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An algebraic model of bisection-a
special case of Pfanzagl's general
measurement system-was tested for
brightness. Nonparametric scalllbility, a
condition derived from reflexivity,·
commutativity, and bisymmetry, was
disconfirmed, letJding to a rejection of the
commutativity axiom, and necessitating
the incorporation of a response bias
parameter. The systematic bias in the data
was substantially reduced by the
introduction of the response bias
parameter-interpreted as "position" bias,
not hysteresis. The data are generally
supportive of Pfanzagl's bisection system,
although the failure of commutativity
requires the incorporation of a response
bias parameter.

One disadvantage with scaling methods
that rely upon confusion among stimuli,
especially in psychophysics, is that scales
are generated only for narrow ranges.
Piecing together such "local" scales to
obtain a scale with a wider range then
becomes a special problem. The theoretical
structure of such scales has, however,
received considerable attention (see, e.g.,
Luce & Galanter, 1963).

The "direct" ratio scaling
methods-ratio production (fractionation
and multiplication), ratio estimation, and
magnitude estimation-do not depend
upon confusion among stimuli and can
produce a scale over a wide range without
the problem of piecing together local
scales. One defect with these methods is
that their theoretical structure remains
largely unanalyzed, unlike the major
"confusion" scales. Some steps have been
taken to make explicit and test some
necessary conditions for a model of ratio
or magnitude estimation scaling (Mashour,
1961; Sjoberg, 1965; Svenson & Akesson,
1966, 1967; Fagot & Stewart, 1969a, b),
but a set of axioms for any of these
frequently used methods is conspicuously
absent from the literature.

The method of bisection is similar to the
above ratio methods relative to the lack of
reliance on confusion among stimuli, but,
unlike the ratio methods, bisection has
received little attention in recent years.
This is all the more notable in view of the
fact that Pfanzagl (1959, 1968) has
formulated a general measurement model,
one specialization of which provides an
algebraic (deterministic) model for

bisection. Hence, bisection is in the curious
position of being the least studied of those
methods that do not rely on confusion
among stimuli, yet the only one of these
methods for which a formal theoretical
structure has been provided. The purpose
of this paper is to test an important
consequence of Pfanzagl's axioms for
bisection.

A bisection specialization of Pfanzagl's
general measurement system is presented
below in a relatively informal way,
omitting some technical points.

Pfanzaglbisection system. Let 1/denote
the set of stimuli, weakly ordered by ~ on
the physical scale.

Axiom 1 (Existence) For all a, b, in 1/
there exists a unique element
aob in /7, which is interpreted
as the bisection point of a and
b.

Axiom 2 (Reflexivity) For all a in 97,
aoa = a.

Axiom 3 (Bisymmetry) For all a, b, c, d
in !7, (aob) 0 (cod)
(aoc) 0 (bod).

Axiom 4 (Monotonicity) If as b, then
for all c in 9', aoc S boc.

Axiom 5 (Continuity) aob is a
continuous function of both a
and b.

Axiom 1 introduces the binary
operation "0," which assigns to each pair a,
b, in I/an element aob (bisection point) in
1/. This points up a major way in which
bisection differs from the numerical
response methods (ratio and magnitude
estimation): In the latter, S produces a
number, whereas in bisection (as well as in
ratio production), S produces a stimulus,
i.e., performs an operation on presented
stimuli (a, b) to produce a third stimulus
(aob).

Axiom 2 is frequently taken for granted
without testing in many applications, but
could fail due to the presence of response
biases. Axiom 5 is a technical axiom that
has no testable consequences. Axiom 3
contains the principal power of the system.

Pfanzagl (1968) showed (Representation
Theorem) that if Axioms 1-5 hold, then
there exists a real-valued function \fIon 97
that is unique up to a linear transformation

(interval scale), and a real number
0(0<0 < 1) such that

\fI(aob) = 0 \fI(a) + (1 - 6) \fI(b). (I)

Another condition of considerable
importance, formulated here as an axiom,
is commutativity:

Axiom 6 (Commutativity) For all a, b,
in 1/, aob =boa.

It is easy to see from Axiom 6 and Eq. 1
that if, in addition to Axioms 1-5,
commutativity holds, then 0 = 1/2.

The parameter 0 is a response bias
parameter and could be used to explain
such effects as hysteresis or other effects
produced by experimental conditions that
result in different orderings of the stimuli.

