Behavior Research Methods, Instruments, & Computers
1991, 23 (4), 513-522

— COMPUTER TECHNOLOGY —

A 6809 single-board computer system for
the control of behavioral experiments

JOHN M. HORNER
Colorado College, Colorado Springs, Colorado

A computer system consisting of a 6809 single-board computer in conjunction with an IBM-
compatible Personal Computer (PC) is described for the control of behavioral experiments. The
single-board computer uses the C programming language to program experimental events. Each
component of the system (the single-board computer, a digital interface, the PC, and the soft-
ware) is outlined with its capabilities and drawbacks noted.

With the advance of digital computers came the promise
of powerful experimental designs and more thorough data
collection and analysis (Uttal, 1968). Sadly, this promise
has not borne much fruit, partly because the amount of
technical expertise required to build a computer system
is extensive, and partly because the cost in time and money
to build a computer system from scratch is enormous. This
paper attempts to redress these problems by providing a
blueprint for a relatively inexpensive yet powerful com-
puter system for the control of behavioral experiments.

The system outlined herein attempts to maximize a
researcher’s control and analysis capabilities. The present
system is capable of controlling, timing, and recording
19,000+ events to within 1/2400 sec. Also, because the
system is based on the high-level language ‘‘C’’ and soft-
ware that does not assume any particular experimental ap-
proach, the programming of experiments and the anal-
ysis of data are left up to the experimenter’s capabilities
and imagination. Hence, the present system is a power-
ful and flexible tool for behavioral research, yet it costs
less than other comparable systems.

The system is based on a 6809 Control Module
(6809 CM) single-board computer that runs the experi-
ment (see Figure 1). The 6809 CM controls and senses

The author would like to thank Alan Campbell for his help in the de-
sign and construction of the system described here—without his help
this system would never have been developed. The author would also
like to thank Ken Steele and other anonymous reviewers for their com-
ments on earlier drafts of this paper. All three output circuits described
herein were designed by Alan Campbell. The input circuit is based on
a hybrid circuit that incorporates the design features of Alan Campbell,
John Hinson, Alliston Reid, Ken Steele, and myself. The data-storage
technique described herein is based on a technique first devised by John
Hinson. Any design errors in this article are the responsibility of the
author. The project was supported by a generous grant from Colorado
College for faculty research and development. Reprint requests and other
correspondence should be addressed to John M. Horner, Psychology
Department, Colorado College, Colorado Springs, CO 80903 (e-mail:
JHORNER %CCNODE@VAXF.COLORADO.EDU).

513

experimental events, such as standard behavioral elec-
tromechanical devices and manipulanda, through a digi-
tal interface. An IBM-compatible Personal Computer (PC)
serves as the ‘‘host’” for the 6809 CM. The PC performs
the tasks of compiling and transferring programs (that run
the experiments) to the 6809 CM (i.e., downloading) and
storing and analyzing data from the 6809 CM (i.e., up-
loading). The PC and the 6809 CM communicate through
a serial (i.e., RS-232) line. The C programming language
serves for both the programming of experiments and the
analysis of the data from each experiment.

This design follows the philosophy that each 6809 CM
serves as a stand-alone system for running a single ex-
periment. Thus, the system is simplified because one com-
puter (6809 CM) runs one experiment. Hence, each
6809 CM is isolated from one another in such a way that
failures in one do not produce failures in another. This
design has the added benefit that the PC is left free to per-
form other tasks (e.g., word processing, data analysis,
etc.) while the 6809 CM is running experiments. This
one-computer, one-experiment design is feasible because
the cost of each 6809 CM is relatively inexpensive com-
pared with other methods of controlling experiments.

Although the system is simple as a whole, it is a com-
plex collection of parts that requires some assembly. The
following sections of this paper describe each component
and explain how it functions as part of the system. Addi-
tional information will be supplied by the author on
request.

THE SINGLE-BOARD COMPUTER

The 6809 CM used by this system is based on the Moto-
rola 6800 family of chips and is commercially produced.
The central processing unit (CPU) is the hybrid 8/16-bit
6809 chip, which is a powerful microprocessor that sup-
ports a number of higher level programming techniques,
yet is straightforward in operation. The 6809 represents

Copyright 1991 Psychonomic Society, Inc.

514 HORNER

INPUI

OUTPUT

6809 CONTROL MODULE

cow>

-

r—_—f

DIGITAL INTERFACE

Figure 1. A stylized representation of the present system.

the acme in 8/16-bit design—to improve CPU perfor-
mance by a significant amount, one would need to ex-
pand to a larger bit structure. Because behavioral events
(i.e., keypeck, hopper operations) are fairly imprecise by
computer standards, an 8/16-bit microprocessor is all that
is necessary to run most behavioral experiments. These
facts, in conjunction with the 6809’s use in numerous in-
dustrial and commercial applications (e.g., GM En-
gine CM), its proven performance in many research ap-
plications (e.g., Walter/Palya [1984] system), and its ex-
tensive support by other chips in the 6800 family of
microprocessors and peripherals, make it the ideal CPU
for running behavioral experiments.

