetically averaged
over subjects for each retention interval in the face recognition
experiment. Lower panel: mean d' scores geometrically averaged
over subjects for each retention interval in the face recognition
experiment. The solid curve in both graphs represents the best
fitting power function, and the dashed curve represents the best
fitting exponential.
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method of averaging would produce an exponential group
function if the component functions were exponential.
Once again, the best fitting power function is shown as a
solid curve and the best fitting exponential is shown as a
dashed curve. As R. B. Anderson and Tweney (1997) have
noted, the advantage of the power function over the ex­
ponential as measured by the difference in the percent­
age of data variance accounted for by the two functions
is not quite as great when geometric averaging is used.
Nevertheless, the advantage ofthe power function is still
large, and the deviations exhibited by the best fitting ex­
ponential are still considerable. Thus, for these data at
least, the conclusion that the power function provides a
much better fit than the exponential does not appear to
be the result of an averaging artifact.

Wixted and Ebbesen (1991) also reported the results of
an experiment that used free recall instead of recogni­
tion. Subjects were exposed to lists of six words, followed
by a filled retention interval during which they were re­
quired to overtly rehearse distractor words, followed by
a free recall period during which they were asked to re­
call as many of the original words as possible in any order

R. B. Anderson and Tweney show that arithmetic aver­
aging exaggerates the advantage of the power function
over the exponential in terms of the percentage of data
variance accounted for. Thus, fitting a curve based on
arithmetic averaging may not provide a fair test of the
hypothesis that forgetting functions are truly exponen­
tial in form.

An exponential function has the form ae:», and a
power function has the form at:», where a and b repre­
sent constants and t represents time. Geometric averag­
ing of either function preserves its form in a group func­
tion (Estes, 1956). Thus, as R. B. Anderson and Tweney
(1997) noted, one way to evaluate whether or not averag­
ing artifacts were responsible for the findings that we re­
ported is to reanalyze the data by using geometric averag­
ing. In the following section we do just that. A second and
more direct way to address the issue is to fit data sepa­
rately for individual subjects, and the results of such an
analysis are also presented below.

Geometric averaging. One experiment that we re­
ported (Wixted & Ebbesen, 1991) involved long-term rec­
ognition ofpreviously studied faces. Subjects studied 40
faces, followed by a retention interval ranging from 1 h
to 2 weeks for different groups of subjects, followed by
a yes/no recognition test involving the 40 studied faces
randomly intermixed with 40 new faces. Figure 1 pre­
sents the recognition data from this experiment. We re­
ported these data in 1991, except that we now use d' rather
than percent correct as the dependent measure. The upper
panel of the figure shows the values obtained by using
arithmetic averaging over subjects. The best fitting power
function is shown as a solid curve and the best fitting ex­
ponential is shown as a dashed curve.

One question that often arises at this point concerns
whether or not the dashed curve really represents the best
fitting exponential. This question arises because the ex­
ponential "curve" looks more like a straight line. In fact,
it is the best fitting exponential according to a least squares
criterion. That is, the two parameters of the exponential
were adjusted to minimize the sum ofsquared deviations
between the predicted and obtained points. Any adjust­
ment of the exponential's free parameters to allow for a
more apparent curvilinear shape yields deviations from
the data greater than those shown in Figure 1 (i.e., the per­
centage of data variance accounted for decreases).

The percentage ofdata variance accounted for by each
function is shown in the legend. The power function ac­
counts for almost all ofthe variance, whereas the exponen­
tial accounts for less than 80%. More importantly, the ex­
ponential exhibits obvious systematic deviations from
the data. The question of interest is whether those devia­
tions were caused by arithmetic averaging over subjects.

The lower panel of Figure 1 shows the same data, but
this time geometric averaging over subjects was used.
That is, each data point in the figure was obtained by tak­
ing the nth root of the product of n d' scores (where n is
the number of subjects constituting the mean). This
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Figure 3. Proportion correct for 8 subjects in the free recall
experiment. The solid curves represent the best fitting power
functions for each subject in each condition. Filled circles, slow
presentation rate; open circles, fast presentation rate.

represent performance in the three sessions involving the
slow presentation rate (high degree oflearning), and the
open circles represent performance in the three sessions
involving a fast presentation rate (low degree of learn­
ing). The solid curves represent the best fitting power func­
tions. Although some subjects produced variable data,
an examination of this figure suggests that the power func­
tion does a reasonably good job of capturing the trends
in the data.

