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A new method for determining the personal
constants in the Luneburg theory of
binocular visual space

GENICHI HAGINO and ICHIRO YOSHIOKA
Hiroshima University, Higashi Senda-machi, Hiroshima 730, Japan

Based on the Luneburg theory of binocular visual space, the equation for a visual circle (an
apparent circle) was derived to estimate the personal constants, o and X, in this theory. Using small
points of light in an otherwise dark room, five observers were asked to construct a visual circle on the
horizontal plane with a standard radius of 50 or 100 ¢m in the median plane. The observation distance
for the small circle was 250, 450, or 700 cm, and that for the large circle was 700, 1,030, 1,300, or
1,600 cm. The personal constants calculated from the radii of six directions in each circle were found
to be inconsistent with those expected from this theory. The os obtained were remarkably larger than
those observed in earlier studies and increased systematically as the observation distance increased.
Almost all Ks were negative, with most being less than minus one. Possible factors responsible for
these inconsistencies are discussed with reference to the results of previous experiments.

The Luneburg theory of binocular visual space
(Luneburg, 1947, 1950) may be looked upon as an
epochal theory designed to describe and predict the
characteristics of an individual’s visual space in situa-
tions in which experiential and other so-called
psychological factors are excluded. This theory has
encountered some difficulties, however, especially
with its assumptions of constant negative curvature
of visual space and of the form of the mapping
function which relates physical space to visual space.
With respect (o the mapping function, Blank (1953,
1958a, b, 1959) proposed a modified theory without
altering the main structure of the Luneburg theory.
Many workers have since concerned themselves with
the original or modified theory from theoretical and
experimental viewpoints. Some of the results of
various experiments carried out to test the validity
of the theory confirmed it (e.g., Blank, 1961; Foley,
1964; Hagino, Yoshioka, & Hirabayashi, 1963;
Hardy, Rand, Rittler, Blank, & Boeder, 1953;
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Indow, Inoue, & Matsushima, 1962a, b; Zajacz-
kowska, 1956a, b), while others failed to do so
(e.g., Foley, 1972; Ishii, 1962, 1964; Squires, 1956).
Luneburg proposed two personal constants, ¢ and
K. Here o indicated the precision of depth perception
of the individual and K the curvature of his visual
space, with the curvature being hyperbolic, Euclidean,
or elliptical, when K was less than, equal to, or
larger than zero, respectively. To determine these
personal constants, the parallel and distance alley
experiments and the 3- and 4-point experiments have
been used. However, as has been pointed out, in
both of these experiments some problems have been
encountered in experimental or computational pro-
cedure to determine the personal constants. The con-
struction of the parallel and distance alleys were so
difficult that Hardy, Rand, and Rittler (1951)
concluded that the alley experiment was inadequate
as a test of personal constants because of the effect
on the results of preconception, experience, and
judgment habits of the observer. To estimate the
personal constants from the results of the alley
experiments, it is necessary to determine the y-axis
intercepts of the tangents to a parallel and a distance
curve at the farthest point of each curve (Luneburg,
1950). Despite the extreme sensitivity of the personal
constants to the slightest change in these intercepts,
as noted by Indow et al. (1962a), the methods
proposed to determine the intercepts were neither
precise nor sufficient. Hardy et al. (1951) obtained
the intercepts by drawing the best tangent to the
more remote parts of each curve. Zajaczkowska
(1956a) recommended that the intercepts be calculat-
ed by passing a straight line through only the two
farthest points of each curve. The 4-point experiment
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Figure 1. Schematic illustration of Cartesian coordinates (x, y, 2)
and bipolar coordinates (y, ¢, 6) in physical space.

was originally devised by Luneburg (1950) to over-
come the insensitivity of the 3-point experiment in
estimating both constants, with the intention that the
latter was for obtaining ¢ and the former for K.
However, Zajaczkowska (1956a) presented a differ-
ent procedure in which the results of the 4-point
experiment were used to modify the tentatively
adopted values of both constants obtained by the
3-point experiment. The underlying logic of this com-
putational procedure seemed to be so vague that
Indow et al. (1962a) criticized the logic inherent in
the procedure as being beyond the authors’ com-
prehension.