The 6809 CM used by the present system is commer-
cially produced by the Wintek Corporation and consists
of the 6809 CPU, 56K of memory (RAM), a 1-MHz
clock, two RS-232 serial ports, and two peripheral inter-
face adaptor (PIA) chips (6821), which handle up to 32
TTL compatible parallel input and output lines in addi-
tion to their controlling logic. The 6809 CM has its own
on-board monitor/debugger (Fantom 9), which aids in
downloading, running, and debugging programs. This
particular 6809 CM was chosen over a number of other
systems and manufacturers for the following reasons:
(1) Each 6809 CM is inexpensive; (2) each has a num-
ber of standard hardware features, such as serial and par-
alle] ports and memory; (3) this product has software sup-
port, which includes a C cross-compiler/assembler, an
on-board monitor/debugger (Fantom 9), and a commu-
nication package (Terminal Emulator); (4) the 6809 CMs
come already assembled on an industry-standard 4.5 X
6.5 in. circuit board with a standard 44-pin connector;
(5) there is extensive hardware support for the 6809 CM,
which allows the user to easily expand beyond the basic
system; and (6) it is based on the Motorola 6800 family
of 8-bit microprocessors.

The 6809 CMs can be equipped with an erasable,
programmable read-only memory (EPROM) monitor/
debugger called Fantom 9, which allows the 6809 CM
to act as a stand-alone computer—performing interactive
tasks with the operator, such as running programs, debug-
ging software, and transferring data. The 6809 CM does

not need Fantom 9 to function, because an experiment
(i.e., computer program) can be permanently stored (i.e.,
*‘etched’” into EPROM) in memory and physically fixed
directly onto the 6809 CM; however, since Fantom 9
facilitates the operator’s interaction with the 6809 CM,
this approach limits the flexibility of the system and is
therefore not advised.

The 6809 CM is sufficient to run the system described
herein; however, the manufacturer does supply a num-
ber of additional input/output (I/0O) boards and memory
modules, which allows the user the flexibility to easily
expand the system. Memory can be expanded to 512K,
and I/O can be expanded to 96 lines. The basic system
for running experiments is based on a minimal configu-
ration of only 8 outputs, 8 inputs, and 24K of memory.
Expansion of the basic system would require additional
purchases and/or a minimum of programming changes.

The 6809 CPU chip, although it is the ‘‘thing’’ that runs
the experiment, is not the component that makes the
6809 CM useful. The 6809 CM has two PIAs (6821) that
enable the CPU to sense and control experimental events.
The two PIAs allow for up to 32 separate events to be
handled concurrently. This is far more than the standard
number of events used in virtually any behavioral experi-
ment. Because of voltage differences between computers
and most standard behavioral apparatuses, it is necessary
to provide a digital interface between the PIAs and the
apparatus. The next section describes such an interface.

THE DIGITAL INTERFACE

The 6809 CM senses and controls experimental events
through a researcher-manufactured digital interface. The
control of events in the behavioral chamber (outputs) is
performed via a digital interface by turning on and off
one of the digital switches in one of the PIA chips. This
in turn switches the power on and off to any electrical
or electromechanical device. The technology for the con-
trol of these devices is well established and too numer-
ous to reference (see Ratzlaff, 1987, for an excellent over-
view of computer-assisted experimentation; see Carr,
1984, or Wolfe, 1982, for more cookbook approaches);

6809 COMPUTER SYSTEM

110 VAC
HOPPER

F—_g_\

180 n(r T——0

1o
VAC

-0
S TRIAC
TCE TYPE
OR SK3938
SK 5538

ll OR NTE 5608

LAMP

AC

IN
PB? Ne

N/C 3 4
lAC
COMMON
DC LOAD*

N/c o3 4

Figure 2. Qutput circuits for the digital interface. The 7407 is 2 standard TTL device and runs on a +5 V dc power
source. PB? refers to any output port on the 6821 PIA of the CM 6809 (chip U6). Figure 2A shows a high-current
ac circuit, whereas Figure 2B is a low-current ac circuit. (The high-current device in Figure 2A uses a Quadrac, usually
found under Triacs in most catalogs.) Figure 2C shows a comparable dc high-current circuit. (*If the de load is induc-
tive, a diode {D1] should be placed in paralle! with the load [D1 = 1N4004 THR).) The optical isolator, 4N-33, is
rated at 30 V, and the NPN transistor, 2N3055, is rated at 15 A, although lower amp ratings would do for most uses.

515

516 HORNER

suffice it to say that anything that can be controlled by
an electrical switch can be controlled by a computer with
the appropriate interface. To be appropriate, an interface
must convert the voltage signal used by the computer to
a voltage signal used by the electrical device, while
providing a buffer between the two voltages.

Although a number of circuits would suffice to perform
this function, Figures 2A, 2B, and 2C show schematics
for output circuits that have been used with this or simi-
lar systems. Figures 2A and 2B show schematics for ac-
output digital devices. Both ac circuits use two simple
chips, a TTL hex inverter (7407), and an optical isolator
(MOC 3031). The optical isolator allows various types
of currents and devices to be used by the digital switches
without mixing the current and thus damaging the digital
interface.

