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On the mathematical form of psychophysical
relationships, with special focus on
the perception of mechanical
properties of solid objects

M. PELEG and O. H. CAMPANELLA
University of Massachusetts, Amherst, Massachusetts

Because the sensory response to mechanical and other stimuli cannot increase indefinitely, the
power law of sensory perception can be valid only within a limited range of stimulus magnitudes.
An alternative two-parameter mathematical expression that can describe, at least in principle,
psychophysical relationships at any stimulus range is presented. It is shown mathematically,
and demonstrated through computer simulation, that unless the stimulus magnitude is too close
to the threshold or saturation level, the resulting relationship in logarithmic coordinates is prac-
tically identical to that predicted by the power law model. It is also demonstrated that the abso-
lute magnitude of the alternative model’s constants can be very similar to those found for the

power law model.

Psychophysical relationships have commonly been
presented in the form of a power relationship between the
sensation magnitude (¥) and the stimulus intensity (¢)
(Gescheider, 1985; Marks, 1974; Stevens, 1975), or

v = K¢, 0]

where n is a coefficient, the magnitude of which is charac-
teristic of the type of stimulus. Values of n reported by
Stevens (1975) range from 3.5 for electric shock to 0.33
for brightness detection. Assessments of mechanical
properties such as muscle force, heaviness, or hardness
are usually on the order of 0.4-2 (Harper & Stevens,
1964; Moskowitz, 1977; Moskowitz, Segars, Kapsalis,
& Kluter, 1974; Stevens, 1975).

Equation 1 is frequently transformed to a logarithmic
relationship, that is,

logy = K' + nlog¢ Q)

where K’ = log K. Since for many stimuli there is a
threshold level (¢,), Equation 1 can also be presented in
the form

¥ = K(¢—do)", 3
or its logarithmic equivalent
logy = K’ + nlog(¢—¢o). @

This work was part of a project supported by the Biochemical and
Biomass Engineering Program of the National Science Foundation (Grant
CBT 8702877). The authors express their thanks to the NSF for the
support and to Richard J. Grant for the graphical aid. The authors also
want to thank Kenneth Norwich for his suggestion to include Equations
7-10 and their discussion in the text. Address reprint requests to M.
Peleg, Department of Food Engineering, University of Massachusetts,
Amherst, MA 01003. ’

451

The mathematical simplicity and convenience of the
relationships expressed by Equations 1-4 are undeniable,
and it appears that there is ample experimental evidence
to support their validity. Certain theoretical aspects of the
relationships, particularly those that are associated with
the definition of y and the methodology of its determina-
tion, have been a topic of ongoing study and discussion
(e.g., Falmagne, 1985; Gescheider, 1985; Shepard,
1981).

As far as the perception of mechanical attributes is con-
cerned, the construction of a psychophysical relationship
is associated with a few unresolved problems. One, of
a semantic nature, originates from the ambiguity and over-
lap in the meaning of terms such as hardness, firmness,
and toughness, and their relation to different mechanical
stimuli (Peleg, 1983a). Thus, resistance to deformation
and difficulty in sustaining permanent indentation,
although defined as ‘‘hardness,’’ are really two different
mechanical properties that can vary independently among
materials. Another problem is the difficulty in determin-
ing the true magnitude of the stimulus because of the
mechanical interaction between the assessed object and

. the soft viscoelastic tissues through which it is sensed (Pe-

leg, 1983b). This difficulty is further aggravated because
the tissues undergo stress relaxation or creep. These and
the viscoelasticity of the mechanoreceptors themselves
would cause the stimulus to decay or vary in time indepen-
dently of the phenomenon known as adaptation, which
is primarily caused by electrochemical processes within
the mechanoreceptors (Loewenstein, 1971).

Let us assume, however, that a meaningful, or at least
workable, relationship between a mechanical stimulus and
its perceived intensity can be derived. If such a relation-
ship were in the form of Equation 1 or Equation 3
(Figure 1a), it would imply that the response intensity can
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Figure 1. Schematic presentation of the types of psychophysical relationships. ¢ is the stimulus intensity,
¢, the threshold stimulus, ¥ the response intensity, and ¢, the saturation level of the response. (The scales

are arbitrary.)

increase indefinitely. This, of course, is physically im-
possible. In reality, the response intensity ought to stabi-
lize at a level dictated by the saturation of the mechano-
receptors; exceeding this level may result in pain. In other
words, if the whole range of possible stimuli is taken into
account, the general shape of the relationship is most likely
one of the kinds shown in Figure 1b, that is, exhibiting
an asymptotic response level. The fact that the sensory
response cannot increase indefinitely in hardness evalua-
tion has already been recognized by Harper and Stevens
(1964). They introduced the term upper threshold to
describe the stimulus level at which the sensory response
stops increasing with the stimulus. They also proposed
a mathematical expression to account for the existence of
both upper and lower thresholds. This expression,
however, has a singularity at the upper threshold level
and not an asymptotically reached constant response.
Their model, therefore, is probably appropriate for the
description of the conditions for pain inception, but not
for describing the phenomenon of response stabilization.
The objectives of this communication are to demonstrate
a simple alternative mathematical model that can describe
psychophysical relationships that have an asymptotic
response level, to compare its properties with those of
the conventional psychophysical model, and to explore
some of its implications and consequences in sensory
evaluations of mechanical and other attributes.

