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Inhibitory effects of reinforcement and
a model of fixed-interval performances
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Catania's version of Herrnstein's response-reinforcement input-output function is derived
from two assumptions about reinforcement: (1) that reinforcers excite responses upon which
they are contingent in proportion to the reinforcement, and (2) that reinforcers inhibit all
responding in proportion to the reinforcement and in proportion to ongoing responding. In
choice situations, unlike Herrnstein's interpretation of the ro parameter, these assumptions
predict the empirical matching law without first assuming it. The additional assumptions of
exponential growth of a reinforcer's strength over a fixed interval, and of proportionate timing
of intervals, lead to a mathematical description of fixed-interval responding. The fixed-interval
scallop results from the simultaneous growth of the reinforcer's excitatory and inhibitory
functions. An attempt is made to derive variable-interval schedule performance from the
fixed-intervalcase.
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An advance in the quantitative study of behavior
has been the specification of what might be called the
response-reinforcement input-output function, that
is, the function describing the behavior generated by
contingent reinforcement. Perhaps the major con­
tribution to this effort has been Herrnstein's equa­
tion (Herrnstein, 1970, 1974); in a single-response,
no-choice situation:

Standard Interpretation
Herrnstein's interpretation of the ro constant is a

logical extension of the matching law. In choice sit­
uations, animals distribute their responses in propor­
tion to the distribution of reinforcers. It is therefore
assumed that in a single-response situation, animals
distribute their responses between the experimentally

Equation 2 is the matching law, an empirical law
antedating Herrnstein's equation (Baum, 1974;
Catania, 1963a, 1963b; Chung & Herrnstein, 1967;
Herrnstein, 1961; Killeen, 1975; Rachlin, 1971).

Although Equation I was originally derived from
animal experiments usually employing variable­
interval reinforcement schedules, the equation is
more general in that it contacts other areas of inves­
tigation. As Luce (1977) pointed out, Herrnstein's
equation empirically realizes the basic choice axiom
that figures in much theoretical work on preference.
In addition, the equation describes the results of a
wider range of experiments, with a broader range of
response and reinforcement variables, than those
from which it was originally derived (deVilliers,
1977; deVilliers & Herrnstein, 1976). And, although
alternatives to the Herrnstein equation have been
proposed (e.g., McDowell & Kessel, 1979; Nevin,
1974; Rachlin, 1978; Staddon, 1977), Equation 1 can
be thought of as the most generally successful.

At issue, however, is the interpretation of the ro
parameter. After briefly describing the standard
interpretation, the present paper explores the quanti­
tative consequences of an alternative interpretation
first suggested by Catania (1973). This alternative is
then turned back upon the original operant work in
an attempt to formulate a quantitative description of
a resistant problem, the form of the fixed-interval
scallop.

(1)

(2)

R=~
r + ro '

where R is an appropriate response measure (response
rate in free-operant studies), r is obtained reinforce­
ment (usually reinforcement rate, but it could be
amount, immediacy, or any other reinforcement
parameter), and k and ro are empirically determined
constants. While k is simply a units constant, ro has
an interpretation central to this paper.

The Herrnstein equation is easily generalized to
choice situations. For situations involving two re­
sponses, R1 and R2 :
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another constant to mimic the exact form of the
Herrnstein equation, the c in the numerator has an
important consequence.

Restatement of the Inhibition Interpretation
The present interpretation assumes that respond­

ing is a linear function of reinforcement, but that an
inhibitory effect of reinforcement reduces respond­
ing in proportion to the reinforcement and in propor­
tion to the ongoing responding. If k and c are con­
stants r is a measure of reinforcement, and R is a
meas~re of responding, then

designated response and other unspecified responses
in proportion to experimentally progr.ammed rem­
forcers, as against whatever other remforc.ers are
available to the animal but not under expenmenter
control. If ro is the aggregate of nonexperimentally
controlled reinforcement, and Ro is non-R respond­
ing, then from the development of Equation 2 we
have

R r

R + Ro r + ro

And so the matching law holds in single-choice sit­
uations. R ::= kr - erR. (4)

