The non-monotonicity of the psychometric function

in recognition memory'

The technique of using the signal detectability theory
parameter d' as a measure of trace strength in recognition
memory is extended in a decision-making model that predicts
that a S’s psychometric function [p(Y/s) plotted against
stimulus intensity ] will have a peak for intermediate values of
trace strength when the S has a bias towards a “Yes’ response.
An experiment is reported where Ss were required to recognize
previously presented nonsense syllables under a number of
pay-off conditions designed to give different groups of Ss
different response biases. The predictions of the model were
confirmed. It is suggested that a S’s discriminability and
response bias parameters may not be as stable as previous
studies, that pool large samples of data, have indicated, and
the results also provide support for a two-stage model of
recognition, where a preliminary estimate of the trace strength
of an item is obtained before the location of the response
criterion is decided.

Attempts to explain performance in memory tasks in terms
of the concept of trace strength in memory are not new (e.g.,
Hull et al, 1940). The basis of such explanations is that a S’s
response probability for a given item is related to experimental
variables (such as the delay between presentation and recall)
by the mediation of the theoretical construct of the strength
of the item’s memory trace in the S’s mind; for example, a
simple decay theory of memory would assert that trace
strength decays with time, resulting in a decreasing probability
of correct response, with increasing time interval. With the
advent of signal detectability theory the inadequacies of an
approach that related trace strength and response probability
in such a direct way were quickly realized, and a number of
workers have used d’, the signal detectability theory measure
of discriminability, as a measure of trace strength (Norman &
Wicklegren, 1965; Murdock, 1966; Wicklegren, 1966;
Wicklegren & Norman, 1966). With this approach, decision
processes in perception and in memory are to be viewed in the
same way, with the analysis of the detection process in terms
of the discriminability of the items presented (the parameter
d') and of the location of a response criterion (the parameter
8) applying equally well to items directly presented, as in
perception, or indirectly retrieved from a conceptual memory
store, as in trace strength analyses of memory.

This paper represents an attempt to develop this parallel
between perception and memory with the construction of
psychometric functions for items in recognition memory tasks
[a psychometric function is a plot of p(Y/s)—the probability
of responding “Yes” given an appropriate signal--against the
strength of s]. In so doing it will be demonstrated that the
decision processes normally assumed for recognition memory
are inadequate and need extension. In particular, it will be
demonstrated that the psychometric function in recognition
memory has a peak at an intermediate value of d’ (the measure
of trace strength), which necessarily implies that interactions
must exist between the discriminability and response bias
parameters of the detection model. In a wider context, such
interactions mean that the generality of studies attempting to
show independent variation of the discrimination and response
bias components of a decision is called into question. For
example, studies of variation of g8 with d' fixed (Green, 1960;
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Broadbent & Gregory, 1963; Broadbent, 1967; Murdock,
1965), may depend critically upon the value of d’, and studies
of the relationship between confidence ratings and the a
posteriori probability of correctness should not be expected to
show the uniformity that has been claimed in other studies
(e.g., Pollack & Decker, 1958; Clarke, 1960; and Kintsch,
1968).

In what follows, the standard assumptions of signal
detectability theory will be made, namely that in a binary
decision task (signal vs noise) an S calculates a likelihood ratio
from his observation, and makes a positive response if and
only if this likelihood ratio exceeds a criterion point; the
distributions of likelihood ratios when signal and when noise
are present are assumed to be normal, with equal variance.

Even for traditional decision models, the form of the
psychometric function is critically dependent on the type of
decision rule the S is using. Two such rules will be discussed
here: (Al) the Neyman-Pearson criterion—maximize p(Y/s)
subject to the constraint that p(Y/n) < a, and (A2) maximize
expected pay-off.

Decision Rule Al produces a monotonic psychometric
function: If p(Y/n) is held constant at @ and discriminability is
increased, p(Y/s) will increase. Decision Rule A2 produces a
U-shaped psychometric function if the pay-off situation favors
a “Yes” response and a monotonic psychometric function if
the pay-off favors a “No”” response. The minimum of the “U”
is at a point corresponding to p(Y/n) = ¥ (see Fig. 1).