Table 1shows the percentage of data variance accounted
for by the power function and by the exponential for the
data shown in Figure 3. Of the 16 separate fits (2 for each
subject), the power function outperformed the exponen­
tial 11 times and the exponential outperformed the power
function 5 times (although 2 of those were virtual ties).
Of the 5 cases in which the fit of the exponential func­
tion exceeded that of the power function, a straight line
actually provided the best fit in 4. Thus, a more accurate
summary is that the power function fit best in 11 cases, the
straight line in 4, and the exponential fit best in 1 case.
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that they wished. The retention interval ranged from 2.5 to
40 sec across trials, and two learning conditions were
used (fast vs. slow presentation rate).

The upper panel ofFigure 2 presents the values obtained
by using arithmetic averaging over subjects and learning
conditions. Once again, these data reveal the obvious ad­
vantage ofthe power function. The lowerpanel of Figure 2
shows the same data, but this time geometric averaging
over subjects and conditions was used. As before, the ad­
vantage of the power function declines ever so slightly,
but its clear superiority remains plain to see.

Individual subject analyses. Each group of subjects
in the face recognition experiment was tested following
a single retention interval (i.e., a between-subjects de­
sign was used). As a result, it was not possible to analyze
individual forgetting functions. Subjects in the free recall
experiment, however,were run for six sessions each (three
involving a fast presentation rate and three involving a
slow presentation rate). Because all subjects were exposed
repeatedly to each retention interval, it was possible to
analyze the shape ofeach subject's forgetting function to
determine whether or not the mean function was repre­
sentative of their performance.

Figure 3 shows the data produced by the 8 subjects who
participated in the recall experiment. The filled circles

4-

Retention Interval (5)

Figure 2. Upper panel: mean proportion correct recall arith­
metically averaged over subjects for each retention interval in the
free recall experiment. Lower panel: mean proportion correct re­
call geometrically averaged over subjects for each retention in­
terval in the free recall experiment. The solid curve in both graphs
represents the best fitting power function, and the dashed curve
represents the best fitting exponential.
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Subject a b a b

I 0.74 0.11 0.87 0.07
2 0.62 0.17 0.79 0.17
3 0.53 0.05 0.79 0.07
4 0.65 0.11 0.98 0.08
5 0.58 0.09 0.67 0.03
6 0.61 0.14 0.89 0.17
7 0.87 0.30 1.00 0.26
8 0.71 0.17 0.86 0.17

M 0.66 0.14 0.86 0.13

A Note on Odds Versus Percent Correct
In the preceding analysis, the proportion of items re­

called (which can range from a high of 1.0 to a low of 0)

fitting the mean data are shown in the figure. Those val­
ues are very similar to the mean values obtained from in­
dividual subject fits presented in Table 2. Thus, in this
case at least, arithmetic averaging across subjects did not
distort either the form or the statistical properties of the
individual subject forgetting functions.

A second interesting observation about the parameter
estimates shown in Table2 is that both the degree ofleam­
ing (captured by the a parameter) and the rate offorgetting
(captured by the b parameter) are stable within subjects.
The correlation between the values of b obtained in the
high and low degree ofieaming conditions (which were run
in separate sessions) was.911. One would expect the rate
offorgetting to be a stable property ofthe subject, and the
results shown in Table 2 confirm this expectation. The
within-subjects correlation in the a parameter was .679.

A third interesting observation is that the correlation
between the parameters a and b across subjects appears
to be positive. That is, a high value ofa (indicating a high
degree of learning) is associated with a high value of b
(indicating a faster rate of forgetting). The correlation be­
tween a and b is .834 in the low degree ofiearning con­
dition and .573 in the high degree oflearning condition.
Note that this is in contrast to the relationship between a
and b across conditions. That is, although a increases sig­
nificantly with study time (from 0.66 to 0.86), the value
of b stays essentially constant (0.14 and 0.13, respectively).
Across subjects, by contrast, the two parameters appear
to be positively correlated. This correlation was unex­
pected and should probably be replicated before one takes
it seriously. Nevertheless, if this is a replicable result, the
theoretical implications would be intriguing. It may, for
example, represent differences in the strategies used by
subjects to memorize list items. Some subjects may con­
centrate on a few of the words, memorizing them well. For
them, overall degree of learning would be low, but so
would the rate offorgetting (because the items are well en­
coded). Other subjects may attempt to memorize all ofthe
items, producing a greater number of more vulnerable
traces. For them, degree oflearning would be high, but the
items would be lost more quickly.