An important condition, which we name
Non-Parametric Scalability, is the
following:

Non-Parametric Scalability (NPS). For
all a, b, in /7, [a 0 (aob)] 0 [(aob) 0 b]
=aob.

This condition follows directly from
bisymmetry, reflexivity, and
commutativity. If the condition holds,
then 0 =1/2, and an interval scale can be
constructed without estimating the
parameter O.

The purpose of the present study was to
test NPS for brightness. This condition was
selected rather than bisymmetry as a first
step partly because confirmation of NPS
provides considerably more information
about the bisection system, inasmuch as
this theorem depends on commutativity
and reflexivity as well as bisymmetry.
Confirmation of NPS not only gives
indirect evidence of the validity of
bisymmetry-the key axiom in the
system-but provides a method of
constructing a scale without using the
psychophysical function. If NPS is
rejected, 0 can be estimated to determine if
the data can be accounted for by a
response bias parameter. However, since
the representation theorem (Eq. 1) is
stated in terms of nonobservable \fI
magnitudes, rejection of NPS necessitates
the use of the psychophysical function in
order to construct a scale.

There appear to be no published studies
testing the bisymmetry axiom directly, but
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two studies of loudness have reported tests
of NPS. Gage (1934), using low loudness
levels and ascending order only, found that
the final bisection-[ao(aob)] 0 [(aob)ob]
-was consistently louder than the initial
bisection-aob. Newman, Volkman, and
Stevens (1937), using higher loudness levels
and both ascending and descending orders,
found a much smaller discrepancy in the
same direction. Neither of these studies
refutes bisymmetry, since commutativity
or reflexivity could be at fault.

There are three problems with these
reported tests of NPS.

(I) The averaging problem. Bisection
points were determined by averaging
several replications. Thus, NPS is
interpreted to hold for such averages, and
no theory was presented that dictated what
average to use. To illustrate (denoting here
and henceforth by ~j both the physical
magnitude and the name of the stimulus),
let ~I and ~s be two stimuli presented to
S with instructions to bisect. Then let
~I OJ ~s = ~3' be the it h observation of
the bisection poiht (i =I, .... N). Previous
studies have averaged the N observations
(using the geometric or arithmetic mean)
to obtain ~3' and similarly obtained ~2 as
the bisection point for ~I and ~3, and ~4

as the bisection point for ~3 and ~s. The
fmal step was to obtain ~ i, as the
bisection point for ~2 and ~4' in which
case NPS is equivalent to ~3 =~3"

The procedure followed in our
experiment was to base bisection points on
single observations. Thus, the initial pair
(~I' ~s) is presented and S's single
response ~3 is used to generate the second
pair (~I' ~3) and ~I and ~3 are in turn
bisected to produce ~2' etc. In this way,
bisection points are not dependent on the
particular measure of central tendency
arbitrarily selected.

(2) Single comparisons. The studies by
Gage (1934) and Newman, Volkman, and
Stevens (1937) used a single pair of
bisection points to test NPS. Considerably
more information, possibly concerning the
nature of systematic biases, can be
obtained by using several pairs of bisection
points covering a wide range of stimulus
intensity, and this procedure was followed
in the present experiment.

(3) Finally, the above studies did not
attempt to account for the data by
introduction of a response bias parameter,
as will be done in this study.

METHOD
Subjects

The Ss were four undergraduate
psychology majors, one male and three
female. The male S had participated in a
fractionation experiment prior to the
present experiment.

Apparatus
The apparatus, described in detail by

Eskildsen (1963), provided three luminous
white circular targets, 13 mm in diam,
placed horizontally and separated by
90 mm center to center. The middle target
was continuously variable and under the
control of the S, and provided a rate of
change matching a .3 exponent power
function.

Procedure
Each of nine basic pairs of stimuli were

used to generate an elementary bisection
set (EBS) as follows: Each block of four
trials began with the presentation of one of
the basic pairs, which we shall denote by
(~I' ~s). The S then bisected this interval,
and the response was designated ~3' On
the following two trials, S was presented
the pairs (~I' ~3) and (~3' ~s), producing
responses designated ~2 and ~4'

respectively. The values ~2 and ~4 were
then used to obtain the final observation,
~3' of the EBS. The basic pairs used were
(8,600), (3,600), (1,600), (.3,600),
(.1,600), (.1,200), (.1,60), (.1,20),
(.1,7.5) ft-L, each pair generating an EBS.
Each EBS was replicated 10 times.