However, the situation is more complicated if certain levels
of discriminability make certain levels of response bias more or
less difficult to maintain. This situation arises in the author’s
decision-making model (Smith, 1968), which is concerned
with the cost incurred in making a psychophysical decision.
This model supposes that an S incurs particularly high cost
whenever he has to make a decision involving a likelihood ratio
particularly close to his criterion. This has the consequence
that to a fair approximation in a binary decision task (signal vs
noise) the average cost incurred in making a decision is a linear
function of the sum of the two probability density functions
at the criterion. This has the further consequence that for poor
discriminability (d' < 2) it is less costly to be biased than
unbiased, but for high discriminability (d' > 2) it is less costly
to be unbiased than moderately biased. It is assumed that cost
is something that the S wishes to keep as small as possible,
within the limits imposed by other requirements of the task.

Decision rules in this situation might then take the form:
(B1) maximize p(Y/s), subject to the constraints that
p(Y/n)< a and decision cost < K, and (B2)maximize
cxpected pay-off, subject to the constraint that decision
cost < K.

There will in general be a range of values of d’ where the
criterion C defined by Decision Rule Al or A2 does not
coincide with the corresponding criterion C' for Decision Rule
B1 or B2, because in the latter case the cost that would be
incurred in maintaining a criterion at C is too high. For Rule
Bl, as Fig.2 shows, this would produce an uneven
psychometric function because of a discontinuity in the
location of C'. For Rule B2, as Fig. 3 shows, at levels of very
high and very low discriminability C and C' coincide, and
when the pay-off situation favors a “Yes” response the

329



n
2
2
¥
2
§
C Cz
la Likelihood ratio
n SI SZ
F /ﬂ
‘@
c
(1]
©
Pl
.E
[+
o
[
a
& G
Ib Likelihood ratio

Fig. 1. Location of criterion under Decision Rule A2: n = noise
distribution; s, = signal distribution; s, = signal distribution when d’ is
increased; C, = criterion for s; vs n condition; and C, = criterion for s,
vs n condition that produces the same hit rate as C; produces for the s,
vs n condition.

In Fig. 1a, C, and C, produce false positive rates [p(Y/n)] of less than
%, and thus the likelihood ratio at C, in the s, vs n condition is larger
than it is at C, in the s; vs n condition; therefore C, must be moved to
the left to reduce the likelihood ratio in the s, vs n condition to its
former optimal value; this necessarily increases the hit rate [p(Yfs)].

In Fig. 1b, C, and C, produce false positive rates of more than ', and
thus the likelihood ratio at C, in the s, vs n condition is smaller than it is
at C, in the s; vs n condition. Therefore C, must be moved to the right
to increase the likelihood ratio in the s, vs n condition to its former
optimal value; this necessarily reduces the hit rate,

If the pay-off situation favors a “Yes” response, then for some
sufficiently small value of d' the criterion should be placed to produce a
false positive rate of more than 50%. Thus a U-shaped psychometric
function will arise, p(Y/s) decreasing from 1 as d' increases from zero
until the point where p(Y/n) =1 is passed, thence onward p(Y/s)
increasing with d’.

If the pay-off situation favors a “No” response, the false positive rate
should never exceed 50%, and thus p(Y/s) will always be monotonic
increasing with d’.

resultant discontinuity in the location of C' at a level of
moderate discriminability produces a sharp fall in p(Y/s) at
this level. The discontinuity is greater and occurs at a larger
value of d’ if the overall bias is very high, since the S in this
case will be more ready to move his criterion C' to a position
of extreme bias and less ready to transfer it to the more
moderately biased ideal criterion C.

Rule B2 therefore is the only decision rule that has been
considered that predicts p(Y/s) will have a maximum for
intermediate values of stimulus strength. It is not suggested
that the decision rules considered represent the only or even
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the most likely strategies available to the S; the point being
made is that with the model of cost proposed, if performance
is constrained by a ceiling to the cost that can be tolerated, a
psychometric function with an intermediate peak is likely to
arise, whereas it is difficult to see how this could come about
without such a model. The following experiment, in
demonstrating the existence of a peak, will at least discredit
the simple Decision Rules A1 and A2.

METHOD

Subjects were required to carry out a series of recognition
memory tasks. In each task, the S was presented with a list of
18 three-letter nonsense syllables, which he was asked to read
out in time with a metronome which was beating at the rate of
one beat per second. After reading out the list, the S was given
an interference task for exactly 2 min (crossing out particular
letters in a text). At the end of this time, he was given a
second list of 20 three-letter nonsense syllables in which, he
was told, there was a 50% probability that any particular
syllable had occurred in the first list, and he was asked to work
serially through the list, writing “Ycs” or “No” beside each
syllable to indicate whether he did or did not think that that
particular syllable had occurred in the first list. (Stimulus list
and test list were both random samples of the same 36-syllable
population, and this population was changed from trial to
trial). When the S had completed the test list, the E worked
through this list with the S, awarding points for correct and
incorrect responses on the basis of one of the following
pay-off matrices.

