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Notes and Comment

EXPONENTIAL AND POWER FUNCTIONS

In contrast to exponential functions, power functions have
the following property:

(1)

(2)

(3)

P = Ae-Bt,

In the continuous case, the derivative with respect to time
is P' = -ABe- Bt = -BP, since the derivative of an
exponential function is itself an exponential. Thus, ac­
cording to an exponential description of forgetting, the
memory store loses a constant proportion of its contents
over each fixed time interval. In Figure 1, there is a 40%
loss from Time 1 (P = 60) to Time 2 (P = 36) and from
Time 2 to Time 3 (P = 21.6). The exponential forgetting
function has natural appeal, because many processes in
nature (e.g., radioactive decay) manifest the same expo­
nential property.

Figure 1 also shows performance as a hypothetical
power function of time,

cerning the possibility that performance curves might
posseses artifactual characteristics resulting from partic­
ular data-analytic methods. Specifically, we explore the
conditions under which a power curve might result from
the arithmetic averaging of exponential curves or from
the presence ofrange-restricted noise in the performance
measure.

where P is the performance measure, t is time, e is the
base of natural logs, and A and B are parameters. Like all
exponential curves, the one shown in Figure 1has the fol­
lowing property. Given an arbitrary time interval k, the
ratio of performance at time t, (Pt ) , to performance at a
previous time, (Pt - k ) , is equal to the ratio ofperformance
at time t + k, (Pt+k), to performance at time t(Pt ) :

Functional descriptions offorgetting often concern the
relationship between time and a performance measure
such as recall or recognition. Figure 1 shows performance
as a power function and as an exponential function oftime ,
Equation 1 gives the mathematical form of the exponen­
tial function,

Recent studies of the mathematical relationship be­
tween time andforgetting suggest that it is a powerfunc­
tion rather than an exponential function, a finding that
has important theoretical consequences. Through compu­
tational analysis and reanalyses of published data, we
demonstrate that arithmetic averaging of exponential
curves can produce an artifactual power curve, particu­
larly when there are large and systematic differences
among the slopes ofthe component curves. A series ofsim­
ulations showed that the amount of power artifact is
small when the slopes of the component curves are nor­
mally or rectangularly distributed and when the perfor­
mance measure is noise free. However, the simulations
also showed that the artifact can be quite large, depending
on the shape of the noise distribution and restrictions in
the performance range. We conclude that claims concern­
ing theform. ofmemoryfunctions should considerwhether
the data are likely to contain artifact caused by averaging
or by the presence ofrange-restricted noise.

Cognitive and behavioral scientists have often directed
their efforts toward describing the mathematical relation­
ships among psychological variables. Such descriptions
are integral to cognitive theories in a variety of domains,
and include Marr's (1982) account of visual edge detec­
tion, exponential descriptions offorgetting (Wickelgren,
1970), power law descriptions of sensation (Stevens,
1971), and power law accounts of skill acquisition (Lo­
gan, 1988; Neves &1. R. Anderson, 1981; Newell &
Rosenbloom, 1981). For some time, the power function
has been accepted as a correct description of skill acqui­
sition (see, e.g., Newell & Rosenbloom, 1981; but see
Heathcote & Mewhort, 1995, for a contrasting view). In
addition, several recent studies appear to have extended
the power law to memory performance, showing that
recall and recognition decline as a power function of
time (e.g., 1. R. Anderson & Schooler, 1991; R. B. An­
derson, Tweney, Rivardo, & Duncan, in press; Rubin,
1982; Wixted & Ebbesen, 1991). In the present paper, we
revisit an issue, raised by Estes (1956) and others, con-
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(4)

Here, the derivative with respect to time is P' = - ABt -B-1

= -APt-I. That is, the rate ofchange declines with time,
rather than remaining constant: For the power function
in Figure 1, there is a 40% loss from Time 1 to Time 2,
but only a 26% loss from Time 2 to Time 3.
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Time
Figure 1. Exponential and power curves showing hypothetical

relationships between time and memory performance. Markers
show shared and nonshared points for the two curves.