Prior to the start of the experiment, the
following set of instructions was read to
the Ss.

"You will be presented with three lights.
The light on the left will be somewhat
dimmer than the light on the right. The
light in the middle will be of a brightness
somewhere in between the right and left
hand lights. Your task will be to adjust the
brightness of the middle light such that its
brightness is halfway in distance between
the bright and dim lights. In other words,
the interval of brightness between the dim
and middle light should be equal to the
interval of brightness between the middle
and bright lights. You will repeat this
judgment many times each session and the
three lights will vary from trial to trial.

''There are certain things you should be
cautioned against doing. Do not make a
judgment on the basis of the size of the
lights (they tend to appear larger or smaller
to some people as the intensity changes),
nor on the distance of the lights (they tend
to appear further away or closer to some
people as the intensity changes), nor on the
basis of time. What I mean by that is, it
will take the light a certain amount of time
to go from the starting point to the point
where you want it to be. Since we will start
the light at a different place for each
judgment, you will just increase your error
if you take into consideration how long it
is taking. If by chance the light is started
on a point which you think is just right
you must move the light away from that
point even if you move it right back to the

same place. You will not be limited in the
amount of time you take to make an
adjustment or the number of times you
increase or decrease the intensity of the
light.

"Are there any questions? Now, let's run
through the procedure a few times."

Each S participated in 10 sessions, each
lasting about I h, and before each session S
was dark-adapted for a period of 15 min.
All nine basic pairs were presented in
random order in each session so that a
complete replication of the nine EBSs was
obtained in 36 trials. The brighter stimulus
was always on the right as viewed by S.
The order of presentation varied over days
but was constant over Ss. On half the days,
the bisection points were generated in the
order ~3' ~2' ~4, <1>3' and on half the days
in the order ~3' ~4' ~2' ~3" Sessions
using the two different orderings were
intermixed randomly.

A basic set of 25 logarithmically spaced
starting points ranging from .1 to 600 ft-L
was used. The starting points for each of
the nine basic pairs were taken from blocks
of nine consecutive luminances from the
basic set. The blocks were chosen so that
the middle element of the block was close
to where E estimated the average S would
judge the midpoint of the interval to be.
For a given basic pair, the starting points
were chosen randomly without
replacement until Day 10 when the starting
points of Day I were re-used. A similar
procedure, with two modifications was
used to generate starting points for the
remaining three trials of each EBS. Since
the intervals to be bisected were smaller
than for the first trial of each EBS, blocks
of only seven consecutive starting points
were used, with Days 8, 9, and 10
repeating the starting points of Days I, 2,
and 3, respectively. Secondly, since E did
not know in advance one or both terminal
stimuli for these trials, occasionally a
starting point would turn out to be outside
the interval presented to S. In these cases,
the upper and lower bounds of the
intervals were used as starting points,
depending on whether the original starting
point had been too high or too low.

RESULTS AND DISCUSSION
Two basic concepts in our analysis are

construction set and test set. By
construction set is meant the minimum set
of bisection points (BP) sufficient to
construct an interval scale. The number of
BPs in the construction set is n - 2, where
n is the number of stimuli scaled (since
there are two arbitrary assignments, unit
and zero point). For example, in our
experiment there are five stimuli (~I' ~2,

~3' <1>4' ~s) which include three bisection
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'It =c(<I> - T)k + d; (2)

'It =c(<I> - t)k, (3)

allowed to "back up" if he went beyond
his perception of the BP. This was done
because the main interest was in getting a
good test of NPS rather than in hysteresis.

In any event, the fact that the data
points in Fig. 1 tend to lie mostly on one
side of the theoretical line for LH, BB,and
RW indicates that, at least for these three
Ss, hysteresis could not account for the
systematic trend, since both the
"up-method" and "down-method"
empirical lines lie above the theoretical
line. An analysis was done for each method
separately, and the two lines were, in fact,
indistinguishable. It is clear that hysteresis
cannot account for the bias in the data.