Figure 2A illustrates the kind of circuit used to power
ac electromechanical devices that draw a lot of current,
such as an ac grain hopper. A Quadrac is used to switch
power on and off to the device, as opposed to switching
directly through the optical isolators. Figure 2B shows
how the optical isolator can be used to switch a low-
current device directly. Figure 2C illustrates a circuit used
to power any low-voltage dc device, and is based on the
same philosophy of design as the ac circuits.

The number and kind of outputs used are left to the ex-
perimenter. In my experiments, I rarely use more than
eight outputs; thus, I have never had to use more than
one of the 6809 CM’s two PIA chips. Outputs are added
to the system by duplicating the appropriate circuits and

+5 ——]——

+5 +5

74121

New "
-

lre
Fie s

AuFD % 100K

connecting the circuits to the appropriate PIA line and
electromechanical device.

The registering of experimental events (inputs) is per-
formed by the same PIA chip. Experimental event (i.e.,
keypecks, barpresses) produces changes in the state of the
PIA—via the digital interface—which then signals the
CPU chip that an event has occurred. The input circuit
incorporates a straightforward digital pulse former and
signal conditioner (see Figure 3), which allows a relatively
clean and consistent signal to be accepted by the PIA. Any
other noise is filtered out by the software and is transpar-
ent to the user.

The input circuit shown in Figure 3 is based on an *‘in-
terrupt’’ design philosophy. An interrupt is a signal from
a PIA to the 6809 CPU that an event has occurred. This
causes the CPU to stop what it is doing and take care of
(i.e., service) the interrupt. An interrupt allows for events
in the world to be detected much more reliably and ac-
curately than other approaches. Other methods, such as
polling, are less efficient with CPU time.

Additional inputs can be added by duplicating the sig-
nal conditioning part of the circuit and chaining the Q out-
puts from the 74121 into the interrupt circuit’s 7486 (see
Q: and Q; insert in Figure 3). In this manner, a number
of input circuits can be added to the hardware with a mini-
mum amount of digital circuitry.

Putting together a board with eight input and eight out-
put circuits involves an expense of under $100 and a day’s
worth of soldering. This job is well within the skills of
any accomplished solderer. An electronics technician is

________________ -
INTERRUPT CIRCUITRY |
I
486 |
7 7486 | 6821
D7£6 7486 | PIA
|
4 6
Q2 Q3 1474 ! E e CB2
14 17 | Ué
b 4L |
)
________________ -
6821
PIA

—* PA?

U6

Figure 3. Input circuit for the digital interface. Both the CMOS 4050 and the TTL 7486 use standard +5 volts dc power
sources. PA? refers to any input port on the 6821 PIA of the 6809 CM (chip U6). The 6821 ports CB1 and CB2 make up
the interrupt hardware of the 6821 PIA and work in conjunction with the interrupt circuitry outline in this figure and the
software described in the text. The interrupt logic shown in Figure 3 assumes that no two events occur simultaneously. If
simultaneous events are possible within an experimental framework, then a single multiple NOR gate (7430) may be used
in place of the 7486 chain. All unused 4050 inputs should be tied to V.. (5+).

very handy but is not necessary for the construction of
such an interface. For those who may find this task too
daunting, the author will, on request, supply the sche-
matics and specifications for building the interface, and
the job may be contracted out. Presently, others are work-
ing on a commercially produced 1/0 board that would be
suitable for this system.

The Wintek corporation does supply a number of I/O
boards (for under $150) that are acceptable for behavioral
research. However, they are based on a ‘‘polling’’ phi-
losophy of input handling, which, although adequate for
the imprecision of behavioral work, conflicts with the de-
sign of the present system. Thus, the author suggests that
users of this system follow the digital interface design
provided here.

THE PC

The 6809 CM uses a standard desktop IBM PC XT or
PC AT with 320K RAM, two 5.25-in. double-sided,
double-density disk drives, and DOS version 2.0 (or later)
as its host. The PC performs a number of tasks, the most
significant of which are cross-compiling programs, down-
loading them to the 6809 CM, transferring data from the
6809 CM, storing these data, and analyzing them. The PC
is the biggest expense in the system, but it can serve a
broad spectrum of functions and thus is useful when in-
dependent of the system. Presently, the manufacturer sup-
plies only PC-based software for programming and con-
trolling the 6809 CM; hence, a PC is essential for running
the system.

The PC communicates with the 6809 CM through a
standard RS-232 serial line. A PC program called the Ter-
minal Emulator (TE), provided in the C cross-compiler/
assembler package by the manufacturer, allows direct
communication between the two computers. A single PC
can serve a number of 6809 CMs concurrently. Thus, any
number of 6809 CMs may be connected to the PC’s RS-
232 serial port, or ports, to create a distributed network.
This network may be as simple, inexpensive, and crude
as a multiple-pole switch to change between 6809 CMs,
it may utilize multiple serial ports on the PC, or a net-
work may be established by an intelligent serial controller.
Any of these options are available within the present sys-
tem’s framework. One practical drawback is that the PC
can only communicate with one 6809 CM at a time;
however, because each 6809 CM may be running a differ-
ent experiment, this approach is logical and not neces-
sarily restrictive.