As remarked above, both the alley experiments
and the 3- and 4-point experiments involved experi-
mental and computational difficulties and possibly,
as a consequence, the personal constants varied
considerably even within an individual (Yoshioka,
1965). Although the equilateral triangle and the
isosceles right-triangle experiments were proposed by
Blank (1958b) and were used by Ishii (1964) and
Foley (1968, 1972), what could be determined by
these experiments was only the sign of K of two
personal constants. Therefore, it seemed useful to
develop a simple and more feasible method for deter-
mining these constants. For this purpose, a point of
light was presented slightly below the eye level in
the median plane, and the observer was asked to
position other points of light on the same hori-
zontal ,plane so as to form an apparent circle (the
visual circle) using the first point of light at its
center (Figure 5). This task was understood and com-
pleted without much difficulty by most observers.
From each of the adjusted positions of the light
points, o and K could be calculated readily, using
equations derived from the equation of the visual
circle which was based on the Luneburg theory.
Because as many pairs of both constants as the
number of adjusted points of light can be determined

in a single visual circle constructed, this method is
efficient and effective not only in determining the
personal constants but also in examining whether or
not any change developed in the constants with
change of experimental conditions.

DERIVATION OF THE
THEORETICAL FORMULA

The Luneburg Theory

Before deriving the equation for the visual circle,
it is necessary to describe the Luneburg theory briefly.
Luneburg introduced Cartesian coordinates (x, y, z)
and bipolar coordinates (y, ¢, 6) into the physical
space which contained the visual object (Figure 1).
In Figure 1, L and R represent the center of rotation
of each eye and the distance between them is the unit
of length being defined as LR = 2. Q is the binoc-
ularly seen stimulus point. The line to x’ is the
projection of the coordinate x to the elevated plane
forming the angle of 8 with the horizontal plane.
The circle in the elevated plane is the Vieth-Miller
circle which passes through point Q. If the con-
vergence angle, y, is sufficiently small, the following
equations relate the two coordinate systems:

X = (2 cos?$ cos)/y
y = (2 sin$ cos$)/y a
z = (2 cos*$ sin@)/y.

In addition to these coordinates, Luneburg also
introduced the Cartesian coordinates (£, n, {) and the
polar coordinates (g, ¢, ¥) of points into the visual
space (Figure 2) which correspond to the points in
the physical space. Point P in the visual space
corresponds to the point Q in the physical space
(Figure 1). O represents the subjective egocenter of
the observer and @ is the distance from O to P.

7

Figure 2. Schematic illustration of Cartesian coordinates
(¢, n, ¢) and polar coordinates (o, ¢, V) in visual space.
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The relation between these two coordinate systems
is given by the following equations:

£ = g cosq cost
n = gsing (2)
¢ = @ cosep sind.
The visual distance, D, between point P,(&,, n,, §))
and P,(&;, n:, §;) is given by the following equation:

(—K)‘/ smh[z( K= ]

G- &8+ - m) + G- )T

[ Eae el

where ¢i = & + n} + &, (i = 1, 2), K is one of the
personal constants, and C is an arbitrary constant.

Finally, Luneburg proposed the following relations
between the physical and the visual spaces:

N €))

0=2"% ¢ =¢,and? = 8. 4)
Derivation of the Equation of the Visual Circle

The foregoing equations can be applied to the
spherical surface in the visual space described above
and in Figure 3. Figure 3 shows a physical space,
in which there are three points, i.e., Q.(s, 0, 0),
Qo(s +t, 0,0), and Q;(x, ¥, z). The points in the visual
space, which correspond to the three points in the
physical space, are designated as P,(¢,, 0, 0),
Po(%, 0, 0), and Ps(, r'y, £), respectively. If the
distancesQ,Q, and Q,Q; in the physical space are
perceptually equal, then the distances P,P, and P,P,
in the visual space are equal. Since the two terms,
, which correspond to P,P, and P,P,, in the right side
of Equation 3 are equal, it follows that:

E-E)Y+n+ 8 : — &o)?
( Y +n _ (& )

5;)( 52) (ﬁz)( _lfz)’
<1+4Q 1+491 1+4Qol+491

where o> = £ + n* + &, o} = &, and o} = &.
Simplifying Equation §,

E-&)V+n+ 8 (G- &)
= (6)

K K,

1+ 2 0? 1 +4_Qo

Using Equation 2, Equation 6 in Cartesian coor-
dinates can be transformed into Equation 7 in polar
coordinates:

501

z

;"
—”

L R

\

Figure 3. Schematic representation of three points, Q,(s, 0, 0),
Qu(s +t, 0, 0), and Q;(x, y, z), in physical space.