The General Psychophysical Relationships

Let us assume that, irrespective of the scale used for
its quantification, the sensory response (i) must approach
asymptotically a saturation level (¥,). In such a case, the
response can be normalized in the form of

y ¥
¢s
where Y is the normalized, dimensionless response that
can vary between zero and unity. If the shape of Y versus
¢ or Y versus ¢—¢, is of the general form shown in
Figure Ic, it can be described or at least be approximated

&)

by a variety of functions. Let us, however, examine the
properties of only one mathematical expression, of the
kind

Y = 1—exp (—Cx™), 6)

where x = ¢ or ¢—¢,, and C and m are constants.

Demonstration of the features of Equation 6 are shown
in Figures 2 and 3. In Figure 2 the value of C was kept
fixed and that of m was allowed to vary, whereas in
Figure 3 C varied and m was fixed. It ought to be no-
ticed that when m < 1, irrespective of the magnitude of
C, the sigmoid shape of the curve is lost and the slope
progressively decreases. Such curves are most probably
fit only for relationships beyond the threshold, that is,
where x = ¢—¢,.

Comparison between Equation 6 and conventional
psychophysical relationships. Most experimental
psychophysical relationships are derived from the linear
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Figure 2. Examples of normalized response intensity (Y) versus
effective stimulus (x) generated by a computer using Equation 6 (con-
stant C and variable m).
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Figure 3. Examples of normalized response intensity (Y) versus
effective stimulus (x) generated by a computer using Equation 6 (con-
stant m and variable C).

relationsips of log y versus log ¢ or log (¢ —¢,), which
are used to calculate the values of K and n. It can be shown
that considerable portions of the relationships expressed
by Equation 6 will also appear linear in a log-log plot,
provided that the ‘‘saturation’’ region is not reached.
Demonstrations of such linear regions are given in Figures
4 and 5. Obviously, the actual range of the linear region
depends on the constants C and m. The point, however,
is that a region covering two or more orders of magni-
tude of x is a common feature of such plots, and there-
fore the model expression in Equation 6 is not incompat-
ible with the conventional models presented by
Equations 1-4.

The linearity of the log-log plot of data generated by
Equation 6 over a wide range of stimulus intensity is not
a mathematical coincidence. It can be shown that the linear
relationship can be derived directly from Equation 6 in
the following manner.

The Maclaurin series expansion of eZ is

2 3

z
e*=1+Z+ ot 0

For positive values of x and ¥(x), one can substitute —Cx™
for Z to yield

CZxan C3x3m
20 3!

Consequently, the values of ¥(x), as defined by Equa-
tion 6, can be calculated from the series

Cxx2m C3pm
+ e
2! 3!

For small values of x, the sum of the second and other
terms of the right side of the equation becomes negligi-

e =1—-Cm +

®

Yox)=1-e°" = Cxm —

.9
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ble in comparison with the magnitude of the first term,
and therefore it can be dropped. In mathematical terms,
this can be done whenever

2
xm —.
<< C (10)
Under these circumstances Equation 9 is rendered
Y(x) = Cxm, (1

which is identical to the original power law equation with
m = nand C = Ky,. By the same reasoning, the incep-
tion of clear curvature in the log Y versus log x plot will
occur at stimulus levels for which the condition expressed
by Equation 10 is not satisfied.

-1.2 -.6 2 .6
LOG X
Figure 4. The data of Figure 2 presented as logarithmic relation-

ships. Note the range of the linear regions. (For the regression anal-
ysis and more details, see Table 1.)

m=2
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Figure 5. The data of Figure 3 presented as logarithmic relation-
ships. Note the range of the linear regions. (For the regression anal-
ysis and more details, see Table 1.)
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It should also be noted that the relationships shown in
Figures 2-5 were generated by a computer and therefore
represent mathematical relationships. Experimentally de-
termined relationships are rarely as smooth, and consider-
able data scatter is quite common (e.g., Moskowitz et al.,
1974). Because of the latter, detection of the true curva-
ture of the log y versus log ¢ or log (¢ —¢,) relationship
is not always easy, even when the stimulus magnitude is
fairly close to the saturation level. Furthermore, it can
be shown from basic mechanical principles that the sen-
sory sensitivity considerably decreases, and almost com-
pletely vanishes, when the object hardness is the same as
or greater than that of body tissues that are in contact with
it (Norwich, 1972). The reason for this is that the softer
the tissues are relative to the asessed object, the greater
is the part of the deformation that is sustained by the tis-
sues (Peleg, 1980a, 1980b). In the extreme case, as when
we press a metal object between the fingers, virtually all
the deformation is in the fingers themselves. This cor-
responds to testing the fingers rather than the metal ob-
ject, a situation that is equivalent to zero mechanical sen-
sitivity with respect to the metal object. In these and
similar cases, a large scatter in the data in the regions close
to the asymptotic level is not a reflection of random er-
ror but an inevitable outcome of the sensation mechanism
itself.