§’s Response Number of Ss
assigned to

Yes No thiscondition

Correct Yes 2 2

1. Unbiased condition Anrswer 5
No -2 2
Correct Yes 3 3

1I. “Yes” bias condition rr 6

Answer

No -1 1
Correct Yes 1 -1

II1. “No” bias condition Ans;zr 4
No -3 3

Any particular S always had the same pay-off matrix, and
knew in advance, before the task began, which pay-off matrix
this was. The S was told his task was to maximize the number
of points he was awarded, and it was pointed out that this
need not be the same as maximizing the number of correct
answers. In one session, each S carried out seven tasks, with
only a brief pause between each; the S was told that material
learned in one task was not relevant to the other tasks, i.e., he
could safely forget the items in the lists once the task was
completed. All the Ss attempted the same series of lists in the
same order. At the end of the session, points awarded from the
pay-off matrix were converted into money at the rate of 100
points per shilling. This meant that Ss took away between
threepence and two shillings per session in addition to the
standard payment of four shillings per hour. Each session
lasted about 45 min. Each S came for four sessions, each
session being separated by a few days (not more than a week).

The critical features of this experimental design are as
follows.

(1) This is a task where a self-paced S produces a series of
responses from memory; since it is a memory task, there is
some premium on the S’s responding reasonably rapidly
(particularly if he believes in a trace-decay theory of memory).
This then is a condition where the S is likely to consider the
cost and speed of making a particular decision in relation to
the accuracy of this decision; thus, the preconditions of the
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Fig. 2. Location of Criterion C' under Decision Rule Bl compared with location of Criterion C under Decision Rule Al. A discontinuity in
the location of C' occurs between Figs. 2a and 2b. Fig. 2d shows the corresponding psychometric functions.

model proposed above—that there shall be an interaction
between cost and other features of performance—are likely to
be met.

(2) By pacing the S as he reads out the stimulus list, it is
hoped that gross individual differences in learning strategies
are avoided. The S just does not have time to utilize peculiar
mnemonic strategies such as “I'll only learn the first half of
the list thoroughly” or “I’ll see how many syllables begin with
p''; he is bricfly exposed to each stimulus, and forced, by his
reading of it, to give it at lcast a minimum of attention.
Attempts to explain the results of this experiment in terms of
learning rather than response strategies are made corrcspon-
dingly difficult. This does not preclude, for example, the
existence of position effects in the test list that interact with
experimental conditions; this will be deait with in the results
section.

(3) The use of different pay-off matrices is intended to
produce different response biases in different groups of Ss; the
arguments in the previous section suggest that level of response
bias will critically effect the appearance of the psychometric
function.

(4) The stereotyped method of constructing each list (the
details of which were not explained to the S) means that

Perception & Psychophysics, 1969, Vol. 5 (6)

roughly the same level of difficulty and the same type of
confusions will occur on every list, so with repeated tasks the
S will soon learn the type of task to expect. Also, with the
amount of feedback given at the end of each task (the S is
shown what the correct answers are), the S’s response strategy
ought also to achieve some sort of stability. It is hoped then
that the performance obtained does not contain many random
or superstitious responses from Ss, but represents the
intelligent guesses of well-informed Ss attempting to produce
optimal behavior.

RESULTS
Pooled Data

General trends in the data can be seen by pooling data from
Ss who received the same pay-off matrix and classifying
performance in terms of (1) order within test list—first,
second, third, and fourth quarters of each test list being
considered separately; (2) trial number within a session (1 to
7); and (3) session number (1 to 4).