Short Long

Table 2
Power Function Parameter Estimates for the
Individual Subject Data Shown in Figure 3

56.9
79.1
21.5
77.2
54.1
90.8
97.8
96.0

71.7

Power

14.1 36.9 26.6
69.0 94.1 96.2
62.5 46.2 23.7
68.5 41.0 60.1
12.4 42.8 28.6
~.5 ~.I ~.3

77.3 97.3 80.9
88.4 86.2 72.0

57.0 70.9 56.7

I
2
3
4
5
6
7
8

M

Table 1
Percentage of Variance Accounted for

by Exponential and Power Functions for the
Individual Subject Forgetting Functions Shown in Figure 3

Short Long

Exponential Power ExponentialSubject

Individual Subject Parameter Estimates
For each ofthe fits shown in Figure 3, the two param­

eters of the power function (at-b) were adjusted to min­
imize the sum ofsquared deviations. Table 2 presents the
parameter estimates obtained for each subject. Note that
the rate of forgetting (captured by the b parameter) var­
ied considerably across subjects, ranging from a low of
.05 (Subject 3, fast condition) to a high of .30 (Subject 7,
fast condition). An examination of the forgetting func­
tions produced by these 2 subjects (which are shown in
Figure 3, open circles) clearly reveals the differences in
their rates of forgetting. The a parameter also varied con­
siderably across subjects, ranging from a low of .53
(again, Subject 3, fast condition) to a high of 1.0 (Sub­
ject 7, slow condition). This parameter represents the es­
timated level of performance after one unit of time (i.e.,
after a l-sec retention interval in this case).

These parameters reveal several interesting facts. First,
the means of the parameter estimates (shown at the bot­
tom ofTable 2) almost exactly match the parameter esti­
mates obtained from fitting the power function to the re­
call data arithmetically averaged over subjects. Figure 4
shows the mean data and corresponding fits. These are the
same data shown in Figure 2, except that now the arith­
metically averaged data are shown separately for the two
learning conditions. The parameter values obtained from

The mean percentage ofdata variance accounted for was
about 71% for the power function and about 57% for the
exponential. These data suggest that the form ofthe mean
function is, for the most part, representative of the indi­
vidual subjects. Thus, while we endorse R. B. Anderson
and Tweney's (1997) recommendation that researchers
look into the possibility ofaveraging artifacts (especially
when variable data near the floor are averaged together),
we conclude that such effects played a minimal role in the
analysis offered by Wixted and Ebbesen (1991).

We turn now to a closer look at the power function pa­
rameter estimates obtained from fitting the individual
subject data. The ability to analyze these estimates is one
ofthe practical advantages of quantitatively analyzing for­
getting functions (see White, 1985, for a particularly in­
structive example of this approach).
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ing t raised to an exponent will do a good job of fitting
the data (the simple power function that we used here is
only one of many with that property). Moreover, when
the individual subject correlational analyses just described
are repeated using odds as a dependent measure, the same
conclusions are reached. That is, both the degree oflearn­
ing (a) and the rate offorgetting (b) are stable across sub­
jects, and the correlation between a and b across subjects
(but not across conditions) is positive.

Note that for recognition, the use of d' has the appro­
priate possible range (infinity to zero). Thus, fitting the
simple power function to d' does not raise the same con­
ceptual problem that one encounters with percent correct.
The point here is that, for conceptual consistency, the range
of the mathematical function used to describe the data
should correspond to the possible range ofthe dependent
measure.

as we have done in the past, one might be better offusing

Figure 4. Mean proportion correct recall for the fast and slow
conditions of the free recall experiment. The solid curves repre­
sent the best fitting power function.

Averaging Exponential Recall Latency Functions
Up to this point, we have argued that individual sub­

ject forgetting functions (as well as forgetting functions
averaged over subjects) are described more accurately by
the power function than by the exponential. Might the
power function be so inherently flexible that it could out­
perform (or, at least, rival) the exponential when the data
are truly exponential in form? That is the issue we address
in this section.