Inhibitory Effects of Reinforcement
The ability of reinforcers to strengthen and main­

tain responses upon which they are contingent may
be termed the excitatory effect of reinforcement. An
inhibitory effect of reinforcement is also demon­
strable. In a two-choice situation, when the rein­
forcement rate for the first response is increased, the
rate of the second response decreases, even though
the reinforcement rate for this second alternative has
not changed. This decrease in responding may be
termed a reinforcer's inhibitory effect (Catania,
1973). The inhibitory effect of reinforcement is dif­
ferent from the excitatory effect in that while the
excitatory effect is specific to the response upon
which the reinforcer is contingent, the inhibitory
effect is nonspecific: it affects all ongoing behavior.
By logical extension, a reinforcer contingent upon
response A can be considered to have not only an
excitatory effect upon A, but also an inhibitory effect
upon A as well.

Quantitatively speaking, the standard interpreta­
tion assumes that an essentially constant level of
responding, k, is distributed among the alternative
responses available to the animal. In single-response
situations, the monotonically increasing negatively
accelerated function (Equation 1) Occurs as rein­
forcement for the single response increases because
r the total nonexperimental sources of reinforce-d'
ment, comprises a decreasing proportion of the total
reinforcement. The alternative interpretation assumes
responding to be a linear function of reinforcement.
But as reinforcement increases, inhibition increases,, .
resulting in a response ceiling. The form of Catania's
equation is almost identical to that of Herrnstein,
except for a constant that appears in both the numer­
ator and denominator of the expression:

Solving Equation 4 for R:

R::=~.
1 + cr

Letting c = 1/c I ,

kr(c') kc'r
R- ---

- (I +r/ c ')(C ') - r + c I ,

which is Catania's form of the Herrnstein equation.
Equation 4 is offered as a general replacement for

Equations 1 and 3. It is more revealing about the
nature of the inhibitory effect of reinforcement, that
is, it operates on the ongoing behavior as a kind of
damping mechanism, attenuating a reinforcer's excit­
atory effects. This inhibition of responding in pro­
portion to the reinforcement and the ongoing re­
sponding produces a ceiling on the response-rein­
forcement input-output function. 1

Figure 1 illustrates the dynamic nature of this
inhibition in a single-response situation. Figure 2
generalizes the equation to a choice situation. Because
reinforcers selectively excite only those response
alternatives upon which they are contingent while

\--~------.. R Iresponding]

----'\------,

R :
I
I

I I
I inhibitory effects 'L--- J

where c is the constant of inhibition. Although the
quantity kc in the numerator can be combined into

R::=~
r + c '

(3)

Figure I. The dynamics of the excitatory and inhibitory effects
of reinforcement. A given reinforcement magnitude (r) is multiplied
by k to give the total excitatory effect. This amount is then fed
back to the system, multiplied by c and r, and subtracted from the
excitatory effect. Thus, the final output, responding (R), is the
excitatory value damped by an amount proportional to the rein­
forcement and to the output.
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Figure 2. The dynamics of a two-choice situation. The excita­
tory effect of reinforcement is specific to the response upon which
that reinforcement is contingent. But the inhibitory damping effect
is proportional to the total amount of reinforcement (r, + r,).
The result is a system that preserves the matching law.

inhibiting all responding nonspecifically, the equa­
tions for the two responses are:

This mechanism, selectively exciting responding in
proportion to the contingent reinforcement, but non­
selectively inhibiting in proportion to the reinforce­
ment and to ongoing responding, results in behavior
that preserves the matching law. Unlike the standard
interpretation, the inhibition interpretation yields
matching without first assuming it.

From Discrete to Distributed
Response-Reinforcer Situations

The Herrnstein equation is appropriate to rein­
forcement measures that are either momentary (con­
centration of sucrose, intensity of brain stimulation,
amount of food) or distributed in time (reinforce­
ment rate). It is also appropriate for response mea­
sures that are either momentary (reaction speed;
speed of alleyway running or swimming) or distrib­
uted in time (response rate). A concern for how a
performance mechanism can yield the same function
relating responding to reinforcement when the inde­
pendent and dependent variables are either momen­
tary or distributed will lead to a possible solution
of the problem of fixed-interval performances.