Discriminability. Tables 1-3 show median d' for various
combinations of these conditions. Although trends are
suggested, the only significant effect is the variation of d' with
session (Friedman two-way analysis of variance, p < 0.05).
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Fig. 3. Location of Criterion C' under Decision Rule B2 compared with location of Criterion C under Decision Rule A2. C and C’ coincide

for low and high discriminability (Figs. 3a and 3d, respectively), and there is a discontinuity in the location of C' between Figs. 3c and 3d.
Figure 3e shows the corresponding psychometric functions. Figure 3f sketches the psychometric functions for a bias away from (rather than
towards) a “Yes” response.
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Table 1
Median d’ as a Function of Test List Position for the Different
Experimental Groups

Positionin st 2nd 3rd 4th
Test List Quarter Quarter Quarter Quarter
Unbiased group 0.96 0.96 I.12 0.84
“Yes” bias group 1.06 1.11 113 0.64
“No” gias group 1.23 0.88 1.26 0.95
Table 2
Median d’ as a Function of Session for the Different
Experimental Groups
Session i 2 3 4
Unbiased group 0.96 0.78 0.97 0.96
“Yes” bias group 1.00 0.96 1.12 1.10
“No™ bias group. 0.95 0385 135 1.35
Table 3

Median d’ as a Function of Trial Number for the Different
Experimental Groups

Trial 1 2 3 4 5 6 7

0.78 091 1.12 1.25 092 0.80 0.96
0.51 097 1.25 0.81 1.12 1.18 1.12
0.68 097 1.35 1.35 1.35 1.05 1.00

Unbiased group
“Yes” bias group
“No” bias group

There are no significant differences for d' with different
pay-off matrices, and no suggestion of an interaction between
pay-off matrix and d’ over any of the other experimental
variables. This last point is important when individual data are
discussed later.

Response bias. Table 4 shows the distribution of the
number of occasions that pooled data showed a bias towards
“Yes” response, “No” response, or is unbiased. There is a bias
towards a “Yes” response over and above the pay-off matrix
condition (Wilcoxon matched pair on “Yes” matrix vs “No”
matrix, p < 0.01, and on the unbiased matrix p < 0.05). There
is a session effect: there are many more “wrong” biases in the
first session than in subsequent sessions (Kruskal-Wallis
one-way analysis of variance, p < 0.01 for “Yes™ matrix, just
fails to reach significance for “No” matrix, 0.05< p< 0.10;2a
“wrong” bias is a non-Yes bias for the “Yes” matrix and a
non-No bias for the “No’’ matrix). And there is an order
effect: bias towards “Yes” response is greater at the end rather
than at the beginning of the test list (Wilcoxon matched pair,
p < 0.01 for *“Yes” matrix, p < 0.01 for “No” matrix) but this
effect does not appear for the unbiased matrix condition.
There is no detectable variation of response bias with trial
number for any of the three conditions.

Raw scores. Mean total scores for the three conditions were:
unbiased matrix, 391; “Yes” bias matrix, 509; and ‘“No” bias
matrix, 420. “Yes” bias score was significantly greater than
“No” bias score (Mann-Whitney U, p < 0.05). The S who
always responded “Yes” in the “Yes” bias condition or “No”
in the “No'" bias condition would have an expected total score

Table 4
Distribution of Response Biases for the Different
Experimental Groups

Responses show

“Yes” bias Unbiased “No” bias
Experimental
group receiving
1 Unbiased matrix 59 7 43
2 “Yes” bias matrix 95 1 13
3 “No” bias matrix 35 14 60

Perception & Psychaphysics, 1969, Vol. 5 (6)

of 560. No S in the bias matrix conditions achieved as high a
score as this, indicating a marked departure from optical
behavior, if optimality is defined as getting as many points as
possible (because the S could do better without even seeing
the stimulus list).

Individual Data

The conclusions of the above section are that the group of
Ss receiving the unbiased matrix produce a fairly stable
performance with only minor variations in median d’ within
lists and over trials and sessions, and a relatively unbiased
criterion that also shows no changes within lists and over trials
and sessions. It is this group that will be used as a standard to
which the performance of the other groups may ‘be related.

The technique of analysis will be to use the proportion of
“Yes” and “No” responses made by members of the unbiased
group to a particular item as a sort of confidence rating for
that item. Note that obtaining confidence ratings directly from
Ss in this situation is inappropriate, because of the interference
effects on the S’ mnemonic performance that are likely to
result. The distribution of responses for the unbiased group is
shown in Table 5.