Exponential Forgetting Versus
Power-Law Forgetting

Though forgetting appears to follow a power law, there
is evidence suggesting that individual memory traces de­
cay exponentially, and that the power law describes for­
getting at the aggregate level only. According to Jost's law,
the decay rate for a memory trace depends on the age ofthe
trace: Given two memories ofequal strength, the younger
memory decays more rapidly than does the older one
(lost, 1897, as cited in McGeoch, 1942, p. 140). Simon
(1966) noted that Jost's law is incompatible with exponen­
tial forgetting but is compatible with a function wherein
memories lose a decreasing proportion of their strength
over time (as in Equation 4). Simon argued that such non­
exponential forgetting could result from the summation
of exponential functions. He reasoned that a complex
memory trace might have multiple components, each with
its own exponential decay function. Consequently, the de­
cay function for the entire memory representation should
equal the sum ofthe component functions, which, accord­
ing to Simon, must have the property described in Equa­
tion 4. As previously noted, power functions in memory
are characterized by a loss proportion that decreases over
time. Thus, although Simon's account does not specifically
predict a power law, it does imply that differential forget­
ting rates across items could enhance the fit of the aggre­
gate curve to a power function.

Simon's (1966) argument has an important method­
ological implication for evaluating power law theories. As
had been noted by Sidman (1952) and further developed
by Bakan (1954) and Estes (1956), because the summa­
tion ofexponentials can yield a nonexponential function,
the arithmetic averaging ofdata across trials, subjects, or
other variables may distort the data and may therefore bias
conclusions about the form offorgetting (The arguments
of Bakan and Estes are summarized in Appendix A). If
the bias favors a power function, then it may cast doubt
on theoretical accounts ofmental processes and structures
implicated in power law learning and forgetting. The fol-
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Example I

J 95.00 90.25 85.73 .97 1.00 -.02
K 75.00 3.75 .18 .97 1.00 -.02

Mean
Geometric 84.41 18.39 4.01 .97 1.00 -.02
Arithmetic 85.00 47.00 42.96 .93 .84 .09

Example 2

J 65.00 48.75 36.56 .97 1.00 -.02
K 75.00 3.75 .18 .97 1.00 -.02

Mean
Geometric 69.82 13.52 2.62 .97 1.00 -.02
Arithmetic 70.00 26.25 18.37 .98 .93 .05

Example 3

J 80.00 48.00 28.80 .97 1.00 -.02
K 70.00 52.50 39.37 .97 1.00 -.02

Mean
Geometric 74.83 50.20 33.67 .97 1.00 -.02
Arithmetic 75.00 50.25 34.08 .98 .99 -.01

Note-In each example, curves J and K are exponential functions with
arbitrary parameters. Both performance and time are measured in arbi-
trary units. Although the table shows performance values rounded to
the nearest two decimal places, the functions were fit to performance
values specified to a precision of eight significant digits.

Table 1
Power Fits (R~ow) and Exponential Fits (R~xp) for
Arbitrary Exponential Curves That Have Been

Geometrically and Arithmetically Averaged

lowing sections extend this point by exploring the condi­
tions under which arithmetic averaging of exponentials
can produce a function that not only is nonexponential,
but also has an artifactually high goodness-of-fit to a
power function.

EXAMPLES OF ARTIFACT
DUE TO AVERAGING

Table 1 contains examples ofhow arithmetic averaging
of exponential curves yields an aggregate curve that not
only deviates from an exponential function, but bears re­
semblance to a power function. Because the geometric
average ofexponentials is itselfalways an exponential (see
Estes, 1956), we used the geometric average as a standard
for measuring the distortion caused by arithmetic aver­
aging. Curve fitting for the data in Table 1 was done by log
transforming performance and time (for the power fits)
or just performance (for the exponential fits), and then fit­
ting the transformed data to a linear function by using the
least squares method. In the case ofaggregate curves, av­
eraging was done prior to transformation. In Example 1,
the individual curves J and K are perfectly exponential.
Hence, for each curve, R2 is 1.0 for the exponential fit
but only .97 for the power fit. Moreover, the R2 values
(equal to 1.0) for the geometric average of curves J and
K are equal to the R2 values for the individual curves. In
contrast, arithmetic averaging produces a different pat­
tern of fits: The exponential fit drops from 1.0 to .84, but
R~ow is .93. Thus, the goodness of the power fit relative