0* + 2cospcostAgp + B =0, @)

where A and B are defined by the following
equations:

4o AT - @)
A=eo— B=—m— )’
KT — 4 KT — 4

In Equation 7', T is defined as follows:

& - &) _ (e: — @o)*

T =

2

Ka 1+%
1+4Q1 491

Equation 7 is the equation of a visually spherical
surface. Consider the visual circle which results from
the intersection of the horizontal plane at eye level
with this visually spherical surface. In this case, ¢ = 0,
and the equation of the visual circle is as follows:

e+ 2cospAg + B =0. (8)
Estimation of Personal Constants

The personal constants ¢ and K can be obtained
by using Equation 8. In Figure 4, the flat circle
represents the visual circle in the physical space,
and Qo, Q:, and Q; are three points on this circle
(v is the convergence angle of each point). When Q,,
Q;, and Q; correspond to the visual points, P,, P,,
and P;, the following equations define each of three
points:

forP,, 0} + 2Ags + B=0 (because = 0) (9)

forP,, o} + 2Ag, + B=0 (becausep = 0) (10)
forP;, o + 2cosep Ags + B = 0. (11

Eliminating A and B from Equations 9 through 11
results in:

Qo0 — COSW @3(Qo + ©2) + 03 = 0. 12)
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Figure 4. Schematic illustration of the visual circle in physical
space as seen from above. The flat dotted line circle represents
the visual circle in which Q,, Q., and Q; lie, and y is the con-
vergence angle for each point. The solid line circle which passes
through L (left eye) and R (right eye) is the VMC passing through
Q;, a point in the visual circle.

Substituting ¢ = 2~ %, (( = 0, 2, 3), into

Equation 12 gives:

e —0(yo+72) + e—Zon

- cosé[e_a(y“”’) + C*U(Yz'i"h)]' (13)
In order to calculate o from Equation 13, it is
nmecessary to determine y,, the convergence angle of
the farthest point in the configuration, by the
experimental restrictions, and y,, ys, and ¢ by the
experimental results.

The other constant, K, can be determined as
follows. From Equations 9 and 10, it is evident
that g, and g, are the two roots of the equation
o: + 2Ae + B = 0. Therefore,

A = (go + @)/2, B = @o@:. (14)

Eliminating T from the two equationsin 7', we get:

4(0; + A)
~ (Ae: + B)o, as

Substituting A and B in Equation 14 into Equation 15,
we obtain the value of K.

EXPERIMENTAL INVESTIGATION

Method

Procedure. Seventeen small points of light (1 mm in diameter)
were presented simultaneously, as shown in Figure 5, in a hori-
zontal plane from 2.9 to 18.6 cm below the observer’s eye level,
varying with observation distance, in an otherwise dark room.
Throughout this experiment, the observer’s head was fixed by a
chin- and headrest, and his line of regard to the point Q, inter-
sected the horizontal plane at about 40 min of arc.! The luminance
of these light points was adjusted by rheostats so that each of
these light points would be apparently equal and be dimly visible.
Points Q, and Q, in the median plane were fixed and the distance
between Q, and Q,, Q.Q., was designated as the standard
radius of the visual circle to be constructed. Other points of
light were movable on the radial tracks having Q, as their
center. The distance from the observer to the farthest point of
light, Q. (the observation distance), was 250, 450, 700, 1,030,
1,300, or 1,600 cm and Q,Q, was either 50 or 100 cm.

The observer was asked to construct a visual circle using the
points of light with Q,Q, as its standard radius. At first, the
observer adjusted Q. so that the distance Q,Q, was apparently
equal to the distance Qo,Q.. Then, after adjusting Qs so as to
make Q,Q, apparently equal to Q.Q,, he adjusted the other points
of light on the right of the median plane. The points of light to
the left of Q, were adjusted in a similar fashion following the
completion of the adjustments on the right. Before the

Observation
Distance
SN
Q

Observer

Figure 5. Illustration of stimulus configuration viewed from
above. Tiny circles represent small points of light (1 mm in
diameter). Q, and Q, are the fixed points, and other points are
movable back and forth on the radial tracks.
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observer made any adjustment, the experimenter placed all the
adjustable points of light either far inside or far outside the
expected positions. For each observer, the experimenter completed
four series of settings under the direction of the observer,
and after finishing the settings of each series, the observer was
allowed to readjust the points as a group to satisfy the visual task.

Points of subjective equality (PSEs) of the standard radius
of visual circle for eight directions were calculated by averaging
the two mean values of a pair of points of light symmetrically
located with respect to the median plane, after finding the means
of the four values for each point.