It is not appropriate to regard this distribution as the
product of chance variations based on a constant d’ for all
items. The distributions for “Yes” and for “No” correct
responses both differ sharply from binomial (for “Yes” correct
response x? =21.8, p< 0.001; for *“No” correct response

Table §
The Distribution of k (the Number of “Yes™ Responses made
to an Individual [tem by the Five Members of the Unbiased Group)

Number (k) of “Yes” re- Number of occasions k “Yes” responses
sponses made 1o an were made
individual item by
the five members of

Correct Response Correct Response

_the unbiased group “Yes” “No”
5 59 5
] 85 25
; 74 43
2 39 70
; 18 75
0 1 63
x* =583, p<<0.001). The departure from binomial

distribution is tn the direction of too many values at the
extremes of the distribution. This suggests that it is more
natural to regard the proportions of ‘‘Yes” and “No”
responses made by Ss to individual items as indices of the
discriminability of those items: five “Yes” responses to an
item when the correct response is “Yes” suggests that this is an
unusuaily easy item (high d'); zero “Yes” responses for correct
response ‘“Yes” suggests an unusually difficult item (low d');
the reverse is true if the correct response is “No.” If it is
further assumed that a high correlation exists between the
discriminability of an item for any S in any experimental
condition and the discriminability of that same item for any
other S (an assumption that the results so far give no evidence
for contradicting), then the distribution of the propartion of
“Yes” and “No” responses for the unbiased group can be used
as a distribution of discriminabilities to investigate the effect
of discriminability on the performance of the other groups.
[The decision rules, A2 and B2, discussed in the introduction
both predict monotonicity of p(Y/s) with d’ for an unbiased
S.]

Specifically, for individuals in the bias groups, the functions
p(Y/s,k), p(Y/n,k) will be determined, that is, the probabilities
of saying “Yes” correctly and “Yes” incorrectly to items that
k members of the unbiased group (0 < k < 5) had said “Yes”
to. p(Y/sk) and p(Y/n,k) were estimated for each S for the
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Table 6
Mean Values of p(Y/s)k) and p(Y/nk) for the “Yes” Bias and
for the “No” Bias Groups

Table 8
Distribution of Spearman Rank Order Correlations (rg) between
p(Y/sk) and k, and between p(Y/n k) and k, for the “No"” Bias Group

“Yes” group “No” group
p(Y/s,5) 0.849 0.718
p(Y/s,4) 0814 0.686
p(Y/s,3) 0813 0.617
p(Y/s,2) 0.737 0.490
p(Y/n,3) 0.636 0.404
p(Y/n,2) 0.581 0.330
p(Y/n,1) 0411 0.203
p(Y/n,0) 0.266 0.132

first half and the second half of all lists for a given session. No
interesting variations occurred in these estimates for a given S,
and in what follows they are regarded as eight independent
samples (2 list positions x 4 sessions) of a S’s performance. A
summary of these estimates is provided in Table 6. (The fact
that no significant variation of these estimates occurs across
sessions or within test lists again supports the argument that
no interaction exists between item discriminability and
experimental condition.)

Although pooled data show uniformity, individual data
suggest that in some cases p(Y/s,k) and p(Y/n,k) are not
monotonic with k. To demonstrate this, Spearman rank order
correlations are calculated between p(Y/s,k) and k for
k=5,43,2, and between p(Y/nk) and k for k=32,1,0.
(Other values of k produce so few observations as to preclude
any claim to statistical reliability for them.) Now even if the
relations between p(Y/s,k) and k, and between p(Y/n,k) and k
were monotonic, sampling errors would produce on occasion
imperfect correlations between these functions. It is possible
to demonstrate that the imperfect correlations obtained in this
experiment are not due to sampling errors but reflect unusual
variations of the Ss’ criterion placement, because there is a
negative correlation between (1) the correlation between
p(Y/s,k) and k, and (2) the correlation between p(Y/n,k) and
k. Such a situation would not arise simply by sampling errors,
but would arise, for example, if the S moved his criterion at a
given level of discriminability in such a way as to increase
p(Y/s) as discriminability decreased. This would have the
effect of sharply increasing p(Y/n), and so in any sample of
the S’s responses, criterion placement by the S that makes the
probability of p(Y/sk) exceeding p(Y/s,k + 1) more likely, at
the same time reduces the probability of p(Y/n,k') exceeding
p(Y/nk' + 1), where k' is a number corresponding for n to
roughly the same level of discriminability as k corresponds to
for s. Decrease in correlation between p(Y/s,k) and k should
therefore be marked by increase in correlation between
p(Y/nk) and k. That the data for the “Yes’ bias group have
this property is most conveniently demonstrated by Table 7,
which shows that extremely poor correlations between
p(Y/sk) and k (rs < 0) are associated with high correlations
between p(Y/n,k) and k (rg > 0.8). This interaction is
significant at the 2% level (using t test to test the effect over
each individual S). Such a trend is apparent but fails to reach
significance for the “No” bias group (Table 8). The two groups
combined show a significant interaction beyond the 1% level
(t test).