The PC also serves for transferring, storing, and analyz-
ing data from an experiment. To do this, a higher level
language, preferably C, is required to write programs for
performing these tasks. Any commercially produced C
programming language will probably work. The author
will make available programs and source codes to per-
form some of these simple tasks.

6809 COMPUTER SYSTEM 517
THE C PROGRAMMING LANGUAGE
AND OVER_CS

Although the 6809 CM is the heart of this system, a
firm understanding of its operations is not necessary in
order to use it. The ability to write the software that pro-
grams the 6809 CM is essential. The manufacturer sup-
plies an extensive and well-written cross-compiler/assem-
bler package for programming the 6809. CM in C on the
PC. Once programs are written and compiled on the PC,
they are then downloaded to the 6809 CM. Previous
single-board computers (e.g., Sym, Kim) required that
programs be written in machine language, which required
days of work to write and test. A higher level language
such as C ensures that an experiment can be devised and
implemented on the same day.

The reason that the author chose C as the programming
language for this system is fourfold. First, it is the only
higher level language supplied by the manufacturer for
the 6809 CM. Second, C is the best formal language for
serving the diverse functions—from handling hardware
to analyzing data—required by this system. Thus, one
need only learn one language to run experiments and ana-
lyze data. Third, C is a consistent and structured language
and can be made simple enough so that college under-
graduates and high school students can program experi-
ments and analyze data using C. Lastly, C was designed
to be easily portable from one computer to the next.
Therefore, experiments written on one computer can be
transported to another computer with very little rewrit-
ing. This ensures that even if the present hardware be-
comes obsolete at some point in the future, the software
can endure. Since the real time and energy with this sys-
tem is in the software development, not all effort will be
lost when changing to a new hardware system.

There is a substantial amount of *‘software overhead’’
that must be written in order to program an experiment.
Fortunately, most of the software needed to run any be-
havioral experiment has already been written by the
author. This software overhead, known as OVER__CS,
is the same regardless of what experiment is programmed.
Appendix A shows a C program that runs a simple FR
schedule using OVER__CS; Appendix B gives an exam-
ple of what the user must do to run the program. The C
code listed in Appendix A are the only lines of code that
need to be written by the experimenter—the rest is han-
dled by OVER_CS. Only a few lines need to be changed
in order to change the experiment from an FR- to a VR-,
FI-, or VI-schedule experiment.

Because of the extensive nature of OVER__CS and its
supporting PC-based software, and because OVER__CS
is written in C and is therefore potentially portable to other
machines, OVER__CS is a software laboratory system that
is potentially independent of the 6809 CM hardware sys-
tem outlined here. Thus, the present paper will only out-

518 HORNER

line OVER__CS design philosophy and some of its capa-
bilities. A future paper (Horner, in preparation) will out-
line OVER__CS functions in greater detail.

OVER__CS handles all necessary hardware functions
for the 6809 CM and most of the functions necessary for
running behavioral experiments. OVER__CS provides
software routines for (1) testing the 6809 CM’s hardware
inputs and outputs, (2) storage and transfer of data be-
tween the 6809 CM and the PC, (3) formatted input of
variables and text from the PC, (4) random-number gener-
ation, (5) low-level serial and parallel 1/0, (6) interrupt
handling of keyboard inputs, response inputs, and hard-
ware clocks, (7) count-up and count-down clocks, and
(8) some simple math functions. What are not included
in OVER__CS routines are prepackaged functions for run-
ning specific kinds of schedules or experimental para-
digms. This allows the experimenter maximum flexibil-
ity and control over the experimental paradigm, while
providing the necessary functions for sensing, controlling,
and recording experimental events.

The C programming language provides all the control-
flow constructions (i.e., if-else, switch, while, for, do, and
break statements) necessary for well-structured programs.
C forces the programmer to produce well-structured code.
OVER_CS takes advantage of this programming philos-
ophy by providing general functions for tasks, as well
as an easy-to-understand set of hierarchical programming
levels. For instance, the software for the running of an
experiment (see Appendix A) is really just a subroutine
(i.e., do__experiment()) that is accessed from a ‘‘main”’
program that provides access to a number of different
functions, such as: (1) testing the 6809 CM hardware
inputs and outputs, (2) transferring data between the
6809 CM and the PC, and (3) setting program variables
(i.e., init__var()). Each of these functions appears as a
choice in a menu within the main routine.

Students find the structure of OVER__CS, with respect
to both operation and programming, easy to understand.
OVER__CS has undergone two years of rigorous student
testing and author rewriting to make it a robust environ-
ment for behavioral experiments. In recent student use,
there were no failures as a result of computer hardware
or software problems. Thus, I feel confident that
OVER__CS represents a reliable and convenient program-
ming environment for behavioral experiments.