Time Least Squares Fits
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to that of the exponential fit (R~ow - R~xp) is greater for
arithmetically averaged curves (+.09) than for perfect ex­
ponentia�s or for their geometric average ( - .02). Exam­
ples 2 and 3, which also contain exponential component
curves, show results similar to those of Example 1. It is
worth noting that arithmetic averaging produces a posi­
tive R~ow - R~xp only when the component curves have
sufficiently different shapes (in an extreme case of two
component curves having identical shapes, arithmetic av­
eraging simply reproduces the component curves). Thus,
in Example 3, two very similar curves yield an aggregate
curve with an R~ow - R~xp that is negative, regardless of
how the averaging is performed. But even here, R~ow is
greater following arithmetic averaging than following
geometric averaging. We were unable to find a simple an­
alytic solution for the exact form ofthe composite curve
(see Appendix B). Nonetheless, the examples show that
distortions are possible.

Rubin (1982) argued that forgetting closely approxi­
mates a power function, even when the data are not aver­
aged over subjects or over experimental conditions. How­
ever, we think that his data still allow the possibility that
arithmetic averagingexaggerates R~ow - R~xp. In one study
(Rubin, 1982, Experiment 3), subjects used the words
paper,plant, wine, hospital, andfire as cues for retrieving
autobiographical memories. The subjects subsequently
estimated a creation date for each memory retrieved, al­
lowing Rubin to compute the number of retrieved mem­
ories as a function ofautobiographic time. He constructed
five separate curves representing responses to each of
the five cues. The curves were then fit to power functions,
yielding an R~ow that ranged from .91 to .99. Clearly, the
data were well described by power functions. Thus, the
goodness of the power fits could not have been an arti­
fact of averaging across experimental materials (in this
case, cue words). However, it is not clear that Rubin's
power fits were better than exponential fits (none were
provided in Experiment 3). In addition, it is possible that
across-subject aggregation distorted the curves. In a sim­
ilar experiment (Rubin, 1982, Experiment 4), data were
arithmetically combined across cue words but were kept
separate for each of7 subjects. The values for R~ow ranged
from .55 to .96, with all but one greater than .86. Clearly
some subjects in Experiment 4 produced data that closely
matched a powerfunction. But again, it is not clear whether
those power fits were higher or lower than exponential
fits (which were not reported), and here it may still be the
case that across-cue aggregation distorted the curves.

Function distortion can result from averaging power
curves, as well as from averaging exponential curves.
Table 2 shows that the geometric average of two power
curves is itselfa power curve, and that the resulting power
fit is .02 higher than the exponential fit. But the table
also shows that arithmetic averaging of power curves with
different slopes can yield a power fit that is artifactually
high relative to the exponential fit. Thus, arithmetic av­
eraging can exaggerate the relative goodness of the power
fit, even when the component curves are themselves
power curves.

Table 2
Power Fits (R~ow) and Exponential Fits (R~xp) for

Arbitrary Power Curves That Have Been
Geometrically and Arithmetically Averaged

Time Least Squares Fits

Curve 2 3 R~ow R~xp (R~ow - R~xp)

Example I

J 90.00 81.11 76.32 1.00 .97 .02
K 15.00 8.03 5.58 1.00 .97 .02

Mean
Geometric 36.74 25.53 20.63 1.00 .97 .02
Arithmetic 52.50 44.57 40.95 .99 .96 .03

Example 2

J 90.00 85.14 82.42 1.00 .97 .02
K 25.00 12.94 8.80 1.00 .97 .02

Mean
Geometric 47.43 33.19 26.93 1.00 .97 .02
Arithmetic 57.50 49.04 45.61 .99 .95 .04

Note-In each example, curves J and K are power functions with arbi­
trary parameters. Both performance and time are measured in arbitrary
units. Although the table shows performance values rounded to the
nearest two decimal places, the functions were fit to performance values
specified to a precision of eight significant digits.