Table 7
Distribution of Spearman Rank Order Correlations (rg) between
p(Y/sk) and k, and between p(Y/nk) and k, for the “Yes” Bias Group

15 [p(Y/s.,k) k] <0 15 [p(Y/s,k) k] =0
rs [P(Y/n k) k] >0.8 12 21
1 [p(Y/n,k),k]<0.8 0 15
334

15 [p(Y/s k) k] <0 15 [p(Y/5.k),k] =0
15 [p(Y/n k) k] >0.8 6 12
15 [p(Y/n k) k] <0.8 0 15

The second way of demonstrating that p(Y/s) and p(Y/n)
are not always monotonic with discriminability is to look at
the number of times such a function as p(Y/s,k) exceeds
p(Y/s,k+ 1), given that in the samples over which this
comparison is made, p(Y/s,5) has a fixed value. The reasoning
behind this step is that if it is assumed that Ss in a given
condition have essentially the same psychometric function (in
terms of its general shape), though through differences in the
discriminability of the memory trace and the individual S’s
response bias, different segments of the psychometric function
are observed for each distinct sample of the Ss’ responses,
nevertheless these segments can be superimposed upon one
another by anchoring a particular convenient point. That is, it
is being assumed that the segments of the psychometric
function obtained from different Ss for different sets of lists
and parts of lists, but for all of which (say) p(Y/s,5) =1, are
sufficiently similar to make meaningful comparisons with
other conditions. Support for this strong assumption comes
from the consistent results obtained when this assumption is
made. Table 9 shows the results of this procedure, using
p(Y/s,5) and p(Y/n,0) as anchor points.

The important results shown by Table 9 are that, for the
“Yes” bias group, the proportion of times that p(Y/s4)
exceeds p(Y/s,3) when p(Y/s,5) is large (=1) is significantly
different from the proportion of times that p(Y/s,4) exceeds
p(Ys,3) when p(Y/s,5) is small (<0.875) [t test on p(Y/s,4) vs
p(Y/s,3), p<0.01]); and for the “No” bias group, the
proportion of times p(Y/n,2) exceeds p(Y/n,1) when p(Y/n,0)
is small (=0) is significantly different from the corresponding
proportion when p(Y/n,0) is of moderate size
[0< p(Y/n,0) < 0.143] and when p(Y/n,0) is large (>0.143)
[ttest on p(Y/n,1) vs p(¥/n2), p<0.01 and p< 0.05,
respectively] . For no other conditions are there significant
differences in proportions. These differences cannot be
explained by assuming a monotonic psychometric function
and supposing that differences in the number of times (say)
p(Y/s4) exceeds p(Y/s,3) is the result of sampling this
psychometric function at points of different slope [the flatter
the psychometric function, the less likely is it that a sample
estimate of p(Y/s,4) will exceed p(Y/s,3)] because, as Table 9
shows, the mean level of p(Y/s,4) and p(Y/s,3) combined
remains much the same, independent of the level of p(Y/s,5).
So, if the psychometric function they belong to is monotonic,
all samples have been taken around the same average point on
this psychometric function, which invalidates this alternative
explanation.

Note also that these data do not provide support for a
U-shaped psychometric function: For the “Yes” bias group for
the lower values of p(Y/s,5) [p(Y/s,5)< 1] (which values
presumably correspond to the lower levels of the psychometric
function) p(Y/s,3) is greater than p(Y/s,2) (t test over Ss,
p < 0.02); this suggests that p(Y/s) reaches a peak for an
intermediate level of discriminability. Similarly, for the “No”
bias group, p(Y/n,2) has a tendency to be less than p(Y/n,1)
p(Y/n,0) small (=0) and to be greater than p(Y/n,1) for
p(Y/n,0) large (<0). Again this supports the ‘*‘peak”
explanation.