In a separate line ofresearch, we have also analyzed the
mathematical form of recall functions, which represent
the number of items recalled during each second of the
recall period that follows list presentation (Rohrer & Wix­
ted, 1994; Wixted & Rohrer, 1993). Typically, recall be-.
gins at a rapid rate and then tapers off to zero according
to a curvilinear function of time (in the same way that
forgetting functions do).

In one ofthe experiments reported by Rohrer and Wix­
ted (1994), subjects were exposed to a free recall task
much like the one described earlier, but the retention in­
terval was not manipulated. Each list of five words was
followed by a short distractor task and then by a 20-sec
recall period. The number of items recalled during each
second of the recall period was measured using a voice­
activated relay. Figure 5 shows the results for 7 subjects,
as well as the group average. Note that the complete data
sets for these subjects would include one or two low
points in the first few seconds ofthe recall period (i.e., the
functions actually rise rapidly and then fall for the re­
mainder of the recall period). The ex-Gaussian distribu­
tion describes these full data sets accurately (see, e.g.,
Rohrer & Wixted, 1994; Wixted & Rohrer, 1993). For
the sake of simplicity, however, only the tails of the re­
call distributions are shown in Figure 5 (i.e., the first one
or two low points have been excluded).

The solid curves in Figure 5 represent the best fitting
exponential functions of the form ae "!", The dashed
curve for the mean plot represents the best fitting power
function. Clearly, these data, at both the individual and
group levels, are very well described by the exponential.

(I)

(2)

(3)

or, after some rearrangement,

p = a/(a + (b),

was fit by a power function (which has a possible range of
infinity to 0). That is, as (approaches 0, at :> approaches
infinity. Although a retention interval of 0 may not be
physically possible, it might make more sense to use a de­
pendent measure that could, in principle, become infi­
nitely large if t did approach O. Whereas percent correct
(p) cannot, odds can. The odds of being correct (0) is
p/(I-p). Thus, instead of using the equation

as 1. R. Anderson and Schooler (1991) have suggested.
Since 0 = p/(l-p), the power function for proportion cor­
rect works out to be

where a now represents the odds of being correct follow­
ing one unit oftime. This version of the power function is
constrained to range between a maximum of 1.0 (as t ap­
proaches 0) and a minimum of0 (as (approaches infinity).

In practice, the performance of the power function is
about the same whether Equation I is used or Equation 2
(or, equivalently, Equation 3) is used. Thus, for example,
when Equation 2 is fit to the forgetting functions shown
in Figure 4 (using odds as the dependent measure), it ac­
counts for 97.2% and 97.1 % of the variance for the high
and low degree oflearning conditions, respectively. The
reason is that, whether proportion correct or odds is used,
the forgetting function exhibits a steep drop initially fol­
lowed by a long, slow decay that begins well above O.
Under those conditions, just about any function involv-
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The value of a ranges from a low of 40.4 to a high of
78.8. The value of b ranges from a low of .183 to a high
of .301. Note that variability in the a parameter does not
introduce any shape distortion in the average function,
whereas variability in the b parameter could. Although
the same subjects produced the low and high values for
a and b, overall the correlation between the two param­
eters is low (r = .21). As before, the average of the pa­
rameter estimates based on the individual subject fits
corresponds closely to the parameter estimates obtained
from fitting the data averaged over subjects. The values
of a and b obtained from fitting the exponential to the
group function in Figure 5 were 58.0 and 0.25, respec­
tively. As shown in Table 4, the mean values of a and b
obtained from the individual subject fits were 57.8 and
0.25, respectively. Thus, while averaging over subjects
certainly can create distortions, under the right conditions
it can also generate a fairly representative function.

Averaging Over Items
Averaging over subjects is apparently not responsible

for the observation that the mathematical form of forget­
ting is adequately characterized by a simple power func­
tion. What about averaging over items? That is, perhaps
the probability of recalling individual items declines ac­
cording to exponential functions with different rates of
decay. If so, the aggregate function may be something
other than an exponential.

In general, the issue of averaging over items is much the
same as averaging over subjects (i.e., one is still arith­
metically averaging exponentials). One relatively minor
difference is that, in a list memory experiment, the indi­
vidual items all have different retention intervals (i.e.,
lags) associated with them. That is, in the absence ofre­
hearsal, the last item of the list is associated with the
shortest retention interval, whereas the first item is as­
sociated with the longest. In the fits described thus far,
the nominal retention interval has referred to the time
since the last item was presented.