A subsequent experiment suggested
position bias as a possible explanation: In
an un pu b lished pair-comparison
experiment, Fagot and Stewart found that
(for most Ss) when a given pair of stimuli
was presented a large number of times in a
horizontal display with left-right position
balanced, then a stimulus was judged the
brighter of the pair more often when it
appeared on the left than when it sppeared
on the right-which we designate
"left-dominance." It can be shown that
left-dominance implies [j < 1/2 and
<1>3 < <1>3' (Eq. 1 with aob denoting a on
the left). Therefore, left-dominance
provides at least a qualitative explanation
for the systematic deviations observed in
Fig. I, except possibly for SP.

The next step in the analysis was to
estimate the parameter [j and determine if
such a position bias parameter could
account quantitatively for the data in
Fig. 1. In order to apply Eq. I, we need to
distinguish between aob and boa. Since the
brighter stimulus was always on the right,
aob denotes a was on the left, and boa was
never observed.

Forms of the power law. Since Eq. 1 is
expressed in terms of psychological
magnitudes 'It and observations in terms of
<1>, it is necessary to introduce the
psychophysical junction, 'It = f(<I». We
consider here three different functions f
(forms of the power law) and hence three
bias models. These three forms of the
power law are (see Fagot, 1966):

The generalpower law:

Fig. l. Test of NPS: Log <1>3' plotted as a
function of Log <1>3'

the <I>-Law (translation on the intensity
axis)

and the 'It-Law (translation on the
psychological axis)
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Inspection of Fig. 1 shows a clear
systematic trend: The test stimulus <1>3'
tends to be over-estimated relative to the
construction stimulus <1>3' This effect is
very pronounced for three Ss (BB, RW,
LH). In the case of LH, for example, all
but one of the 90 points are on or above
(mostly above) the theoretical line. The
plot for SP, however, is somewhat deviant:
The modal tendency to overestimate the
test stimuli relative to the construction
stimuli is moderately evident for the lower
half of the scale but absent for the upper
half. In any event, NPS must be rejected,
and we shall explore the possibility of
accounting for the data by incorporating 6
into the model as a response bias
parameter.

Response bios. Since commutativity is
not one of the axioms of Pfanzagl's
bisection system, the model permits
response biases of the form aob '* boa,
which implies 6'* 1/2 from Eq.1. Luce
and Galanter (1963, p. 161) have offered
one possible interpretation of 6 as a
hysteresis parameter, in which case, for
a < b, aob could denote, say, the bisection
point using the "up-method" and boa the
bisection point using the "down-method."

Although approximately half the
starting points were below BPs (this was
not under absolute control of E since the
BP was not known prior to setting up
starting points), the design did not provide
a fair test of hysteresis since an S was
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points (<1>2' <1>3' <1>4) in the construction
set.

The test set consists of those
observations implied by the construction
set via the axioms. Thus, relative to NPS,
the test set consists of one testable
consequence, <1>3 =<1>3" for each EBS.

In many analyses following a "predicted
vs observed" paradigm, all of the data are
used to estimate parameters and "predict"
values, including the so-called "observed"
values. Partitioning the observations into a
construction set and a test set (a natural
consequence of conditions such as NPS,
which involve a "premise" based on a
construction set and a "conclusion" based
on a test set) provides a more powerful
test, since only the construction set data
are used to estimate parameters and an
independent set of observations (the test
set) are predicted using these parameter
estimates.

Test of NPS. If 6 =1/2 (no response
bias) then a plot of <1>3' as a function of <1>3
should result in a straight line through the
origin with unit slope. Construction of
such a plot was done as follows.

Each of the nine EBS generated 10
replications of the bisection point <1>3 and
10 replications of the bisection point <1>3',
resulting in a total of 90 data points.
Figure 1 shows a plot of log <1>3' as a
function of log <1>3' separately for each of
four Ss. The line is the theoretical line
predicted by NPS.

"'l-.OO
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left -dominance reported in the
pair-eomparison experiment, and with the
very large proportion of data points above
the theoretical lines (Fig. 1). Since in the
case of SP inspection of Fig. 1 suggests
only slight bias, it is not disturbing that the
two models estimate different directions
for the bias. Ifwe use the number of points
above the theoretical lines (Fig. 1) as a
rough measure of bias, then for Model +
the ranking of the four Ss on this measure
is identical to the ranking given by the 6,
whereas there is one reversal for Model G.