In summary, two sources of evidence suggest that the
functions p(Y/s) and p(Y/n) are not monotonic with
discriminability:

(1) Large departures of p(Y/s) from monotonicity in a
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Table 9
p(Y/sk) and p(Y/n k) for Various Ranges of Values of p(Y/s,5) and p(Y/n,0)

“Yes” bias group

p(Y/s,5)=1 0.86<p(Y/s,5)<0.9 p(Y/s,5)<0.86

11 7 6

Y5 dpp(Yis3) ; 0

S 10 11

YsIRR(YSD : :

Mean values

p(Y/s,4) 0.868 0.824 0.764
p(Y/s,3) 0.766 0.835 0.726
p(Y/s,2) 0.790 0.694 0.726

0<p(Y/n,00<0.143 0.143<p(Y/n,0)<0.333  0.333<p(Y/n,0)

13 12 12
p(Y/n,2)2p(Y/n,1) 5 3 3
10 6 11
p(Y/n3Rp(Yn2) g g .
Mean values
p(Y/n,1) 0.336 0.490 0.422
p(Y/n,2) 0.520 0.619 0.615
p(Y/n,3) 0.588 0.606 0.725
"No”biasgroup g p(y/sS)l  0.625<p(Y/s5)<08  p(Y/s.5)<0.625
7 8 4
Y/s, Y/s,3
p(Yisdazp(Y/s3) ] 5 :
8 6 8
Y/s,3 Y/s,2
pYSIRPYSY . ;
Mean values
p(Y/s,4) 0.732 0.701 0.603
p(Y/s,3) 0.619 0.572 0.664
p(Y/s,2) 0.525 0471 0.459
p(Y/n,0=0 0.111<p(Y/n,0)<0.143  0.143<p(Y/n,0)
4 11 8
p(Y/n,2)2p(Y/n,1) 8 0 1
9 7 3
aYn3Rp(Y2) 5 3 5
Mean values
p(Y/n,1) 0.270 0.111 0.224
p(Y/n,2) 0.285 0.371 0.430
p(Y/n,3) 0.422 0.386 0.401

sample of a S’s responses are accompanied by a decreased
probability of nonmonotonicity appearing in the corres-
ponding sample of p(Y/n). This suggests that such departures
from monotonicity are not merely sampling errors.

(2) The proportion of times p(Y/s,k) exceeds p(Y/s,k + 1)
[or p(Y/nk) exceeds p(Y/nk + 1)] varies as a function of
p(Y/s,5) [or p(Y/n,0)], and this fits in better with the concept
of p(Y/s) or p(Y/n) as being a function looking like a cubic
curve (i.e., some nonmonotonic function) rather than like the
cumulative normal curve (i.e., a standard monotonic function).

DISCUSSION

Finally, some more strong assumptions will be made to
derive the form of the psychometric functions. These
assumptions are not to be regarded as candidates for the final
version of any complete analysis of this experiment, but as
first approximations that enable an intelligent guess to be
made at the underlying form of the results.

(1) For all Ss in a given condition, the same general
psychometric function is valid and individual psychometric
functions differ only in their rate of change with stimulus
intensity (i.e., any psychometric function in a given condition
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can be changed into another in the same condition by a linear
transformation of the stimulus intensity axis).

(2) The stimuli (s,5), (s,4), (5,3), (5,2) are equally spaced on
the stimulus intensity axis. (s,k) is the stimulus consisting of a
signal to which k members of the unbiased group have
responded “Yes.” Similarly, (n,0), (n,1), (n,2), (n,3) are
equally spaced.

(3) If p(Y/s,5) = 1, the portion of p(Y/s) joining p(Y/s,5) to
p(Y/s,4) is a straight line. Similarly, if p(Y/n) = 0, the portion
of p(Y/n) joining p(Y/n,0) to p(Y/n,1) is a straight line.

With these assumptions, it is possible to use all the data for
which p(Y/s,5) = 1 or p(Y/n,0) = 0 to derive four functions:

(D) p(Y/s) for the “Yes” bias group

(2) 1 — p(Y/n) for the “Yes’’ bias group

(3) p(Y/s) for the “No” bias group

{(4) 1 — p(Y/n) for the “No” bias group
These are shown in Fig. 4.