Since Equation 4 holds for variable-interval rein­
forcement schedules, the number of responses that a
single reinforcer will sustain on such a schedule can
be determined. Dividing R, the response rate, by r,
the reinforcement rate, to obtain N, the number of
responses per reinforcer, we get:

N = k - cR.

That is, the number of responses generated per rein­
forcer is a constant k minus a number proportional
to the ongoing response rate. This means that an

animal responds at a rate such that the number of
responses generated by that rate over the average
interreinforcement interval is a constant minus an
amount proportional to that particular rate.

Fixed-Interval Responding
When reinforcers are made available at periodic

intervals, animals begin to respond within that inter­
val well before their capacity to discriminate tem­
poral durations would predict (Catania & Reynolds,
1968; Dews, 1970; Gibbon, 1977; Jenkins, 1970).
Responding typically accelerates over the course of
the interval, reaching a maximum (terminal) rate just
before reinforcer delivery. An important considera­
tion is that the animal's judgment of time is appar­
ently proportional to the interval length, i.e., the
shape of the fixed-interval scallop is invariant with
respect to the relative duration of the interval,
although the absolute response rate is a decreasing
function of the absolute interval duration (Dews,
1970; Gibbon, 1977; Killeen, 1975). The present
problem is to find a suitable expression for this shape
that embodies the Herrnstein equation, or rather, the
generalized form of the Herrnstein equation, Equa­
tion 4. Weare interested in finding an expression
that relates the shape of the fixed-interval scallop
to the input-output function derived from the excita­
tory and inhibitory effects of reinforcement.

The present model assumes that a reinforcer can
sustain a large number of responses, and that a rein­
forcer's ability to sustain responding increases over
the fixed interval. In other words, we assume that a
reinforcer effectively "spreads" its ability to sustain
responding over the interval. This is not to imply a
delay-of-reinforcement gradient stretching over the
interval, but only to recognize that responses emitted
at the early part of the fixed-interval occur because of
the reinforcer at the end of the interval. Because fewer
responses occur at the start of the interval than in the
later parts, we could say that a reinforcer's strength
is minimal at the start of the interval, but grows
according to some function to a maximum value at
the end of the interval. The present model assumes
the simplest of growth functions: if S is the momen­
tary strength of the reinforcer at any point in the
interval, then the rate of change of S over the interval
is proportional to S (dS/dt ex: S). This is equivalent
to saying that the strength of the reinforcer increases
exponentially over the interval, or that S = keat •

(It is also mathematically equivalent to assuming an
exponentially decreasing retroactive effect of the
reinforcer upon responses occurring before the rein­
forcer.) However, because an animal's judgment of a
reinforcer's strength is relative to the total interval
length (proportionate timing), the suggested growth
function is:

S = keatli,
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And the total number of responses emitted over the
interval is:

d(keatl i) ka&tli
R:: ::--.

dt i

, kae
at/ i I'N :: 1'0' --i-dt :: keat/ i ~ :: k(ea -1).

where t is the absolute time into the fixed interval,
and i is the fixed-interval duration. The function says
that the strength of a reinforcer is k at the very
start of the interval, and grows to a maximum of
ke« at the end of the interval. Let us assume further
that the rate of responding is proportional to the rate
at which the momentary strength of the reinforcer
is changing, that is, that R a: dS/dt. That is, the rate
of responding over the interval (ignoring inhibitory
effects for the moment) will be:

kae at/ i c{3efJ t/ i
R::-.---.-(R)

I 1

Equation 5 should thus give us the typical fixed­
interval scallop. Note that the form of the Herrnstein
equation is preserved throughout the interval, because
the form results from combining excitation and in­
hibition rather than from the specific growth func­
tion assumed to operate within the interval.

How well does Equation 5 fit the data? In Fig­
ure 3,' the equation is fit to data from Hawkes and
Shimp (1975). Pigeons responded for food on an FI
5-sec schedule. A computer program selected values
of k, G, {3, and c that maximized the variance ac­
counted for by the equation. The dashed line indi­
cates the best fit with c :: 0, that is, without the

Thus, the assumptions of exponential growth of a
reinforcer's strength, combined with an animal's
proportionate time judgment of the interval, gener­
ates a constant N for all values of 1. (This constancy
of the number of responses maintained by a given
reinforcer is, essentially, the justification for the
assumption that the response rate is proportional to
the rate of change of S, the momentary strength of
the reinforcer.)