The parameter estimates in Table 1 were
used to investigate the adequacy of the
response bias parameter 6 in eliminating
the systematic deviations observed in
Fig. 1. First, k and 6 from Model + were
applied to predict the log ~3'jk; and these
values were compared to the observed
log ~3'jk; where the observed values were
not included in the estimation data.
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Table 1
Parameter Summary, Individual Data

S " 6 .;

(BB) Model + -0.0650 0.3745
ModelG -0.0725 0.4101 -0.1156

(RW) Model + 0.0684 0.4236
ModelG 0.0768 0.4744 -0.1813

(LH) Model + -0.1356 0.3448
ModelG -0.1512 0.3638 -0.0687

(SP) Model + 0.1193 0.4777
ModelG 0.1411 0.5433 -0.2264

"independent" data. Hence, there were a
total of 270 observations (for each S) on
which to base parameter estimates. A
summary of parameter estimates is given in
Table 1.

Note that for two Ss (BB and LH) k < 0,
i.e., the psychophysical function is more
negatively accelerated than a log function
(Fagot, 1966). This means that, for these
two Ss, the general power law cannot be
interpreted as the ~-Law since exponents
for the ~-Law are restricted to the range
k >O. Note that for all four Ss f < 0,
ruling out the interpretation of T as a
threshold parameter (t) for all Ss. If we
wish to retain the interpretation of t as a
threshold parameter, we must reject the
~-Law for these data. This result is
consistent with some previous research on
brightness (Fagot & Stewart, 1969a, b).

For three Ss (BB, RW, LH) 6 < 1/2 for
both models, consistent with the

(4)

i == 2, 3,4, 3' (bisection points)
j == 1, 2, ••• , 9 (EBS)
k == 1, 2, ••• , 10 (replications)

Thus Eq.6 is a two-parameter (6 and k)
model, one less parameter than for Models
G and ~. Furthermore, this model alone of
the three implies that bisections [and
interval judgments in general (Fagot &
Stewart, I969b)] are independent of the
threshold parameter t:

Estimation of parameters. An
"observation" is a physical value
(luminance) obtained when S "produces" a
setting on a dial that E records in ft-L, the
actual value not observable, of course, by
the S. An observation is denoted ~ijk

where

a three-parameter (6, T, k) model.
The <I>-Law Bias Model (Model ~). This

is also a three-parameter model and is given
by Eq. 5 with the substitution T == t. Thus,
the ~-Law model is distinguished from the
general law only by the interpretation of T

as a threshold parameter.
The +·Law Bias Model (Model +). This

model is obtained by substituting T == 0 in
Eq.5.

In addition, the pairs (~1j' ~Sj) are
independent variables, each of the nine
pairs generating an EBS with replications.

In the estimation procedure, log ~ijk

was treated as the dependent variable, and
an iterative least squares. procedure was
applied to estimate parameters for Models
G and +, separately for each of the four Ss.
Estimates of the parameters were based
entirely on the construction set
observations (~2jk' ~3jk, ~4jk)' a
procedure that permits prediction to the
test stimulus observations (~3/jk) as

Fig. 2. Test of Model +: Plot of
observed Log ~3', as a function of Log ~3'

predicted from construction set data using
Model +.

For both Eqs, 3 and 4, the parameter t is
interpreted as a threshold parameter, Le.,
wet) == O. The ~-Law is a special case of the
general law in which T == t and d == 0; and
the +-Law is a special case in which T == 0
(and d == -ctk).

Bias models. The General Bias Model
(Model G) is derived from Eqs, 1 and 2 and
is given by Eq. 5:

(~aob - T)k

== 6(~a - T)k + (1 - 6)(~b - T)k, (5)



Table 2
Parameter Summary, Group Data

and RW), the differences were significant
at the .05 level but not significant for the
other two Ss. Hence, if the normality
assumption can be supported, Model G
(with an additional parameter) does
somewhat better for half the Ss. It is
perhaps remarkable that Model 'It, with
one less parameter, compares so favorably
with Model G.

Group data. Since for both bias models
the exponents for the four Ss average close
to zero, the log law will give a good fit to
the group data (Fagot, 1966). Table 2
presents parameter estimates for Model G,
Model 'It, and the log model for the group
data. Estimates were obtained by pooling
observations for all Ss. We see that, for
both Model G and 'It, the group exponent
is slightly negative, i.e., the group power
function is slightly more negatively
accelerated than a log function. Note that r
is substantially negative, ruling out a
threshold interpretation (and presumably
the <I>-Law) for the group data. The fact
that the exponents are so close to zero
means that neither power law can be
discriminated from the log law for the
group data, although a choice in favor of
the power law can be made for each
individual S. Considering that the log
model contains only one parameter (fj)
compared to two and three for Models 'It
and G, respectively, it accounts for the
data remarkably well.