To investigate the effects of averaging over items as­
sociated with different rates of decay and different re­
tention intervals, we performed simulations similar to
those described by R. B. Anderson and Tweney (1997).
The simulations were modeled after the free recall ex­
periment described above (i.e., six-item lists with nomi­
nal retention intervals ranging from 2.5 to 40 sec). In the
simulations, the actual retention intervals were item spe-

1 96.0 83.9
2 94.4 87.7
3 95.4 89.9
4 935 825
5 96.8 86.6
6 97.5 87.7
7 98.2 92.1

Subject Exponential Power

Table 3
Percentage of Variance Accounted for

by Exponential and Power Functions for the
Individual Subject Recall Functions Shown in Figure 5
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Figure 5. Number ofitems recalled in each I-sec bin of a 20-sec

recall period for 7 subjects. The solid curves represent the best
fitting exponentials. The dashed curve in the mean graph repre­
sents the best fitting power function.

Table 3 shows the percentage ofdata variance accounted
for by the exponential and by the power function for each
subject. The exponential provides a better fit in every case.
Thus, the advantage of the power function over the ex­
ponential in describing forgetting functions is not merely
the result of the inherent flexibility of the power func­
tion. When the data are very nearly exponential in form
(as is apparentlythe case for recall curves), the power func­
tion performs rather poorly. These data also underscore
a point that will be made more fully in the next section­
namely, that in the absence of extreme variability, aver­
aging together exponential functions yields a group func­
tion that is true to form.

Although the average recall latency function retained
the exponential form ofthe component functions, the es­
timates for a and b from fitting the group data may be very
different from the average a and b parameter estimates
obtained from the individual subject fits. Table 4 pre­
sents the relevant parameter estimates for each subject.
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Table 4
Exponential Function Parameter Estimates for the

Individual Subject Data Shown in Figure 5

Subject a b

I 58.6 0.28
2 47.4 0.25
3 47.4 0.24
4 40.4 0.18
5 57.0 0.28
6 75.3 0.22
7 78.8 0.30
M 57.8 0.25

case that the power law of forgetting results from aver­
aging variable exponentials. A particular kind of vari­
ability appears to be required. Indeed, if the values of r
were drawn from a Weibull distribution with extreme vari­
ability, it was possible to produce a forgetting function that
was very nicely fit by the power function (and poorly fit
by the exponential). Figure 6 shows a forgetting function
produced in this way. The values for r were drawn from
the following Weibull distribution, which in cumulative
form is written:

Figure 6. Hypothetical forgetting function produced by aver­
aging exponential decay functions with decay constants drawn
from a Weibull distribution. The solid curve represents the best fit­
ting power function, and the dashed curve represents the best
fitting exponential.

P( r :s; x) == 1- e

with parameters set to a = 2, f3 = 0.2, and y= 4 (see John­
son & Kotz, 1970, for details about this distribution). This
distribution yields a mean value ofr equal to 34.13 h (such
that the mean half-life ofan item is 23.6 h) and a standard
deviation of540.8 h. The mean seems high for a simulated
short-term recall task because this is a highly skewed dis­
tribution. The median value of r was only 2.76 min (cor­
responding to a median half-life of 1.92 min). Thus, half
the items on the list have a short half-life (less than 2 min),
and the other half have a longer half life. Some have an
extremely long half-life, which accounts for the fact that
the function appears to be approaching an asymptote.
The role of the Weibull distribution in producing a power
law in behavioral data is well known (cf. Indow, 1993;
Logan, 1995).

