
Behavior Research Methods, Instruments, & Computers
1989, 21 (6), 619-622

COMPUTER TECHNOLOGY

TIMEX2: A modified C-language timer
for PC AT class machines

MICHAEL M. GRANAAS
University of South Dakota, Vermillion, South Dakota

Emerson(1988) provided a simpleC-language timing routine foruse with PC ATclass machines.
Unfortunately, this version of the timing routine makes use of nonstandard functions that are
not available in all C-Ianguage packages. A modified version of this timing routine that does
not make use ofone ofthese nonstandard functions is provided. This version ofTIMEX runs un
der the widely available Microsoft C 5.1. The need and availability of the remaining four non
standard C functions is discussed. Constants needed to convert the timing routine units into sec
onds and milliseconds are also provided.

Havingrecently beguna programof researchusingPC
AT computers for stimulus display and timing, I was
rather alarmed to findthat the systemclockonly "ticked"
every 54.9 msec. How could a user possibly expect to
measure stimulus duration and reaction times precisely?
The answerwas found in the C-Ianguage routine TIMEX,
written by Emerson (1988).

Emerson (1988)has provided a badly neededpiece of
programming for thosewishing to controlor measure time
critical elements on a PC AT classcomputer. The TIMEX
function is written in the C programming language, and
it increases the resolution of timing on an AT class
machine from approximately 55 msec to approximately
.054 msec. This is done by making use of the system's
8254 hardware interrupt timer, which is typically not
available to the programmer. Emerson refers to this .054
msec time unit as the "tock." The same convention will
be followed here.

Emerson's (1988)routine is limited in that it uses non
standard C-language functions (Kernighan & Ritchie,
1988) that may not always be available to the program
mer. The functions include: enablet), disablet), peekt),
inpt), and outpr). If some or all of these functions are
missing from the Celanguage compiler, TIMEXbecomes
useless. Thus, the desire is to replace any or all of these
functions with standard C programminginstructions, so

This work was supported in part by Grant NAG2-492 from NASA's
Ames-Dryden Flight Research Facility. The author would like to thank
Bob Wood of the USD Computer Science Department for his helpful
comments on this project. I would also like to thank P. L. Emerson
for making available what I consider to beone of the most valuable tools
available for psychological research on a PC: a working millisecond
timer. In addition, my thanks to an anonymous reviewer whose com
ments have improved the readability of this paper. The author's address
is: Department of Psychology, The University of South Dakota, 414
E. Clark St., Vermillion, SD 57069.

that TIMEX can become useful for a wider audience of
researchers.

The peekO Function
The only one of the needed functions not available in

Microsoft C 5.1 is the peekt) function (Microsoft Corp.,
1987), which allows the programto directly read a speci
fied location in memory. Suchaccessto memory is a crit
ical feature of TIMEX. This being the case, an available
alternative to the peekt) function would make the TIMEX
routineavailable to a wider audienceof researchers than
is currently possible.

Fortunately, the C language provides direct memory
addressing as part of the language, through the use of
pointers (Kernighan & Ritchie, 1988). The useof pointers
is typically restricted to memory locations withinthe pro
gram's data segment (Miller & Quilici, 1986). It is,
however, still possibleto address and read memoryout
side of the program's data segment, through the use of
far pointers (Miller & Quilici, 1986).

To accomplish the reading of the memory locations con
taining the clockinformation needed by TIMEX2, the seg
mentand offset address form used by peekt) needs to be
converted intoan absolute address, which can thenbe cast
into a far pointer. This is done by multiplying the seg
ment portion of the address by 16 and adding the offset
to the result (King, 1983).The result is then cast into the
far pointer type (Miller & Quilici, 1986). This is done
as the first two lines of code within TIMEX2 (see
Listing 1).

To mimic thepeekr)function, theprogrammerely reads
the contents of the memory location pointed to by the
pointer. This value is assigned to a variable for later use
(see Listing 1).

Even when the peekt) function is available, the pro
grammer may want to consider using pointers instead.
Reading a memory location through the use of pointers

619 Copyright 1989 Psychonomic Society, Inc.



620 GRANAAS

Table 1
Tock Frequency Distribution for 10,000 Trials

Number of
Tocks

1
2
3
4

Note-Mean = .108 msec, SD = .014.

Frequency

310
9,304

380
6

2.15 (Lattice Inc., 1985), along with Turbo C (Emerson,
1988). It is arguable that these are widely available func
tions, at least in major C-language compilers for PC class
machines, but this is probably of little concern. In the
event that these, or some similar, functions are unavail
able, it should be possible to mimic their behavior through
the use of pointers.

is somewhat faster than a function call (Miller & Quilici,
1986).

Replacing the call to peekt) with direct memory access
is the only coding difference TIMEX2 (Listing 1) and TI
MEX (Emerson, 1988). In terms of performance, TI
MEX2 running 10,000 trials on a 12-MHz ffiM AT clone
had a modal execution time of two tocks, and range of
three tocks (see Table 1 for a complete summary of these
data). So, in the worst case, TIMEX2 is still accurate to
plus or minus four tocks (10.215 msec), which should
be sufficiently accurate for most psychological measure
ment needs.