Relationship Between the Proposed and the
Power Law Model Constants

To demonstrate the characteristics of the proposed
model (Equation 6), the central regions of log ¥ versus
log x plots were subjected to linear regression to calcu-
late the slope and intercept. The plots were generated with
the constant /m in the range of 0.5-2, corresponding to
the common range of the power in psychophysical rela-
tionships (see below). The magnitude of C was arbitrar-
ily selected to cover different ranges of x. Since x is ex-
pressed in the units of the objective stimulus, it can, in

Table 1
Regression Parameters and Fit of the Logarithmic
Psychophysical Law (Equation 2 or 4)
to Data Generated by Equation 6*

K n Range No. of
C (Fitted) m  (Fitted) of x Points r?
0.001 0.001 0S5 0.50 0.01-50 121 0.9999
0.001 0001 1.0 1.00 0.01-50 121 0.9999
0.001 0.001 2.0 1.91 0.01-50 121 0.9983
0.01 0.01 0.5 0.50 0.01-10 82 0.9999
0.01 0.01 1.0 0.99 0.01-10 82 0.9999
0.01 0.009 2.0 1.96 0.01-10 82 0.9992
0.1 0.094 0.5 0.48 0.01-10 83 0.9995
0.1 0.092 1.0 0.96 0.01-8 79 0.9986
0.1 0.093 2.0 1.96 0.01-3 74 0.9995
1.0 0.68 0.5 0.41 0.01-0.8 61 0.9968
1.0 0.76 1.0 0.91 0.01-0.8 61 0.9979
1.0 0.87 2.0 1.95 0.01-0.8 61 0.9995
2.0 1.00 0.5 0.35 0.01-0.5 50 0.9899
2.0 1.26 1.0 0.86 0.01-0.5 50 0.9952
2.0 1.65 2.0 1.93 0.001-0.5 50 0.9993

*See also Figures 2-5.

theory, assume any level. Typical results are shown in
Table 1. As could be expected, the table shows that the
values of m in Equation 6 roughly correspond to the values
of n in the conventional power law models when the mag-
nitude of C is relatively high and are practically identical
with the value of n when the magnitude of C is small.
The table also demonstrates that, if similar data, especially
with some scatter, are subjected to linear regression, a
relationship of the kind expressed by Equations 2 or 4
will naturally emerge with the true curvature probably
masked by the scatter. In other words, if the true rela-
tionship between ¥ and x obeys, over the whole range,
an equation of the kind expressed by Equation 6, there
always will be ranges of stimulus intensity for which the
conventional model will be found valid within an accept-
able level of statistical confidence.

Implications in Sensory Analyses

In most sensory analyses, the stimulus intensity is in
the intermediate range, that is, far enough from both the
lower threshold and the saturation level. Notable excep-
tions are those experiments designed especially to estab-
lish the threshold or pain levels, or to determine the just
noticeable difference versus stimulus intensity relation-
ships, but they should not concern us here. In the inter-
mediate range, as previously mentioned, psychophysical
relationships of the kind described by Equations 1-4 will
most likely emerge with high statistical confidence level.
Since the validity of these relationships is frequently taken
for granted, the pertinent range of the particular stimulus
is rarely determined prior to the test. Therefore, there is
a danger, particularly when hard objects (e.g., hard candy,
biscuits) are sensorily evaluated, that the stimulus range
is already in the near saturation level. Since the human
subjects must report their evaluations, the latter, together
with their considerable scatter (that results from a sensi-
tivity loss), will enter the calculation and will lower the
determined value of the constant n. This scenario is prob-
ably not uncommon with other types of stimuli for which
the saturation range can be easily reached. It is, there-
fore, advisable in such cases to determine a priori the per-
tinent saturation level so that the results are not distorted.
When the true relationship is of a sigmoid shape, similar
problems can arise at the other end of the scale. In such
cases, and again as a result of sensitivity loss and data
scatter, an overestimate of the parameter n will most likely
be reached.

It should be stated again that the model expressed in
Equation 6 need not be a unique representation of psycho-
physical relationships, irrespective of whether the latter
refer to hardness or any other attribute. It was primarily
selected for its mathematical simplicity and for having two
constants only; that is, it is not much more complicated
than the conventional model. Theoretically, however,
there is no reason why the same mathematical relation-
ship ought to be valid throughout the entire range, or that
a comprehensive model must have only two constants.
It is, therefore, quite possible that more elaborate models
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will be found more appropriate for the entire range. De-
termining the constants of this model, or possibly of the
more elaborate ones, does not pose any serious problem.
Since nonlinear regression has become almost a standard
item of computer software, the loss of convenience that
stems from dealing with linear log-log relationships is no
longer a real drawback as far as the ease of computation
is concerned.
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