Concluding discussion. The systematic
bias (for brightness) exhibited in Fig. 1 is
in the same direction (<1>3' ><1>3) as the
bias observed for loudness in the studies by
Gage (1934) and Newman, Volkman, and
Stevens (1937). In the Gage (1934) study,
no explanation was offered to account for
the observed response bias. Newman,
Volkman, and Stevens (1937) attempted to
eliminate the possible systematic effect of
hysteresis by averaging the ascending and
descending series of observations, and
succeeded in eliminating most of the bias
in the former study but provided no means
of evaluating the hysteresis effect. It would
appear that the major contributing factor
to the failure of NPS in all three studies
was the violation of commutativity.

What evidence is there for the violation
of commutativity in the Gage (1934)
study? Our evidence here is indirect.
Stevens (1957) reported that his Ss set the
bisection point in the ascending order
5-8 dB louder than in the descending order.

Figure 2 shows a plot of observed log <l>3'jk
as a function of log <l>3'jk ·predicted from
the construction set data using Model 'It.

In general, the marked systematic
deviations exhibited in Fig. I are
eliminated, which implies that the
systematic trend is largely due to response
(position) bias. However, there still appear
to be slight residual systematic deviations
that are unaccounted for by the bias
parameter {j. Inspection of Fig. 2 shows the
same general pattern for all Ss: a tendency
for predicted values to be too low relative
to observed values at the low end of the
scale and too high at the high end of the
scale. The data for all Ss suggest a function
with an inflection point, slightly concave
down at the low end and slightly concave
up at the high end. It is interesting to note
that LH exhibited the greatest bias in
Fig. 1 (and worse fit to the theoretical
line), but after introduction of the bias
parameter lj, LH appears to fit the
theoretical line best (Fig. 2).

The rejection of NPS does not
necessarily imply the rejection of
bisymmetry, since NPS depends on
commutativity and reflexivity, as well as
bisymmetry. Failure of commutativity is
implied by lj '* 1/2 provided Eq. 1 holds,
but there is the possibility that reflexivity
does not hold, in which case the
representation theorem given by Eq. 1 is
not correct. Dropping both reflexivity and
commutativity as axioms, the numerical
representation is given by Eq. 7:

'It (aob) = a 'It (a) +P 'It (b) + 'Y. (7)

Pfanzagl (1968) has shown that
(l)a+{3=I, 'Y=O if and only if 0 is
reflexive; and (2) a = P if and only if 0 is
commutative.

To test for possible violations of
reflexivity, we set 'Y = 0 and estimated the
parameters a and P from the construction
set data, using a least squares iterative
procedure with log <I> as the dependent
variable. The sums a+ ~ were 1.007 (BB),
1.003 (RW), .9867 (LH), and .9989 (SP).
The requisite sums were judged to be
sufficiently close to unity to rule out
nonreflexivity, although no attempt to
devise a statistical test seemed warranted.

Equation 1 would appear to give a
satisfactory numerical representation, and
therefore lj '* 1/2 implies a violation of
commutativity but does not give evidence
of a failure of bisymmetry.

The failure of commutativity does not
require the rejection of Pfanzagl's bisection
system, nor does it imply the nonexistence
of a metrical scale, although the
construction of a scale does require
estimation of fj (Eq. 1). Figure 2 shows
that the introduction of the response bias
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parameter removed most of the systematic
bias exhibited in Fig. 1.