The mere fact that values of r are drawn from a Wei­
bull distribution does not ensure that the aggregate func­
tion will be well fit by the power function and poorly fit
by the exponential. Many other settings for the Weibull
parameter values can be found that produce an aggregate
function that is still better fit by the exponential than by
the power function. Note that adding Gaussian error (to
represent measurement error) did not have much of an
effect unless floor effects were at issue. Also, the fact that
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cific. Thus, for example, if the nominal retention inter­
val was 2.5 sec, the actual retention interval was 2.5 sec
for the last item in the list, 3.5 sec for the second to last
item, 4.5 sec for the next to last item, and so on. The prob­
ability of recalling an item was assumed to decline ac­
cording to an exponential function, but the decay con­
stants were variable. Thus, the probability of recalling a
particular item after time I was set to e-A1, where A. and I

were different for every item in the list.
The values of A. were drawn from several kinds of dis­

tributions, and the resulting functions were used to com­
pute the average probability of recalling an item after I
units of time. Thus for example, six values of A. were first
drawn from a parent distribution of some kind. The prob­
ability ofrecall following a particular nominal retention
interval was then computed as follows:

6-1"" -A,(t+t,)p-6£..e ,
i=!

where I represents the nominal retention interval (e.g.,
2.5 sec) and t, represents an additional unit of time de­
termined by the item's serial position (i.e., t i was 0 for the
last item in the list, I for the second-to-last item, etc.).
This was repeated for nominal values of t equal to 2.5, 5,
10, 20, and 40 sec (which are the actual retention inter­
vals used in the free recall experiment). The resulting
simulated forgetting functions were then fit by a power
function and by an exponential.

We selected values of A. or 1/A. (hereafter represented
by r) from various distributions. Ifthe parent distribution
for A. was either normal or exponential in form, we were
unable to produce an average power function like those
shown in Figure 4 (even when extreme variability was
introduced), although we could occasionally produce an
aggregate curve that was slightly better fit by the power
function than by the exponential. Note that the outcome
of interest is not merely an aggregate function being bet­
ter fit by the power function than by the exponential. In­
stead, we attempted to create an aggregate function that
was simultaneously very well fit by the power function
and rather poorly fit by the exponential (because that is
the pattern observed in the real data).

We also tried drawing values of r from normal and ex­
ponential distributions and still could not produce what
appeared to be a power function. Thus, it is not simply the
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items were associated with different lags had minimal ef­
fect. The most important factor was an extremely variable
distribution of r values.

It may be possible to find other distributions ofA(or r)
that will generate power forgetting functions from indi­
vidual items that decay according to the exponential. In­
deed, a bimodal distribution can probably do the job with
less variability. Nevertheless, extreme variability in decay
constants is needed. That kind of variability does not ap­
pear to exist across subjects, at least not for the subjects
studied here. If one is willing to assume extreme variabil­
ity in the forgetting rates of individual items (perhaps dis­
tributed according to the Weibull), however, then expo­
nential forgetting at the level of items cannot be ruled out.

Do individual items have different rates of decay? Al­
most certainly. However, as indicated above, that fact by it­
self would not lead one to predict that an aggregate power
function will result. To take a concrete example, ifvalues
of r are drawn from an exponential distribution with a
mean and standard deviation of 21 min, the resulting ag­
gregate function is still much better fit by the exponential
than by the power function. This occurs even though 5% of
these simulated items have a half-lifeofless than 45 sec and
another 5% have a half-life ofgreater than 43 min.

How could one ever test whether or not individual items
decay exponentially at extremely different rates? One way
might be to compare the form offorgetting following lists
of heterogenous items (e.g., common words) with the
form offorgetting following lists of more homogeneous
items (e.g., nonsense syllables). Presumably, the items in
the more homogeneous list would be associated with less
variable decay constants. As such, the aggregate function
should be correspondingly closer to an exponential. A di­
rect comparison of that kind has not been performed, al­
though Wickelgren (1970) once argued that forgetting
proceeds according to an exponential, on the basis ofex­
periments in which the to-be-remembered material con­
sisted ofdigits (which are presumably more homogeneous
than faces and words). Similarly, the well-known forget­
ting function reported by Peterson and Peterson (1959,
Figure 3), which involved recall of consonant syllables
over intervals ranging up to 18 sec, is better fit by the ex­
ponential than by the power function. On the other hand,
six additional forgetting functions were also reported in
Table I of that article. Ofthose, five were better fit by the
power function (in the form of Equation 3), and the sixth
was a virtual tie, slightly favoring the exponential (99.9%
vs. 99.4% ofthe variance accounted for). The mean per­
centage data variance accounted for by the exponential
for the six functions shown in Table I of that article was
96.3%. The corresponding value for the power function
was 98.9%. Most of those forgetting functions (unlike
those that represent the retention of meaningful stimuli)
were approaching the floor. Thus, averaging artifacts of
the kind reported by R. B. Anderson and Tweney (1997)
may account for the apparent slight superiority of the
power function in describing Peterson and Peterson's data.
Whether the exponential would exhibit a clear advantage

using geometric averaging is unclear. Nevertheless, if this
question is pursued, researchers would probably do well
to heed the recommendation made by R. B. Anderson
and Tweney (i.e., use geometric instead of arithmetic
averaging).