In line with prediction, Functions 2 and 3 are monotonic and
Functions 1 and 4 are nonmonotonic; these latter functions de-
part from the “normal” functions 2 and 3 for low stimulus in-
tensity. Function 4 departs from the normal psychometric func-
tion at a stimulus intensity lower than that for Function 1. This
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p(YIs)or1-p(Yin)

O Yes bios group, p(YIs)

®  No bios group, 1-p{Y In)

A Yes bias group,1-p{Yin}

& No bias group,p(Yls)
Signol imensity

Fig. 4. Psychometric functions derived from the experimental data
using the assumptions outlined in the text. The data points in this figure
are derived by a moving average technique from the raw data.

is to be expected, since the tendency among the ‘“No” bias
group of Ss was to be less biased than the “Yes” bias group of
Ss, and the discussion of the cost concept in the introduction
to this paper suggests that if the overall bias of a S is relatively
small, the point where he changes from an extreme criterion
for low discriminability to a moderate criterion for high dis-
criminability will occur at a point of relatively low discrimin-
ability. Thus the point of departure from the ‘“normal”
psychometric function occurs at a correspondingly lower value
of stimulus intensity.

One comment on these results is in order: small samples of
individual data in this experiment show wide variations, but
some at least of this variance has been shown to be due to
unusual psychometric functions and not simply to sampling
errors; in contrast pooled data show much greater uniformity.
In the past it has been usual in signal detection experiments to
obtain very large numbers of responses from Ss to ensure
statistical reliability [e.g., in their classic paper, Swets, Tanner
and Birdsall (1961) never used less than 60 responses for a
single estimate of p(Y/s)], and the data so obtained have
indeed shown uniformity and reliability. However, in the
present experiment the assumption that the S is operating
with discriminability and response bias parameters that change
only slowly over time is not supported by samples of small
chunks of data, even if larger samples appear more uniform. It
is suggested therefore that the E carrying out signal detection
experiments must be more conscious of this experimental
dilemma, i.e., whether to pool large samples of data and risk
obscuring short-term variations in the S’s discriminability and
response bias parameters, or to collect small samples and risk
poor statistical reliability. The results of this paper suggest the
latter alternative may be the lesser of the two evils.

This point is well illustrated by the work of Kintsch (1968),
who carried out a recognition memory experiment where Ss
were required to give confidence ratings with their responses.
His graphs of p(Y) against confidence rating are not
monotonic (Kintsch, 1968, Fig. 2), though he remarks that
“pooling some of the rating categories for each S would
remove the noise from the data” [my italics]. In fact, the data
probably are not very noisy, as the following analysis shows.
The graph of p(Y) against confidence rating can be turned into
a psychometric function by assuming the confidence ratings
represent different levels of discriminability (not different
levels of response bias, as is generally assumed), and plotting
p(Y/s) against confidence rating for the portion of p(Y/s)
above 0.5. Overall response bias can be estimated by
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calculating p(Y) for those responses the S rated as a “pure
guess,” counting a S as biased to “Yes,” “No,” or unbiased,
according as p(Y/“pure guess”) is greater than, less than, or
equal to 0.5. Of Kintsch’s four Ss, two are biased to “Yes” and
show nonmonotonicity in p(Y/s) against s, one is biased to
“No” and shows nonmonotonicity in 1 — p(Y/n) against n,
and one is unbiased and has monotonic psychometric
functions (see Fig. 5). All these results are predictions of the
model presented in this paper. The monotonic psychometric
function for an unbiased S is, in terms of our model, a
consequence either of the S being able to tolerate high cost
and thus not having to move his criterion from an unbiased
position, or of the S achieving a net unbiased state by selecting
a “Yes” bias criterion or a “No” bias criterion at random, and
changing this from trial to trial.

The interpretation of these two experiments in terms of our
decision-making model requires an unusual level of knowledge
from Ss; for each item, the S must know how discriminable
the item is before he makes a decision as to whether it is a
positive or negative stimulus, in order that he can position his
criterion appropriately. This problem is parallel to the
difficulty encountered in theories of attention (Broadbent,
1958; Treisman, 1964) where a S must know whether a
message is relevant or not before he can decide whether it
needs attention; in both cases it seems that the process of
identifying the stimulus must be carried out before the process
of identifying the stimulus can begin. The solution proposed
for the problem in attention is filter theory; partial
preliminary information can be obtained through a filter
before the complete process of identification is brought into
action. The same process is assumed to apply in this paper—the
S, by preliminary processing, obtains an estimate of the
stimulus’ discriminability in order to place his criterion
appropriately for a more accurate detection process.
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Fig. 5. Psychometric functions for the Ss taking part in Kintsch’s (1968) experiment. The curves are adapted from Fig. 2 of Kintsch’s study.
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