For the alley experiments, nine pairs of light points were
presented to the observer simultaneously to construct the parallel
alley, and a pair of light points were presented in random order
with the farthest pair of light points at a time to form the distance
alley. The main dimensions of the alley used were: x = 500 cm,
y = *35cm, and ¢, = 4.0°. For each of the parallel and dis-
tance alleys, four series of settings were completed by the

> experimenter under the direction of the observer. The computation
of the personal constants from the parallel and distance curves
was done according to Zajaczkowska’s procedure (1956a).

Observers. Five male undergraduate students, 19 to 21 years in
age and majoring in psychology, were used as observers. They
all had normal or corrected normal visual acuity, and, using a
space eikonometer, they showed less than 1% aniseikonia between
the left and right retinal images. All the observers except T.Y.
participated in both the visual circle and the alley experiments.

Results

Form of visual circle. For all observers and in all
conditions, the resultant physical form of the visual
circle was elliptical, with the radius in the median
(depth) plane much larger than in the frontoparallel
plane. This is illustrated by the results of S.T. in
Table 1 and Figure 6. With some observers, there
was a tendency to overestimate the far distance up to
10 m, that is, physically QcQ, < Q.,Q. though
apparently Q,Q, = Q,Q..
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Personal constants. The personal constants, o and
K, were calculated from the visual circles constructed
with an electronic computer using Equations 13, 14,
and 15 for the six radii for each observer. g, y;, and
¢; were determined from the experimental restrictions
regarding y, and the experimental results. Since
Equation 13 contains the transcendental functions of
o, it must be solved by numerical calculation.
Table 2, for example, shows all the personal constants
in six directions for S.T. Since the standard deviations
of PSEs in the direction of 90° were smaller than
those in other directions and the observers reported
that they were able to make judgments with greatest
ease and confidence in this direction, for the sake of
simplicity, only the PSEs and standard deviations
in the direction of 90° are shown in Table 3 for all
observers. The personal constants calculated from
the PSEs shown in Table 3 are presented in Table 4,
including the same observers’ constants from the
alley experiment. The ratios of ¢, (visual angle
subtended by Q.Qs) to Iy (the angle of disparity
between Q, and Q,, y: — yo) are also presented.

Variations in the personal comstants. It can be
seen in Table 2 that the values of o and the absolute
values of K tend to increase as the observation
distance increases, except for K for the largest
observation distance. However, values of 0 and X in
each column tend to be, with a few exceptions,
relatively of the same magnitude, irrespective of the
directions of radii of the visual circle. Therefore, it
can be concluded that the personal constants,
especially o estimated from the visual circles have a
tendency to vary systematically with the distance

Table 1
PSE and Standard Deviation (SD, in Centimeters) of Radius of the Visual Circle in Eight Directions (7 through 180 Deg)

Radius of Visual Circle (Q,Q, )

50 cm

100 cm

Observation Distance (cm)

Observation Distance (cm)

Directions 250 450 700 700 1030 1300 1600
7 De PSE 48.57 48.18 43.05 76.56 66.21 75.68 7781

g SD 277 2.75 6.11 5.91 3.83 9.40 12.10

15 De PSE 45.00 46.42 41.12 69.82 65.67 7051 7125
J SD 2.74 3.95 4.03 5.92 3.69 10.10 14.68

40 De PSE 31.01 33.72 23.86 46.20 37.21 45.25 43.40
8 SD 3.61 4,50 3.13 5.00 3.10 5.65 7.79

90 De PSE 2471 24.75 16.11 29.71 25.78 29.41 2752
g SD 96 3.24 1.11 2.89 88 3.33 6.27

120 De PSE 26.74 26.57 17.72 3291 27.63 * 32.00
g SD 1.95 3.55 1.37 3.71 1.95 5.08

150 De PSE 4451 4430 29.85 55.30 41.43 55.25 51.35
g SD 3.16 5.88 3.25 3.07 3.32 6.58 10.04

170 De PSE 52.31 52.15 35.22 75.72 53.52 73.62 63.23
g SD 321 4.68 2.88 5.48 8.10 6.76 11.95

180 De PSE 55.17 55.97 41.87 81.30 65.32 83.15 68.57
8 SD 3.39 5.22 3.60 6.39 4.49 2.14 9.08

Note—Observer: S.T.

*Determination was not made.
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Observer

Figure 6. Physical form of the visual circle obtained by observer
S.T. Observation distance is 250 cm, and the radius of the visual
circle is 50 cm,

from the observer to the visual circle and to remain
constant in every direction of radii in the same visual
circle.