One major advantage of this system is that program-
ming it to perform complex experiments is relatively sim-
ple. For instance, the author has programmed an experi-
ment in which the probability of reward on a key changes
over time in a sinusoidal fashion—not a simple task for
a relay rack-based experiment, but a relatively simple one
for a program running in C.

Another major advantage is that each experimental
event (i.e., responses, food deliveries, stimulus changes,
etc.) can be recorded with its time of occurrence to within
1/50 sec by using clock functions provided by OVER_
CS. (Finer temporal discriminations are possible with

OVER__CS but are unnecessary for the kind of work that
the author does.)

OVER__CS uses a data-storage technique that codes
both time and events into a single 16-bit word. The highest
4 bits code for the event, while the lowest 12 bits code
for the time of the event since the beginning of the ses-
sion. In a typical experiment, with a resolution of 1/50 sec,
this means that the system must mark the passage of a
minute in the data in order to keep track of the time in
the session. This operation is transparent to the user. To
calculate the amount of 8-bit memory (bytes) necessary
to run an experiment, simply estimate the number of events
in the session (e.g., reinforcement, responses, stimulus
changes) and the total number of minutes in the session.
Adding the two quantities together and multiplying by 2
(to account for 16 bits per event rather than 8 bits of mem-
ory) give an estimate of the number of bytes required.
For instance, in the simple experiment in Appendix A,
if one were only going to deliver 60 rewards on an FR-15
reinforcement schedule and planned to terminate the ses-
sion after 30 min, 1,980 bytes of storage would be needed
(60 reinforcers + 900 responses + 30 min, all multiplied
by 2, = 1,980; half of that, 990 or more, is the number
of events that must be specified in the text of the program,
see Appendix A). One could increase the amount of storage
available by using a number of other data-storage tech-
niques or by reducing the temporal resolution or the num-
ber of events coded for; however, this technique seems
to work for most behavior experiments. Because the source
code for running the experiment (OVER__CS) is avail-
able to the user, the programmer is not restricted to the
data-storage technique described here.

Because so much data can be stored by using the sys-
tem (19,000+ individual events with the basic system;
this storage capacity can be expanded to almost 430,000+
events with additional hardware), the question of data
management becomes an issue. Once an experiment is
finished, the data stored on the 6809 CM can be trans-
ferred and stored on the PC with the use of utilities
provided by OVER__CS and supporting PC software.
Once stored in files on the PC, the data may then be ana-
lyzed. Each file is given a unique name that encodes the
date, experiment type, and animal number. Software for
the PC, written and supplied by the author, handles data
storage, data retrieval, and some cursory analysis. All data
storage and transfer is transparent to the user. All the user
must decide is what is to be stored; OVER__CS and its
supporting PC software handles the storage and transfer.
Further analysis is facilitated by PC-based routines that
store, transfer, retrieve, and decode data into event and
time arrays for easy access by higher level analysis
routines.

Data-storage, -retrieval, and cursory-analysis software
routines manipulate data in a manner that does not pre-
sume any particular kind of analysis. All that is assumed
is that events occur in time; therefore, the experimenter
may choose any method of analysis after the fact. The

experimenter may graphically present the data as a cu-
mulative plot, analyze it for IRT, or even process events
as a waveform in a Fast Fourier Transform by using the
present storage and retrieval techniques. The experimenter
is not limited to rates of responding as a dependent varia-
ble or to particular decisions made about how the data
are to be analyzed prior to the experiment.

Beyond the software routines provided by the author,
the experimenter is on his/her own for writing higher level
analysis programs. Summary statistics (i.e., rate of re-
sponding) are obtainable from the program running on
the 6809 CM, but higher levels of analysis require pro-
gramming on the PC. To remain consistent with the 6809
C cross-compiler/assembler, the author uses the C
programming language for higher level analysis. Other,
more flexible, data manipulation can be obtained by us-
ing commercially produced spreadsheets and data bases.
However, data must be converted from their raw form
by programs written in a higher level language before they
can be used by these software packages.

DISCUSSION

Unfortunately, no computer system presently available
for the control of behavioral experiments is without cost
in time and effort. The system presented here is not an
exception. To use this system effectively, the C program-
ming language must be mastered. To build this system,
a digital interface for connecting the 6809 CM to the be-
havioral chamber must be constructed. Although simple
in design, such an arrangement is at first time-consuming
to learn, make, and test. An electrical engineer is invalu-
able in this endeavor but not indispensable.

The time it takes to get the first experiment running with
this system ranges from six months to a year, depending
on the user’s original level of expertise and the amount
of help available from local sources. Once learned, the
system is relatively easy to duplicate for more ex-
periments.