It is not always possible to determine whether a pub­
lished data set has been distorted via arithmetic averag­
ing. If data have been averaged prior to being linearized
(i.e., prior to being log transformed), distortion may have
occurred, but if they have been linearized prior to being
averaged (e.g., 1. R. Anderson & Schooler, 1991; Neves
& 1. R. Anderson, 1981; Newell & Rosenbloom, 1981),
no distortion will have occurred (the arithmetic average
of two straight lines is a straight line). Even when data
have been linearized prior to across-subject averaging,
there has usually been some arithmetic aggregation (e.g.,
averaging across trial position) prior to linearization.
The widespread use of arithmetic averaging at various
stages in the data aggregation process suggests that power
fit exaggeration may be present in many studies.

The practical significance of the power artifact hy­
pothesis depends, ofcourse, on whether the effect can be
detected in actual experimental data. We addressed this
question directly by reanalyzing published data sets for
which the Brown-Peterson (Brown, 1958; Peterson &
Peterson, 1959) method had been used to examine the
role of proactive (intertrial) interference in short-term
forgetting. These data suit our purpose because a sepa­
rate retention curve was reported for each trial position.
Consequently, we were able to use two methods of aver­
aging across trial position, arithmetic and geometric av­
eraging, to determine whether the arithmetic method
would exaggerate the relative goodness of the power fit.
For example, Keppel and Underwood (1962, Experi­
ment 1) were interested in the buildup ofproactive inter­
ference over the course of an experiment. Consequently,
they aggregated the data across subjects and constructed
separate retention curves for Trial I, Trial 2, and Trial 3.
(Note that the assignment of retention interval to trial
number was counterbalanced across subjects.) In our re­
analysis of the data, we computed both the arithmetic



and the geometric averages of Trials 1,2, and 3, at each
retention interval. The quantity R~ow - R~xp was then
computed for both sets of means. Fit exaggeration was
assessed with the method illustrated in Table 1. We ex­
pected to find only moderate exaggeration of the power
fits, because we could only examine a portion of the po­
tential artifact-that portion due to averaging across trial
position.

Table 3 shows the effect ofgeometric and arithmetic av­
eraging on the quantity R~ow - R~xp for the data sets. As
expected, R~ow - R~xp was generally higher for arithmeti­
cally than for geometrically averaged data; only Noyd's
data (as cited in Bennett, 1975) produced a contrary pat­
tern of fits. Moreover, in the case of Keppel and Under­
wood's data (1962, Experiment 1), the choice ofaveraging
method determined which function yielded the better fit:
Arithmetic averaging yielded a power fit that was higher
than the exponential fit, whereas geometric averaging pro­
duced the opposite pattern. The fact that most of the data
sets favored a power function, irrespective of the averag­
ing method, does not establish that forgetting follows a
power law. As noted earlier, the data sets contained per­
formance values that had already been averaged across
subjects and other conditions, and consequently they may
have contained artifact that could not be examined in the
present study. However, the fact that power fit exaggera­
tion replicates across studies indicates that the effect has
measurable consequences for empirical research.

Boundary Conditions for the Averaging Artifact
Under what conditions is it likely that power fit exag­

geration has occurred? We noted earlier (and in Appen­
dix A) that no general analytic solution exists. That is,
there is no unique set of parameters that will permit a
power function to precisely equal the sum oftwo or more
exponentials. Bakan (1954) and Estes (1956) explored the
conditions under which an aggregate function would, in
general, produce a function ofthe same form. By using se­
ries expansions, Estes showed that a sum ofexponentials
cannot be equal to an exponential itself(see Appendix B).