The unfortunate consequence of the
necessary introduction of the
psychophysical function resulted in a
confounding between the function and
bisymmetry as sources of error in
producing the residual bias in Fig. 2. (Since
Fig. 2 is based on 6, response bias due to
the failure of commutativity is essentially
"removed" and any residual bias must be
due to failure of bisymmetry or such other
factors as a poorly fitting psychophysical
function.) Since Fig. 2 involves a
prediction from the construction set to the
test stimuli, one approach that was taken
in an attempt to disentangle the two
possible sources of error was to analyze the
data from the construction set alone.
Parameter estimates k and 6 for Model 'It
(Table 1) derived from construction set
observations were used to "reproduce" all
270 observations of the construction set
(<I>2jk, <l>3jk> <l>4jk)· A plot of "log
observations" as a function of "log
reproductions" was constructed (not
presented here) for each of the four Ss.
These plots showed the same general trend
exhibited in Fig. 2, except that the trend
was not as pronounced. On this basis, we
tentatively conclude that the systematic
trends exhibited in Fig. 2 reflect more a
general judgmental bias or a failure of the
psychophysical functions rather than a
special failure of bisymmetry.

The question arises as to whether or not
the additional parameter (r) in Model G
provides substantial added predictive
power over Model 'It. A plot of observed
log <l>3'jk· as a function of log <l>3'jk
predicted from Model G appeared upon
inspection to be so similar to the
corresponding plot for Model 'It (Fig. 2)
that the figure was not presented. If we
compare the predictions for each model
with the observed values (the observed and
predicted values based on different sets of
data), we find that the Model 'It
predictions were actually closer to the
observed values in 51.7% of the cases,
pooling over Ss, and as close or closer for
three of the four Ss. On the other hand, if
we take account of the magnitude of the
difference between prediction and
observed, there is some advantage to
Model G: Following Fagot and Stewart
(1969b), let djk (G) denote the absolute
value of the difference between the <l>3'jk
predicted from Model G and the
corresponding observed value, and djk ('It)
the corresponding difference based on
Model 'It. Assuming that the differences
Djk = djk (G) - djk ('It) are normal, the
hypothesis of no difference was tested
separately for each of the four SS.3
Results showed that for two of the Ss (BB

Model 'It -.0068
Model G -.0090

. Log Model

0.4021
0.4431 -0.1360
0.4069
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In our terminology, for b > a, aob is the
BP of the ascending order and boa the BP
of the descending order; then aob > boa, a
violation of commutativity. From Eq. I it
is obvious that for b > a, aob > boa implies
0< 1/2, and NPS fails in the direction
<1>3'><1>3' Since Gage (1934) used
ascending order only then the hysteresis
effect accounts for -the failure of
commutativity and NPS. The bias in the
Newman, Volkman, and Stevens (1937)
study, although in the same direction, was
slight, presumably due to averaging
ascending and descending orders and
largely "removing" the hystersis effect.

The brightness data reported here did
not permit a direct comparison of aob and
boa, but the estimations of the bias
parameter implied violation of
commutativity (0 < 1/2) and, in particular,
left-dominance. One additional result of
our study was to show that the bias existed
generally at all levels. Although response
bias appeared to be present in all three
studies, different effects were responsible:
hysteresis in the Gage (I934) experiment
and position bias (left-dominance) in the
present brightness experiment. Thus 0 is a
general response bias parameter, the
particular interpretation depending on the
experiment.

We conclude that these data (as well as
Gage, 1934) show a violation of
commutativity and NPS but do not give
evidence against bisymmetry, the key
axiom of the Pfanzagl system.
Furthermore, since commutativity is not a
necessary condition in the Pfanzagl system,
its violation does not refute the existence
of an interval scale. As in many
measurement systems, not all the Pfanzagl
axioms are directly testable. Given the
failure of commutativity and NPS, one

would usually be satisfied with a test of
bisymmetry as sufficient to imply the
existence of a metrical scale. However,
since the representation theorem (Eq. I) is
expressed in terms of unobservable 'I'
magnitudes and a parameter 0 that must be
estimated if commutativity fails, then
rejection of commutativity would appear
to require the use of the psychophysical
function in order to construct a scale.
Pfanzagl (I968) has presented a so-called
"derived middling operation" that would
permit the construction of a scale WIthout
assuming the existence of a psychophysical
function, but it is not at all clear what set
of experimental conditions would satisfy
this complicated "operation."

In any event, these data are interpreted
as generally supportive of the Pfanzagl
bisection axiom system, and as pointing to
the necessary introduction of response bias
parameters. Follow-up studies should focus
on direct tests of bisymmetry and
commutativity, and on designs that permit
the independent estimation of possible
response biases.
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Model '1'. However, since observations and
predictions were based on different sets of data
(construction set and test set), it was
theoretically possible for Model 'I' to do better
than Model G.
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