The os in Table 4, estimated from the radius in
the direction of 90° from each visual circle of five
observers, show the same tendency as shown in
Table 2. Their values increase as the observation dis-
tance of circles for each Q,Q, increases and remain
relatively the same for circles of the same observa-
tion distance. The variation of os within an observer
is larger than that between observers. It can be
observed from the Ks in Table 4 that there are no
remarkable systematic changes with observation
distance and that each observer retains relatively the
same rank order in terms of values of X within each
observation distance. The largest value of K in each
row most frequently appears in the column of J.S.,
the third largest in the columns of S.T. and T.Y.,
the fourth largest in the column of H.S., and the
fifth largest in the column of H.T. In comparison
with the personal constants in the last two rows that
were obtained from the alley experiment, almost
all the values of o and the absolute values of K in
the visual circle experiment are larger than those in
the alley experiments.

DISCUSSION

Although most of the obtained visual circles had
some irregularities like those of the visual circle
shown in Figure 6, they were less irregular and more
stable within each observer than those obtained in the
previous experiments (Hagino, Yoshioka, &
Hirabayashi, 1962, 1963), in which only three points

Table 2
Personal Constants, ¢ and K, in Six Directions (15 through 170 Deg)

Radius of Visual Circle (Q,Q,)

50cm 100 cm
Observation Distance (cm) Observation Distance (cm)
Personal
Directions Constants 250 450 700 700 1030 1300 1600
15 D o 13.964 20.895 37.620 24529 30.754 43.884 67.240
e K —-1.669 —-1.542 12,740 —.685 —-1.765 -5.492 -1.994
40 De g 13.224 19.403 35.846 32.309 43.086 62.822 79.526
8 K -1.625 -1.495 -10.703 -.568 ~-2.217 -16.364 -2.262
90 D o 14.089 28.827 35.888 31.024 47.005 60.716 78.549
8 K -~1.677 -1815 -10.398 -.589 -2.340 -13.689 -2.243
120 De, o 13.373 17916 35.436 30.024 46.019 * 83.762
& K -1.634 -1450 -10.380 -.591 -2.340 -2.363
150 De. o 17.071 19.119 43.417 36.754 48.101 72.008 77.550
8 K -1.865 -1.487 -24.962 —-492 -2.432 -41.680 -2.217
170 De c 13.586 8.843 25.168 35.708 31.109 56.981 78.798
8 K —-1.647 -1.202 —4.670 -511 -1.779  -10.982 -2.246

Note—Observer: S.T.

*Personal constants were not calculated (cf. the footnote in Table 1).
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Table 3
PSE and Standard Deviation (SD, in Centimeters) of Radius of Visual Circle in the Direction of 90 Deg
Observers
Radius of Visual Observation
Circle (Q,Q, ) Distance S.T. H.S. H.T. IS. T.Y.
250 cm PSE 24.71 32.71 35.85 2793 29.45
SD 91 4.20 3.84 2.49 2.65
50 450 PSE 24.75 32.08 38.40 27.44 21.84
cm cm SD 3.24 499 4.46 1.69 1.26
700 PSE 16.11 28.56 38.65 23.44 18.95
cm SD 1.11 1.06 2.31 2.46 1.56
700 PSE 29.71 44.35 49.98 33.11 30.51
cm SD 2.89 1.85 453 3.45 1.66
1030 PSE 25.78 39.50 51.81 37.70 31.93
cm SD 88 347 3.94 3.22 1.55
100 cm
1300 em PSE 29.41 32.87 56.83 37.56 32.14
SD 3.33 6.41 4.02 4.56 2.94
PSE 27.52 36.60 50.63 42.78 21.98
1600 cm SD 627 1.97 3.45 3.56 2.04

of light (Q,, Q., and Q;) were presented at one time.
However, the personal constants calculated from the
visual circles in the present study were not consistent
with the values expected from the Luneburg theory.
First, the values of o increased systematically as the
observation distance increased and were considerably
larger than those obtained in other studies, the latter
being usually not greater than 25. Exceptions are the
studies by Ishii (1962) and Nishikawa (1969), who

reported values from 10.6 to 44.3 and from 25.0
to 46.9, respectively. The large values of o in the
present study (ranging from 13 to 120) may be
ascribable to a kind of constancy phenomenon in
which the physical magnitude of the radii of the
configuration perceived as a circle remained essen-
tially constant despite the increase in the observation
distance (Tables 1 and 3). Since the standard devia-
tions of PSEs were smallest in the direction of 90°

Table 4
Personal Constants, o and K, and ¢, , /T, , in the Direction of 90 Deg
b
Radius of Visual ~ Observation Personal Observers