Table 3
Power Fits (R~ow) and Exponential Fits (R;.p) for Six Data Sets

Averaged Geometrically and Arithmetically Across Trials

Averaging Least Squares Fits

Data Set Method R~ow R~.p (R~ow - R~xp)

Keppel & Underwood (1962)
Experiment 1 geometric .97 .99 -.01

arithmetic .99 .92 .07

Experiment 2 geometric .99 .93 .06
arithmetic .99 .92 .07

Loess ( I964)
Experiment 1 geometric .91 .98 -.06

arithmetic .94 .99 -.04

Experiment 2 geometric .99 .96 .02
arithmetic .99 .96 .03

Noyd (see Bennett. 1975) geometric .95 .84 .11
arithmetic 96 .85 .11

Note-Fits are rounded to two decimal places.
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However, his solution also does not establish that a power
function represents a better fit than the exponential. New­
ell and Rosenbloom (1981) used Laplace transforms, in
an attempt to find the aggregated form of a series of ex­
ponentials. They also failed to find a general solution, al­
though they did succeed in establishing that a rectangu­
lar distribution of beta weights among a set of summed
exponentials would be likely to yield a curve that closely
resembled a power curve. The argument is summarized in
Appendix C, which also describes our attempts, with the
use ofLaplace transforms, to find conditions under which
aggregated exponentials resemble power curves. We con­
firmed Newell and Rosenbloom's point concerning rec­
tangular distributions of beta coefficients, and we also
found that bimodal distributions had the same effect.

Having confirmed that summed exponentials can ap­
proximate a power function, we examined the relation­
ship between particular parameter values of the expo­
nential functions and the magnitude of the power curve
artifact. Specifically, we conducted a computational analy­
sis of the effect of averaging two exponential curves on
the amount of power artifact. We generated pairs of ex­
ponential curves whose parameters differed by varying
amounts and calculated R~ow - R~xp for the arithmetic
average ofthe curves. Figure 2 shows the results. The beta
parameter, B, varies from .01 to .99, in increments oLOl
for B I and in increments of .14 for B2. The alpha param­
eters' A I and A2 , both equall.0. Simulations not reported
here indicated that varying A I and A2 had little impact on
the results. The lowest point on each curve represents a
condition in which Bland B2 are equal, and in which the
best fitting exponential function for the averaged curves .
accounts for 10% more ofthe variance than does the best
fitting power function. For moderate differences between
B I and B2 , R%ow - R~xp increases as a function of B I ­

B2 . However, the function departs from monotonicity
when the beta difference is extreme.

The computational analysis showed that averaging ex­
ponential curves sometimes produces power curves. In
addition, the reanalysis ofpublished data sets shows that
moderate power fit exaggeration can occur in real-world
environments characterized by noisy data. However, it is
not clear whether highly exaggerated power fits-ones
in which exponential functions are artifactually trans­
formed into power functions-can occur only with large
systematic differences in B (as is suggested by the compu­
tational analysis), nor whether extreme exaggeration may
occur through random sampling from a single population
of exponentials. In addition, it is not clear whether ex­
treme exaggeration occurs when P (the performance mea­
sure) contains noise, as would be the case in an actual ex­
periment. To examine these issues, we conducted a series
of simulated experiments.

An exponential forgetting curve was generated for
each of20 simulated subjects. For each curve, the y inter­
cept (A i) and the slope (B i ) were randomly determined
by fixing A j at 1.0 and B, at .2, and adding normally dis­
tributed noise (with a mean of 0 and a standard deviation
of.l) to each ofthe two parameters. Performance (p,) was
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Figure 2. Ri- - R~xp as a function of B I and Bz for arithmetically averaged exponential

curves. B I varies from .01 to .99 by .01. B z (not labeled) varies from .01 (bottom left curve) to
.99 (top left curve) by .14. AI = A z = 1.0 for all curves.

calculated for each of20 retention intervals ranging from
1 to 20 and was then arithmetically averaged across all
20 subjects. The entire procedure was repeated 100 times,
yielding data from 100 simulated experiments. Each ag­
gregate curve for each experiment was fit to exponential
and power functions according to the previously described
method (see Table 1). Contrary to our expectations, R~ow
was greater than R~xp in only 5% ofthe experiments. Al­
tering the simulations by choosing different retention
intervals (e.g., 2, 4, 8, 16, and 32) did not appreciably
change this result, nor did varying the amount of added
noise or the starting values ofA i and B i .