Theoretical Considerations
Although not everyone would agree, we take it for

granted that, in the absence of averaging artifacts, the
mathematical form of behavioral data is theoretically
significant. The theoretical significance ofthe exponen­
tial form of recall latency distributions has long been
recognized (see, e.g., McGill, 1963). In this section, we
consider two general accounts of the theoretical signifi­
cance of the mathematical form of forgetting.

Environmental adaptation. 1. R. Anderson and
Schooler (1991) argued that memory processes, including
the dynamics of forgetting, reflect an adaptive response
to environmental demands. In everyday interaction with
the environment, individuals encounter a variety ofevents
that place a demand on memory to access stored informa­
tion. For example, encountering the word fire in a news­
paper headline places a demand on the memory system
to access that word's meaning and, perhaps, some asso­
ciated knowledge. Because some words occur frequently
in the environment, their corresponding memories are
very likely to be needed during the course of a day. By
contrast, the memories of words that occur infrequently
are unlikely to be needed any time soon. The adaptive
memory system, it is argued, calibrates the accessibility of
individual memory traces according to how likely they
are to be needed at a particular time (a construct referred
to as "need odds"). The less needed a memory is, the less
accessible its trace will be.

Empirically, the odds that a memory will be needed in
the natural environment (e.g., the odds that the word fire
will appear again in a headline) declines as a power func­
tion oftime since last use. Thus, the optimal memory sys­
tem should apply the same rule to memorized list items
and make them less accessible as a power function oftime
as well. Had the power law offorgetting actually been an
artifact of averaging over subjects, and had individual
subject forgetting functions instead been exponential, this
theory would have been disconfirmed. As it stands, the
theory remains viable (unless the power law is shown to
be an artifact of averaging over items).

Consolidation. As noted by Wickelgren (1972, 1974),
reconciling exponential decay with the idea that memo­
ries consolidate over time would be difficult indeed. The
exponential implies that the proportional rate ofdecay is
independent ofhow much time has elapsed. Given expo­
nential forgetting, ifa trace loses 50% of its strength in the
first hour, it will lose 50% of its remaining strength in the
next hour. That is to say, its resistance to decay will have
remained constant from the first hour to the second hour.

The same idea can be expressed in another way in order
to illustrate how exponential forgetting implies the absence
of consolidation. Imagine that after a list of items has been



learned, all of the list memory traces have a momentary
probability of failure equal tof That is, in any given sec­
ond of time, the probability that the trace will "fail" (i.e.,
be forgotten) is! Owing to chance alone, the item may fail
in the first second or it may not fail until thousands of sec­
onds have elapsed. If the probability of failure does not
change with time (i.e., if the traces do not become more re­
sistant to decay with time), the forgetting function will be
exponential in form. If the traces do become more or less
resistant to decay over time, the forgetting function will be
something other than exponential in form. Indeed, the
power function, logarithmic function, and exponential
power function, all of which have been shown to describe
the course of forgetting better than most other functions
(Rubin & Wenzel, 1996), all imply that the probability of
failure decreases with time, which is to say that they are all
consistent with the notion ofconsolidation.

Although it is possible that individual items decay with
constant probability, the extant data are easier to recon­
cile with the idea that resistance to decay increases with
the passage of time, as Wickelgren once argued. Such a
conclusion fits with independent evidence suggesting a
role for long-term consolidation processes (e.g., Squire,
1987; Squire, Slater, & Chace, 1975). Nevertheless, more
work on the form of forgetting is needed before one can
confidently rule out the possibility of exponentially de­
caying items. Also, although the issue has been dealt with
in detail elsewhere, it should be acknowledged that the
rejection of any mathematical form depends on the as­
sumption ofan appropriate measurement scale (e.g., Lof­
tus, 1985; Wixted, 1990). Nevertheless, for the moment,
the possibility that the power law of forgetting results
from averaging individual subject exponential forgetting
functions can be safely ruled out.
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