The enabler) and disableO Functions
The enabler) and disablei) functions are available in

Microsoft C 5. 1 as _enableO and .disablei) (Microsoft
Corp., 1987), and are used in TIMEX2. However, these
functions are not available in Lattice C 2.15 (Lattice Inc.,
1985).1 Emerson (1988) cautions against running without
these two functions. An empirical investigation using
TIMEX2 in Microsoft C 5. 1 with the .enablet) and .dis
abler) functions removed suggests that Emerson is cor
rect in his warning. Approximately 5 to 10 times in a given
set of 10,000 elapsed time trials, where elapsed time is
measured between two successive calls to TIMEX2, the
elapsed time would be approximately 1,024 tocks. This
compares to the typical value of 2 tocks and a range of
1 to 4 tocks (see Table 1) with the .enablet) and .dis
abler) functions included.

The inpf) and outpt) Functions
The inpt) and outpt) functions are both available in

Microsoft C 5. 1 (Microsoft Corp., 1987) and Lattice C

Conversion of Tocks
The unit of measure provided by TIMEX and TIMEX2,

the "tock" (Emerson, 1988), is approximately .054 msec
long. Dividing the time in tocks by 18,643.469 yields time
in seconds. Dividing by 18.643469 gives the time in milli
seconds. The program in Listing 2 has been modified to
print times in milliseconds.

Conclusion
The TIMEX timmg function (Emerson, 1988) is a

generally useful way to measure millisecond times using
the C programming language. The modification im
plemented in TIMEX2 makes TIMEX run under
Microsoft C 5.1 (Microsoft Corp., 1987), and therefore
makes it available to a larger audience of potential users.

REFERENCES

EMERSON, P. L. (\988). TIMEX: A simple IBM AT C languagetimer
with extended resolution. Behavior Research Methods, Instruments,
& Computers, 20, 566-572.

KERNIGHAN, B. W., & RITCHIE, D. M. (1988). The C programming
language (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

KING, R. A. (1983). The IBM PC-DOS handbook. Berkeley, CA:
SYBEX.

LATTICE, INC. (\985). Lattice C compiler. Glen Ellyn, IL: Author.
MICROSOFT CORP. (1987). Microsoft C 5. I optimizing compiler: Run

time library reference. Bellevue, WA: Author.
MILLER, L. H., & QUIUCI, A. E. (1986). Programming in C. NewYork:

Wiley.

NOTE

I. Lattice C is now in version 6.XX, so these functionsmay now be
available in the package.

LISTING 1
The TIMEX2 Function

/* the function TIMEX was originally written by Phillip L.
* Emerson of Cleveland state University, and was published in
* "Behavior Research Methods, Instruments, & Computers", vol 20
* (6), 1988, pgs 566-572.
** the current version was modified by Michael M. Granaas of the
* University of South Dakota in May of 1989. The modifications
* allow timex to be compiled and run under Microsoft C 5.1.
*/

#include <dos.h>
#define TIMERO Ox40
#define CNTRL Ox43
#define READ BACK Oxc2
#define BIOSSEG Ox40
#define TICS La Ox6c
#define TICS=HI Ox6e



LISTING 1 (Continued)

void enable(void);
void=disable(void);

long timex ()
(

unsigned tmpl, tmp2, tmp3, tmp4, hi, 10;
int status;
unsigned far *addl;
unsigned far *add2;
long ticksl, ticks2;

/* addl and add2 are pointers that point to the memory location
* of the system clock after converting from segment:offset
* format to absolute address
*/

addl = (unsigned far *) (BIOSSEG * 16 + TICS_La);
add2 = (unsigned far *) (BIOSSEG * 16 + TICS_HI);

_disable();
outp(CNTRL,READ_BACK);
status = inp(TIMERO);
10 = (unsigned) inp(TIMERO)i
hi = (unsigned) inp(TIMERO)i

/* the following two lines of code read the values at the
* specified memory addresses. These replace the peek()
* function.
*/

tmpl = (unsigned) *addl;
tmp2 = (unsigned) *add2i
_enable() ;

hi = hi « 2 I 10 » 6;

_disable () i
tmp3 = (unsigned) *addl;
tmp4 = (unsigned) *add2;
_enable() ;

if( 1(10 , 63) ) hi-- ;
hi = (-hi' 1023) » I;
if( I (status , 128) ) hi 1= 512;

ticksl = (long) tmp2 « 16 I tmpli
ticks2 = (long) tmp4 «16 tmp3;

if(ticks2 > ticks1 + 1) return(-I);

!f(hi , 512)
return(ticksl «10 hi);

else
return(ticks2 «10 hi);

LISTING 2
An Example Timing Program Calling TIMEX2

/* This program is virtually identical to the one originally
* written by P. L. Emerson (1988). It reads the timer twice
* and calculates the elapsed time. The two modifications
* to this program is that it uses TIMEX2, and converts tocks
* into milliseconds before printing the elapsed time
*/

,include <stdio.h>
'include "timex2.c"
long timex () :

TIMEX2 621



622 GRANAAS

LISTING 2 (Continued)

main()
{

unsigned long ztime, etime;
float elapsed;
while (1)

(
printf(IIpress ENTER to start timing\n"):
getchar():
ztime ~ timex():
printf("press ENTER to read timer\n"):
getchar():
etime ~ timex():
if (ztime < 0 I I etime < 0) break;
etime -= ztime:

/* dividing etime by 18643.469 gives elapsed time in seconds */
/* dividing etime by 18.643469 gives elapsed time in msec */

elapsed = etime/18.643469:
printf("time was %f milliseconds \n", elapsed):

printf ("timing error\n");

(Manuscript received August 28, 1989;
revision accepted for publication October 16, 1989.)