Using Laplace transformations, Newell and Rosen­
bloom (1981) argued that rectangular distributions of
exponentials can result in aggregate power curves (see
Appendix C). Thus, we conducted another set of 100
simulations using the previously described method, but
with rectangularly rather than normally distributed A and
B parameters. There was no change in the results; R~ow ex­
ceeded R~xp in only 5% of the cases. These data suggest
that extreme power fit exaggerations do not readily occur
when alpha and beta differences arise from random pro­
cesses, such as the random sampling ofsubjects. However,
we have not tried all possible noise distributions, and there­
fore we cannot rule out random sampling as a major source
of artifactual power functions.

Taken together, the simulations, computational analy­
sis, and reanalysis ofpublished data suggest that averaging
artifact is problematic only when the decay parameters
ofthe component curves differ greatly and systematically.
In the experiment simulations, data were averaged over
decay parameters that were randomly distributed, as might
be the case in across-subject averaging. However, the re­
analysis ofKeppel and Underwood's (1962) Experiment 1
data (Table 3 in the present paper) involved averaging
across trial position, a factor known to have large system­
atic effects on the forgetting rate (e.g., Keppel & Under-

wood, 1962). Thus, when averaging artifact occurs, it is
more likely to involve averaging across systematic factors
such as trial position, rather than random factors such as
subject.

Range-Restricted Noise:
Another Source of Artifact

In an actual experiment, P would itself contain some
random error. Thus, we ran four sets of 200 simulations,
using the same method described previously but with the
following addition: Besides adding normally distributed
noise to A i and B i (simulating the effect of random sam­
piing of subjects), we added similar noise to each sub­
ject's performance (Pi) at each retention interval. In prac­
tice, P; can never be negative, so we truncated Pi from the
distribution whenever the noise would have driven it below
zero. The result was a set of20 curves (in each experiment)
with noise added to each point and with the amount of
truncation increasing as retention time increased. In es­
sence, the noise introduced a floor effect.

For each set of simulated experiments, the noise dis­
tribution (before truncation) for P had a mean of0.0 and
a standard deviation of0.05, 0.10,0.15, or 0.20. Note that
truncation causes the variance of resulting signal+noise
distribution to decline as the length of the retention inter­
val increases. The simulation results were striking: R~ow

exceeded R~xp in up to 97% of the cases, depending on
the noise level. Table 4 summarizes the data from all four
sets of experiments. The extreme fit exaggeration was
due to the floor effect introduced by the noise, rather than
to the noise itself: An additional set of simulations in­
corporated the unrealistic assumption ofnontruncated dis­
tributions (performance was allowed to fall below zero)
and yielded few spurious power functions.

Though the term floor effect is appropriate, the em­
pirical forgetting function can be distorted even if it does
not closely approach zero. The amount oftruncation, and



Table 4
Effect of the Standard Deviation of the Performance Noise

Distribution on the Amount of Power Fit Exaggeration

Noise Mean Mean Mean Frequency of
SD R~ow R~,p (R~ow - R~,p) (R~ow > R~xp)*

.05 .92 .97 - .05 0

.10 .95 .94 .01 123

.15 .95 .91 .04 185

.20 .94 .87 .06 194

Note-R~ow is the proportion of variance accounted for by the best fit­
ting power function. R~,p is the proportion of variance accounted for by
the best fitting power function. *Two hundred simulated experiments
were conducted at each noise level, with each experiment yielding a
value for R~ow that was higher or lower than R~,p.

thus the amount of function distortion, depends on the
existence ofparticular episodes ofextreme forgetting and
does not require extreme forgetting at the aggregate level.
For example, in one simulated experiment, the aggregate
performance curve matches a power function, even though
performance remains above 0.18. Overall, the results show
that artifactual power functions can readily occur when
the performance measure is not noise free.