Circle (Q,Q,) Distance Constants S.T. H.S. H.T. J.S. T.Y.
o 14.089 18.800 21.371 17.658 19.004
250 cm K -1.677 -2.013 -2.042 -1.606 -1.766

@16/Tey) 1.93 2.69 2.80 2.22 2.46
¢ 28.827 39.968 46.261 33.901 32.854
50 cm 450 cm K -1.815 -2.111 -2.358 -1.812 3.497

@16/T0,) 4.05 4.76 5.59 4.71 3.28
¢ 35.888 59.012 75.587 46.076 42,788
700 cm K —10.398 -1.981 -2.660 —1.821 -.832

@, 6/Tsy) 3.55 6.25 8.41 5.21 443
g 31.024 48.896 49502 36.791 38,422
700 cm K -.589 —.096 ~1.189 2.251 —4.253

@,6/To,) 3.27 4.34 5.47 3.68 3.57
4 47.005 69.364 86.474 51.344 58.203
1030 cm K -2.340 —8.093 -22.633 -1.610 -3.792

@',6/Ty4) 4.14 6.64 8.33 6.17 5.46
100 cm o 60.716 78.123 119.902 78.249 73.629
1300 cm K —13.689 -2.842 —.487 9.545 -3.397

@'16/To;) 6.01 6.98 11.55 8.15 6.92
o 78.549 108.192 118.422 111.731 62.977
1600 cm K —2.243 -2.957 ~1.641 -8.794 -2.029

@',/ 7.01 943 12.61 10.89 5.86

Alley 500 o 3.131 34.226 8.204 7.626
Experiment cm K -.388 -.194 ~.102 .000
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and judgments were made with greatest ease and
confidence in this direction for all observers, it seems
reasonable to choose the two radii of 0° (the standard
radius) and 90° to characterize the physical forms
of the visual circles. If their magnitudes were
expressed in angular size as I'y,, the angle of disparity
between Q, and Q, and ¢/, the visual angle subtended
by Q.Qs, then 'y, should decrease, theoretically, in
inverse proportion to the square of the observation
distance, while ¢/, should decrease inversely propor-
tional to the observation distance. This differential
decrease between angular sizes of the two radii
should result in an increase of the ratio between
them, $,./l,, as the observation distance increases.
As shown in Table 4, for almost all observers in this
experiment, ¢,./,, increased as the observation
distance increased in each of the two kinds of the
visual circle with different standard radius. This
implies that the radii in the frontoparallel plane
became larger, in angular size, relative to the radii
in the median plane as the observation distance
increased. Also, for each observer, the values of
o in Table4 varied as a linear function of
$/s/0:. This variation corresponds to the results of a
theoretical study by Hagino et al. (1962). In that
study, the authors varied o in their theoretical equa-
tions for the visual circle, holding K constant, and
calculated the radii of various circles. The results
showed that as o became iarger, frontoparallel radii
of the visual circles increased considerably and the
form of the visual circles approached the geometric
physical circle.?

Secondly, in the present study, almost all the
values of K were negative, and this supports
Luneburg’s proposition that visual space is hyper-
bolic. However, most of the absolute values of X
were larger than one. According to Luneburg (1950),
K should be within minus one to zero, that is,
—1 < K < 0. Therefore, the obtained K that-are less
than — 1 are not consistent with his theory. Values of
K more negative than —1 imply a logical contra-
diction that we can perceive sizes and distances larger
than infinity (Blank, 1958b). K's smaller than —1 in
previous studies (Blank, 1958b; Indow et al., 1962a;
Zajaczkowska, 1956b) may be attributable to experi-
mental errors. However, the magnitude by which
some Of the K5 in the present study are less than — 1
is too large to be ascribable to experimental errors.
As mentioned before, some observers in the present
study showed a tendency to overestimate the far
distance up to 10 m. This phenomenon, called
overconstancy of distance, was also observed in other
studies carried out in reduced stimulus conditions
using small light points as stimuli in a dark room
(e.g., Tada, 1956). However, it must be noted that
there was no relation between the overestimation of
the far distance and the values of K smaller than
—1 or the remarkably large os in the present study.

It is interesting to compare the PSEs in Table 1,
especially the entries of the two bottom rows and
the third and fourth columns, which indicate over-
estimation of the far distance, with the corresponding
Ks and os in Table 2 (personal constants correspond-
ing to the first and last rows in Table 1, 0° and
180°, were not calculated). No conspicuous relation-
ship was observed between the overestimation and
the personal constants.