Six months to a year is a long time out of a career to
devote to technology, but the benefits are worth it for
researchers who wish to extend their experimental reach.
Another advantage of this system is that it is inexpensive.
In a period of budget austerity, a single first experiment
can be put together for under $2,900 (see Table 1). This
price includes a PC, the CM 6809, the digital interface,
a C compiler for the PC, and the C cross-compiler/as-
sembler package. This price does not include the cost of
the behavioral chamber or any other software. Subsequent

Table 1
Equipment Costs for a 6809 Single-Board Computer System

IBM PC 286 clone {with 40-MB HD) $900
Wintek 6809 CM (constructed) 350
Digital interface and miscelllaneous 250
C cross-compiler/assembler, linker, and TE 950
C language for IBM 450
Total $2,900

6809 COMPUTER SYSTEM 519
experiments can be added for a mere $600 per behavioral
chamber. (The total cost may be reduced further by us-
ing a PC XT with two floppy disk drives and 320K RAM
rather than a PC AT with a 40-MB hard disk, one floppy
disk, and 640K RAM. For general usability, however,
a more powerful PC is essential. The initial start-up cost
of the system can be reduced by almost another $1,000
by purchasing a less demanding C language for the PC
and by taking advantage of special manufacturer dis-
counts.)

The present system reflects optimization among a num-
ber of design variables—cost, ease of construction, usa-
bility, power, flexibility, and life expectancy were all con-
sidered in its development. However, the design
philosophy dictated that when user-friendliness conflicted
with power and flexibility, the latter two won out. The
basic system allows the user considerable latitude for ex-
pansion and idiosyncratic design changes (e.g., memory,
1/0, serial port adaptations, bus interfaces, digital inter-
faces, etc.). This, combined with the C programming lan-
guage, makes the system extremely flexible. For instance,
by means of the RS-232 serial line, this system can be
used to drive an Amiga computer, which can serve as the
stimulus projector in perceptual experiments, allowing for
more varied and complex visual stimuli than the usual
stimulus projector or slide projector. The basic system
is capable of greater data storage than is any other com-
parably priced system (Wynne, 1990), and its speed and
timing capacity make it a rival among more expensive sys-
tems (Edgell & Hertel, 1989).

A design philosophy that stresses power and flexibility
over user-friendliness does not mean that the system is
user-hostile. With minimal instruction, college under-
graduates or high school students can operate it without
supervision. However, the system requires a sophisticated
user to assemble, design experimental applications, and
perform data analysis. Those seeking computer systems
that stress user-friendliness should consider other appli-
cations.

The most natural comparison for this system is the
Walter/Palya (W/P) computer system (Walter & Palya,
1984). The W/P system has proved.itself in a number of
experimental applications as an inexpensive, user-friendly,
and powerful system for running behavioral experiments.
Although the system described here uses much of the same
technology and does many of the same things as the W/P
system, the present system is not a reinvention of the W/P
system. The W/P system excels over this system in its
user-friendly nature, its ease of construction, and its rela-
tive cost of adding additional modules; however, the W/P
system is less flexible and powerful than the present sys-
tem. Which system is better depends on the circumstances
of the individual researcher, the nature of the experimen-
tation, and the laboratory. The present system provides
a powerful, yet inexpensive, alternative for the control
of behavioral experiments. Its design attempts to extend
one’s experimental reach by providing a system that al-
lows for more complex experimental designs and more
thorough data collection and analysis.

520 HORNER

AVAILABILITY

All components except the PC and supporting PC-based
software (not otherwise listed), standard behavioral equip-
ment, and the digital interface are manufactured by the
Wintek Corporation, 1801 South St., Lafayette, IN 47904~
2993. The 6809 CM used in this system is a Wintek 6809
Control Module (MCH88) with a Fantom 9 on-board
monitor/debugger EPROM (RRF09). The 6809 C cross-
compiler/assembler, macro assembler, linker, and Ter-
minal Emulator for the IBM PC (PCC09) were used in
the host PC.

A disk containing the C source code and assembly-
language source code for OVER__CS and other support-
ing programs for transferring, storage, and simple anal-
ysis of data can be obtained from the author for $10 to
cover the cost of materials and handling.

REFERENCES

CARR, 1. J. (1984). Interfacing your microcomputer to virtually any-
thing. Blue Ridge Summit, PA: Tab Books.

EpGELL, S. E., & HERTEL, S. A. (1989). Running laboratory experiments
using the RSX operating system and FORTRAN on the PDP-11. Be-
havior Research Methods, Instruments, & Computers, 21, 303-306.

RatziLaFF, K. L. (1987). Introduction to computer-assisted experimen-
tation. New York: Wiley.

UrttaL, W. R. (1968). ‘‘Basic Black’’ in computer interfaces for psy-
chological research. Behavior Research Methods & Instrumentation,
1, 3540.

WALTER, D. E., & PALYA, W. L. (1984). An inexpensive experiment
controller for stand-alone applications or distributed processing net-
works. Behavior Research Methods, Instruments, & Computers, 16,
125-134.

WoLrE, G. W. (1982). Computer peripherals that you can build. Blue
Ridge Summit, PA: Tab Books.

WyYNNE, C. D. L. (1990). A Commodore 64-based interface system
for the operant laboratory. Behavior Research Methods, Instruments,
& Computers, 22, 27-33.

APPENDIX A: C Program for Running an FR Schedule.