SUMMARY AND CONCLUSIONS

We have shown that power functions in memory per­
formance may be an artifact of arithmetic averaging or of
noisy performance data. Thus, the exponential function
may, in some cases, be a better description offorgetting.
Our reanalyses of forgetting curves showed that power­
fit exaggeration does occur in published studies. Com­
putational analyses showed that arithmetic averaging of
exponential curves can produce spurious power functions,
and our computer simulations indicated that although
extreme function distortion is unlikely when Ai and B,
are randomly distributed (either normally or rectangu­
larly) and the performance measure is otherwise noise
free, such artifact is very likely when the performance
measure contains noise. It is therefore possible that dis­
parate findings concerning the form of forgetting-ei­
ther exponential (e.g., Wickelgren, 1974) or power (see,
e.g., Wixted & Ebbesen, 1991)-have resulted, in part,
from across-study variation in the amount and kind of
noise present in the performance measure. In addition, be­
cause the noise distorts the memory function by means
ofa floor effect, it is likely that the amount of distortion
will depend on the degree to which performance ap­
proaches zero. It should be noted that the exponential
function is not the only one susceptible to distortion via
arithmetic averaging (Estes, 1956). Thus, an exaggerated
power fit does not, by itself, establish the exponential func­
tion as the true form. Nonetheless, the presence of an ex­
aggerated power fit should raise questions concerning
the true form of the curve.

Although the power law has been ubiquitous in sensa­
tion and in skill acquisition and has been offered as a
general description of forgetting (1. R. Anderson &
Schooler, 1991; R. B. Anderson et aI., in press; Rubin,
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1982; Wixted & Ebbesen, 1991), the present findings
warrant a reevaluation of the power law's status both as
a description of behavior and as a constraint on psycho­
logical theory. Power law descriptions should only be ac­
cepted when there is sufficient assurance that the fits are
not the result of artifact.
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APPENDIX A
Solutions ofAggregated Exponentials

We noted in the text that there is no unique value ofA 3 and 8 3
such that the following equation is satisfied:



730 ANDERSON AND TWENEY

Ale-BI! + A
2e-

B, ! = A
3e-

B) f .

However, first letting A 1 = A2 = 1.0, the folIowing expression
for B3 satisfies the equation above:

B 3 = (lit) [BIt + B2t - In (e BI! + e B2! )] .

Note, however, that the expression is itself a function of t; there
is not one set ofparameters that satisfies the equation across dif­
ferent values of t.

APPENDlXB
Series Expansions of Aggregated Exponentials

Bakan (1954) first suggested a criterion for deciding whether
or not a given function would result in a function of the same
form when averaged. He expanded a quadratic equation using
a Maclaurin series around t = 0 and showed that the resulting
series for an averaged set of quadratics depended only on the
averages of the parameters of the original equations. In other
words, the coefficients of the averaged equations were simply
the averages of the coefficients ofthe original equations; hence
the averaging process did not change the shape of the function.
The same was not true for an exponential equation. Bakan found
that the coefficients for a set of averaged exponentials included
not just the averaged coefficients of the original equations but
higher order terms consisting ofproducts of the coefficients as
well. Hence the averaging process returned a function whose
form differs from that of the original exponentials.

Power functions cannot be analyzed by using Bakan's (I 954)
approach, since they are not defined at t = O. Thus, Estes (1956)
generalized Bakan's result by using Taylor's series expansions,
which can be taken around any number, not just O. He refined
Bakan's criterion for "averageability" as folIows: Given a func­
tionp = f(t, A, B, C, .. .), where A, B, C, ... are parameters, the
averaged function p = f(t, A,B,C, ...), where A,B, C, ... are
the average values of the parameters, will have the same shape
as the original functions, provided that alI of the second and
higher order derivatives of the function with respect to the pa­
rameters are zero. Thus a set of quadratic equations p i = Ai +
B, t2 can be averaged, because the second derivatives with respect
to Ai and B, are alI zero. An exponential cannot be averaged,
however. Ifp = Aie-Bj ! represents an exponential, then the de­
rivative ofp with respect to B, is given by p' = -A Je-B,r, the
second derivative is given by p" = Ai t2e - Bj ! , the third by pm =
-A i t 3e- B,!, and so on. Since the derivatives do not vanish, the
Taylor expansion includes terms with coefficients other than the
averaged coefficients of the original equations, and the result­
ing curve is therefore not exponential.