The constant K in the Luneburg theory relates to
the geometry of the primary visual space, that is, as
Foley (1972) termed it, the space defined by percep-
tual relations when only the primary cues of accom-
modation, convergence, and disparity are available.
Shipley (1957) claimed that this constant was so
important that the determination of the sign of K was
prerequisite in future research. In the present study,
most of the Ks obtained in the visual circle experi-
ment were negative, but not consistent with the
Luneburg theory. However, Ks that are anomalous
according to the Luneburg (1950) theory have been
observed elsewhere. In the alley experiments, K was
larger than zero for 6 of 15 observers (Hardy et al.,
1951) and for 7 of 9 observers (Ishii, 1962). This
implies that the visual spaces of those observers were
not hyperbolic but elliptical. Further, Ishii (1964)
reported k > O for 5 of 12 observers and for 5 of 17
observers in the first and the second equilateral
triangle experiments, respectively, and also for 9 of
17 bbservers in the isosceles right-triangle experiment.
Examining the Desarguesian property of binocular
visual space, Foley (1964) concluded that the visual
spaces of a significant proportion of his five observers
were Desarguesian. However, Foley (1968) observed
that in the equilateral triangle experiment K was
negative for two observers but for the third observer
K varied from positive to negative as the size of con-
figuration increased. Recently, Foley (1972) reported
on three experiments, the results of which seemed to
be significant for the assumption of homogeneity,
or constant negative curvature, of binocular visual
space of the Luneburg-Blank theory. From the results
of these experiments, which involved construction
of one or two apparent isosceles right triangles, the
following conclusions were drawn. The primary
visual space was neither Euclidean nor homogeneous;
two kinds of judgment, size-distance and angle,
were the product of independent processes; geometry
might approach Euclidean geometry with the intro-
duction of additional cues to distance; and no one
geometrical model can be appropriate for all stimulus
situations.

Regarding the curvature of visual space, Indow
(1968, 1974), Matsushima and Noguchi (1967), and
Nishikawa (1967), applying the method of multi-
dimensional scaling to their data, reported the pos-
sibility that the intrinsic geometry of visual space
might be Euclidean. On the other hand, Ishii (1972)
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proposed that-the geometry of visual space might not
be so exclusively hyperbolic as Luneburg claimed
but might vary from hyperbolic to elliptical and
from individual to individual, that- is,
-1 < K € +1, based on the statistics of signs of
Ks obtained by the earlier researchers, including him-
self (Blank, 1961; Hagino et al., 1963; Hardy et al.,
1951, 1953; Indow et al., 1962a, b; Ishii, 1962, 1964;
Shipley, 1957; Zajaczkowska, 1956a, b). According
to his statistics, Ks were positive in 13 of 52 cases
in the alley experiments and in 8 of 68 cases in the
3- and 4-point and in other experiments.

Thirdly, systematic changes in the personal
constants were observed in the present study, that is,
for the same observers, not only did os increase as
the observation distance increased, as mentioned
before, but also almost all of the values of o and
absolute values of K were larger in the visual circle
experiment than in the alley experiment. According
to the Luneburg theory, the personal constants
should remain the same and within experimental
errors irrespective of variations in kinds of or varied
conditions in the same kind of experiment to yield the
constants. However, it has been reported occasionally
that systematic changes in both constants occurred
concurrently not only with the difference in the kind
of experiment but also with the varied conditions of
the experiment. Comparing the values of o and K
obtained from the 3- and 4-point experiments with
those from the alley experiment, Zajaczkowska
(1956b) reported that the values of o were larger in
the latter experiment, though the absolute values of
K were larger in the former. The same tendencies
were observed in the studies of Indow et al.
(1962a, b) and Hagino et al. (1963). Zajaczkowska
(1956b) used three kinds of alleys: classic, inter-
mediate, and broad. Referring to the results described
in her Table IV (p. 523), Foley (1964) pointed out
that for the majority of observers the absolute
values of K increased with the width of the alleys
and that systematic changes in o could be observed,
that is, the wider the alleys, the smaller the values
of o. However, Hagino et al. (1963) observed
opposite tendencies in that the values of ¢ and
the absolute values of K obtained in the narrow and
long alley were larger than those obtained in the
broad and short alley. Yoshioka (1965) reported that
in the alley experiment, when the observation distance
was varied with ¢, being held constant, no
systematic change of either constant was found, and
when ¢, was decreased with the observation distance
being held constant os tended to increase. According
to the studies of Indow et al. (1962a, b), in the alley
experiment os obtained in the vertical plane were
smaller than those in the horizontal plane and Ks in
the vertical plane were closer to — | than those in the
horizontal plane, while in the 3- and 4-point experi-
ments exactly reversed tendencies were observed.
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It has been reported that in the Blank system the
values conceived to be constant also varied systemati-
cally with change in experimental conditions. In his
system (Blank, 1953, 1958a, b; Hardy et al., 1953),
(), where I' = y — y,, r corresponds to g, the visual
radial distance in the Luneburg system, and w,
defined as w = r(0), is used as the measure of
visual radial distance of the farthest point, Qu(ys),
in a given stimulus configuration. By definition, w is
conceived to be constant for an observer irrespective
of the value of I'. The value of w is determined by
the following equation:

w = arc cosh (S/T)%, (16)
where S/T is an index reflecting the degree of the
hyperbolic discrepancy between the parallel and the
distance alley and is considered to be the same
irrespective of the value of . However,
Zajaczkowska (1956a) noted that there were system-
atic changes in the values of w with the variation of
Ye. The values of w became larger as the values of
Yo decreased, while Hagino et al. (1963) observed an
opposite tendency of w, that is, the smaller the values
of yo, the smaller the values of w. But Indow, Inoue,
and Matsushima (1963) reported that they found
neither tendency consistently. Reanalyzing the data
of Blumenfeld (1913) and Zajaczkowska (1956a),
Shipley (1957) pointed out that S/T became smaller
as I increased with 7 of 33 analyzed cases varying
randomly. On the other hand, Indow et al. (1963)
reported that with two of three observers the ratio
seemed to become larger as the values of [ increased.

Thus, in the Blank system, too, values conceived
to be constant for an observer varied systematically
with the difference in experimental condition. How-
ever, so far as mapping funciions are concerned, it
was reported that the Blank system might be better
than the Luneburg system (Hagino et al., 1963).
Using the equations of the visual circle and the
necessary values of parameters obtained for each
observer in the 3- and 4-point and the alley experi-
ments, the authors constructed various theoretical
visual circles for each observer based on the mapping
functions in the Blank and the Luneburg systems.
The resulting theoretical visual circles based on the
Blank system fitted the experimentally obtained
visual circles better than those based on the Luneburg
system, although the agreement between the theoreti-
cal circles and experimental ones was far from being
satisfactory,

The Luneburg theory has been of heuristic value in
specifying problems in binocular space perception,
and this theory could be experimentally confirmed if
an ideal experimental situation were set up where
factors of experience, preconception, and judgment
habits of the observer, as mentioned by Hardy et al.
(1951), are completely excluded. However, the
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experimental results, including those of the present
study, were not consistent with the Luneburg or the
Blank theory. In view of the foregoing discussion,
inconsistent results are of two kinds. The first kind
is the finding that the so-called persona! constants
are not invariant but change systematically with
changes in experimental conditions. The second,
equally important, result is the finding that visual
space is consistently neither negative nor homo-
geneous. It is not certain at present what factors are
responsible for these inconsistencies and whether
these two kinds of inconsistency have the same
responsible factors in common or not. However,
two points, one theoretical and the other experimen-
tal, should be considered in future investigations of
binocular visual space. The theoretical point is that
the mathematical model of binocular visual space
should be a flexible one which can vary its cur-
vature and/or its mapping functions with changes in
the perceived egocentric distance and orientation of
the stimuli. In this respect, Gogel (1958), in develop-
ing and testing a theoretical approach to the percep-
tion of depth from purely binocular cues, concluded
that the amount of frontal constancy (n in his desig-
nation), as well as the observer constant, C, is impor-
tant in determining the perceived depth resulting
from a binocular disparity. The experimental con-
sideration is that it is important to exclude the effects
of cognitive factors from the results if the concern is
to analyze purely perceived visual space. It is likely
that all the experimental situations which have been
used to estimate personal constants are more or less
susceptible to the observer’s cognitive or inferential
processes. As Gogel (1973) has pointed out, cognitive
as well as perceptual factors can influence spatial
responses, and the relative contribution of each of
these can vary as a function of instructions and
stimulus conditions.
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NOTES

1. Since cos 40’ = 0.99993, the difference between intersecting
angle of the observer’s line of regard at the horizontal plane
and the angle of v, which was specified as zero to derive Equa-
tion 8 for the visual circle from Equation 7 for the visual sphere,
was not considered to have any effect on the value of ¢ and X in
the practical sense.

2, Concerning depth and lateral (vernier) acuities, Berry (1948)
reported that when the angular separation between the t®o ver-
tical rods was 133.7 sec of arc or more, depth threshold was
smaller than vernier threshold for all of his three subjects.
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