Below is a C program for running a simple FR schedule. The program incorporates many of the features of
OVER_CS, such as formatted variable input and output, data storage and transfer, interrupt software control and
clocks, and hardware input and output handling. Much of this program would be incorporated in any program
for running behavioral experiments. The program is in the left hand column in LINE PRINT, comments are

expressed on the right in BOLD.

#define MINUTE 0x00
#define KEY_PECK 0x02
#define REWARD 0x09
#define END 0xO0F
#define EVERYTHING OxFF
#define FOOD 0x01
#define KEY_LIGHT 0x02
#define FINISH 0x80
#define =~ NUMBER_OF_EVENTS 3000
#define PROG_NUM 6.0
#define CC_CODE1 '
#define CC_CODE2 ‘R*
#define MESSAGE "\nFixed Ratio ---- (%5.2f) \n"
int reward_received;
int rsp_total,REWARDS, FR;
long SESSION_LENGTH;
fidefine TEST
#include <OVER_CS.h>
VARRE AR il do_experiment() -------------- */
do_experiment()
(

int result;

clocks[2) = SESSION_LENGTH;
rsp_total = 0;
reward_received = 0;

printf(" Begin Experiment - "“);
turn_of f (EVERYTHING);
turn_on(KEY_LIGHT);

< These #define statements set certain program constants
which remain the same throughout the experiment.
Most of these would be the same regardiess of the
experiment, These #define constants determine what
information is stored and how it is coded.

< These #define constants determine the PIA's output for
each computer controlled event.

< This #define constant determines the number of events
that can be stored.

<= These #define statements give a code for the experiment
that is used by the program that transfers the data (TR)
to the PC. They act to define what the experiment is
and to provide a header for the experiment.

< These global variables keep track of the number of
rewards received during the experiment, the maximum
number of rewards allowed during a session, the FR
value, the maximum length of the session, and the total
number of responses.

«= These two statements tell the compiler what software
overhead to use and what part of the overhead to
include in the program.

< Subroutine do_experiment(). This is the subroutine that
actually performs the experiment.

< A dummy variable

< Set the clock for length of the session.

«= Initialize the variables for response count and rewards
received.

« The experiment begins here.

«= These three statements inform the operator that an
experiment has begun and then turns everything off and
turns on the key light.

setup_irq((RESPONSE | SYSTEM_TIME |CLOCK_2),0x01);

while (¢ ¢ intflg & CLOCK_2) == 0) &&
(reward_received < REWARDS)) (

if ¢ ¢ result = response_ck()) !=0) ¢

turn_of f(KEY_LIGHT);
remove_int(RESPONSE);
store_event(KEY_PECK);
rsp_total++;

if ¢ (rsp_total X FR) == 0) (

store_event(REWARD);
reward_received++;
turn_on(F000);
nap(2.5 SEC);
turn_off(FOOD);
>
turn_on(KEY_LIGHT);
add_int(RESPONSE);
response_ck();

)

IRQ_of f();

store_event(END);

turn_of f(EVERYTHING);
turn_on(FINISH);

printf(" End of Experiment \n);

6809 COMPUTER SYSTEM 521

« This statement sets up the interrupt routine to perform
3 functions: 1) to respond to a key peck (RESPONSE),
2) to keep track of the overall system time
(SYSTEM_TIME), and 3) to keep track of the length of
the session (CLOCK_2).

< This WHILE loop controls the duration of the
experiment and says to coatinue the experiment until
either SESSION_LENGTH has passed or until the
maximum number of rewards have been delivered.

« This IF statement checks for a response and executes the
next section of code if a response has occurred.
Subroutine response ck() returns a non-zero value if a
response has occurred. If a response has occurred then:

+ 1. Turn off the key light.

« 2. Don't respond to any more key pecks (for now).

< 3. Record the response.

< 4. Check to see if the number of responses is enough to
produce a reward. If enough then: REWARD !

< 4a. Record the reward.

< 4b. Turn on the food, wait 2.5 sec, then turn off the
food.

< End of IF Reward statement

< §. Turn the key light back on.

< 6. Reinitiate interrupt for respounses.

«= 7. Check to see if a spurious response has occurred, and
if so throw it away.

< End of IF Response statement.

« End of WHILE loop.

< The experiment ends here.

< Turns off the interrupt routine,

& Mark the end of the experiment.

< Turn off all outputs.

« Turn on the FINISH light, which informs the operator
that the experiment is over and print end of experiment
to the screen.

< End of subroutine do_experiment().

< Subroutine init_var(). This subroutine allows the
operator to enter session parameters.

<= Dummy variable.

< Begin statement.

= Read in the value of the FR schedule.

< Read in the maximum number of rewards.

+= Read in the maximum length of the session.

< Print out variables for FR schedule, number of rewards
and length of session.

« Operator check for validity of the parameters.
< Return to begin statement if incorrect.
< End of subroutine init_var().

+ Subroutine footer(). This subroutine priats out
summary statistics about the session at the end of the
data file.