APPENDlXC
Laplace Transforms

NewelI and Rosenbloom (I 981) first noted the applicability
of Laplace transforms to the issue of the aggregation of func­
tions. Consider, first, the general logic of trans forms, exempli­
fied by the familiar use ofFourier series in the analysis of time­
dependent data. A Fourier series in effect provides a series of
sine and cosine functions that, when summed, approximate a
periodic function. By adding sufficiently many terms to the se­
ries, one can approximate to an arbitrary degree oferror any pe­
riodic function meeting certain criteria of analyticity. In the
continuous case, Fourier series can be generalized to Fourier
transforms, in which an infinite number ofsine and cosine terms

are used and the integral from 0 to infinity replaces the sum from
I to n of the separate terms. Even nonperiodic functions can then
be represented.

A Laplace transform is similar, in that it represents an infi­
nite series of exponential terms that are used to represent an
arbitrary function. In particular, if p(t) is a function meeting
certain analyticity criteria, its Laplace transform, L(p), is a new
function in the variable s, given by

L(p) = fp(l)e( -st)dt.
o

For the case of the exponential function,
ee

L(p) =L(Ae-Bt) =fAe-Bte(-st)dt =A/(s+ B).
o

For power functions, the result is more complex:
~

L(At-B ) =fArBe(-st)dt =[Ar(l- B)]s-(1-B),
o

where r(B) is the gamma function of B, a kind of generalized
factorial product defined over the continuous number line (not
just integers). Note also that a Laplace transform is a linear op­
erator; L(Cp) = CL(p) and L(p + r) = L(p) + L(r) for any
constant C and any functions p(t) and r(t).

A Laplace transform of a function is, in effect, a way of rep­
resenting the function as an infinite sum of exponentials. For
the present argument, this means in particular that any power
function can be represented as an infinite sum of exponentials
(Boas, 1983). NewelI and Rosenbloom (I 981) noted that a La­
place transform is like a set ofweighted exponentials; they sin­
gled out the special case in which the exponent, B, ofthe power
function is 1.0 (i.e., where the power function is a hyperbolic func­
tion). In this instance, since I - B = 0, the Laplace transform
simplifies to the form Ar(B), which in turn is simply equal to the
constant A, since r(B) = I! = 1.0 for B = 1. Because Laplace
transforms are linear operators, the Laplace ofan average is equal
to the average of the Laplaces of the individual functions. We
explored the conditions under which the Laplace of an average
of exponentials would resemble the Laplace of a power func­
tion. We were not able to find a general solution, but we did de­
termine that, as NewelI and Rosenbloom suggested, a rectan­
gular distribution ofweights among an average ofexponentials
did in fact produce a curve in the transform space that was sim­
ilar to the curve for the transform of a single power function.
Furthermore, we found an even closer match by using a bi­
modal distribution of exponentials. For example, we created a
bimodal distribution of 10 exponentials with A coefficients all
equal to 1.0 and exponents as folIows: 0.1, 0.1, 0.1, 0.4, 0.5,
0.6,0.9,0.9,0.9. We then took the Laplace transform of the av­
erage ofthe 10 functions, which gives a series ofadditive terms
of the form I/(B i + s). Plotting this against successive plots of
the transform of a power function for different values of the
power function exponent alIows an informal judgment of the
similarity between the two. In general, the curves are very sim­
ilar throughout most of the range of s values. This result con­
firms the generality of our two-term computational solution in
the text.
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