)
AR init_var() -------------c---- */
init_var()
{
int temp_i;
begin:
printf(™ FR valueccieeinrennnnncananns "),
scan_i(&FR);
printf(" Maximum number of rewards "y;
scan_i(&REWARDS);
printf(” Maximum length of session (in mins) . ');
scan_i(&temp_i);
SESSION_LENGTH = ((long) temp_i) * 3000L;
printf(" FR value: %d Maximum rewards: %d
Maximum time: %td\n",
FR,REWARDS,SESSION_LENGTH / 3000L);
printf(" Is this correct ? <y> <n> - ");
if (in_232() 1= 'y') goto begin;
)
[Hrmmmmmmmmm e footer() ----------mmmosne- */
footer()
4
printf(" Number of rewards %d
Number of responses Xd\n",
reward_received,rsp_total);
printf(" Total time in session: %d min ¥d sec\n",
tot_min, (sys_time/50));
2}

< End of subroutine footer(}.

HORNER

APPENDIX B: Interactive Commands for Running an Experiment.

Below is the set of commands that an operator initiates in order to download and run the experimental program
listed in Appendix A. The commands, on the left, also show how data is transferred from the 6809 CM to the
PC. All command below are initiated on the PC’s keyboard and seen on the PC’s monitor. Letters in ITALIC are
illustrative of commands given by the operator, those in LINE PRINT designate responses returned by either the
6809 CM or the PC. The back arrow sign (« indicates where the "Enter" key (i.e., carriage return) has been
pressed. The phrase "D0S_PROMPT >" specifies where the PC is in normal MS-DOS command mode. Special key
command, such as function keys, are surrounded by brackets []. Comments are expressed on the right in BOLD.

DOS_PROMPT > TE
Wintek Terminal Emulator v1.0r2
(c) Copyright 1985 Wintek Corp.

[F9)]

TE INTERRUPT!

>[F2]

name of file to download rx?a:fr.m/'k/
loading address: XXXX

download complete

G

Choose a positive number > 3798/
Fixed Ratio ---- (6.00)

[T] Test system

[R] Run exper.

[A] run Again

[V] View data

[S] Set rand()

[X] eXit

6.00 > R

FR VAlUE t.eeneienenaneramrnaenns > 15

Maximum number of rewards > 60/
Maximum length of session (in mins). > 30/

FR value: 15 Maximum rewards: 60 Maximum time: 30
Is this correct? <y>» <n> - y

Prepare experiment.

[Space Bar]

Begin Experiment -

End of Experiment

Fixed Ratio ---- (6.00)
6.00 > [F1]
pos_PROMPT > TR FRX 99

Ready to receive - XXXX - got it.

Fixed Ratio ---- (6.00)

Number of rewards 60 Number of responses 900
Total time in session: 24 min 13 sec
Comments: A test run./

File Name: a:\frx00921.99

System Time at Save: Fri Sep 21 10:33:13 1990

DOS_PROMPT > TE
Fixed Ratio ----
6.00 >

¢ 6.00)

Then press any key to continue.

&=

=

=

-
=
-

=

=

=

<=

Once an RS-232 connection is made, the operator
establishes contact with the 6809 CM by running the
Terminal Emulator (TE). At this point, the PC is acting
as a terminal for the 6809 CM.

Function key F9 causes TE to reset, & the 6809 CM
returns the Fantom 9 prompt (>).

Function key F2 instructs both TE and the 6809 CM to
download a program, FR.MIK on the a: drive, from the
PC to the 6809 CM. Once the program has been
downloaded, the 6809 CM return the f>.

The command is given (G) to run the program.

First, the operator seeds the random number generator.
The operator is then given a choice from the programs
main menu. The operator may either:

1) Test the system's Input/Qutputs.

2) Run an experiment.

3) Run the experiment again using old parameters.

4) View the data from a session.

5) Reset the random number generator. Or....

6) Exit to Fantom 9.

The operator gives it the command to run (R) the
experiment.

First, the session parameters are inputted. These are
accepted in subroutine init_var(). The FR value,
maximum number of reward, and the maximum time of
the session are input, printed out, and checked for
accuracy.

Then the program halts to allow for the experiment to be
prepared. Once the experiment is ready, it can be
started by pressing any key.

The subroutine do_experiment() is initiated and the
experiment begins running.

When the experiment is finished, it returns to the main
menu.

At this point the operator exits TE by the F1 function
key and returns to MS-DOS.

The operator runs a program (TR) that transfers the
data from the 6809 CM to the PC, and places the data
into a file which stores all 900 responses and the times
they occurred.

The information given in the footer() subroutine is
appended to the end of the file.

< Operator comments may be appended to the file.
«= The file is then given a unique code that designates the

experiment, the animal's number (both are given in the
TR command line), and the date as determined from
MS-DOS. The file is then stored on drive a: with
information about the file, user comments and the date.

< Once TR has completed transferring the data, it returns

to MS-DOS, where the operator can reinitiate TE and
return to the main menu of the program.

(Manuscript received February 20, 1990;
revision accepted for publication June 4, 1991.)