Assume now a similarly growing inhibitory func­
tion: I :: cefJ1/ i , which inhibits responding in propor­
tion to its rate of change (dIldt), and in proportion
to R. Thus, responding at any point in the interval is:

Figure 3. Data from Hawkes and Shimp (1975), who tested
pigeons on an FI 5-sec schedule, are fit to two theoretical curves
derived from Equation 5. The dashed curve represents the best
fit without the assumption of inhibition, while the solid curve
represents the best fit with inhibition. Values for the constants
of Equation 5 are indicated in the figure, along with the propor­
tion of the variance accounted for.

542 3
SECONDS

assumption of inhibition. The equation without inhi­
bition can account for 88.7% of the variance. But
clearly it does not do justice to the shape of the scal­
lop. The solid line includes inhibition, and the equa­
tion then accounts for 99.6070 of the variance.

Dews (1969) trained pigeons on an FI 180-sec
schedule, and on an FI 180-sec schedule with a I-sec
unsignaled delay between the response that produced
the reinforcer and its presentation. The delay contin­
gency changed the absolute level of responding (the
reinforcer's excitatory effect), while having compara­
tively little effect on the shape of the FI scallop.
Equation 5 accounts for 98.5070 of the variance for
the no-delay schedule, and 99.4% of the variance for
the delay condition (see Figure 4).

Dukich and Lee (1973) exposed rats to two inter­
vals: an FI 6O-sec schedule and an FI l20-sec schedule,
using water reinforcement. A single set of parameters
for Equation 5 accounted for 98.3070 of the variance
for the long and short intervals combined. (See Fig­
ure 5.)

The equation fared less well with data from Catania
and Reynolds (1968), using three fixed intervals, with
pigeons responding for food (Figure 6). A single set
of parameters could account for only 84.4070 of the
variance for all three intervals combined. Under the
assumption that the 2oo-sec interval was beyond the
point where a linear psychophysical function for time

(5)

kaeat/i

R:: i
c{3ef3t/ i

1+-.­
1

or
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Killeen (1975) has similarly remarked upon the need
to adjust theoretical curves to account for an animal's
nonlinear psychophysical judgment of time. This
nonlinearity causes animals to make premature judg­
ments of the end of very long intervals, producing a
maximal rate of responding before the end of the
interval. Following this, responding begins to fall,
producing a downturn to the scallop. No further
theoretical development is attempted here, however.
For discussion of this point, see Catania (1970),
Gibbon (1977), and Killeen (1975).

A word should be said about other proposed mod­
els of fixed-interval responding. While Killeen's
(1975)model is impressive in its ability to account for
a single interval, he makes no attempt to simulta­
neously fit the two intervals of Dukich and Lee, and
the three intervals of Catania and Reynolds. It fails,
essentially, as a general model because it makes no
contact with the Herrnstein equation. The present
model's assumption that a reinforcer "spreads" its
strength over the response interval in some increasing
fashion is similar to Gibbon's theory of expectancy
growth, except that a different growth function was
chosen (Gibbon, 1977). His model also focuses on
that stage of FI performance where the animal essen­
tially produces a break-run pattern of responding
rather than a gradually increasing response rate over
the interval. The present approach is that the break­
run pattern represents a later development, repre-
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Figure 4. Tbeoretical fits of Equation 5 to data from Dews
(1969). Pigeons were trained on an FI lBO-sec scbedule (upper
curve), and an FI lBO-sec scbedule witb a I-sec delay of reinforce­
ment (lowercurve).
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Figure 6. Theoretical fits of Equation 5 to data from Catania
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vals are fit witb tbe same parameters, wbile tbe longest interval
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Figure 5. Tbeoretical fits of Equation 5 to data from Dukicb
and Lee (1973). Rats were tested on two fixed intervals, 60 and
110.Tbe two data sets were fit witb a singleset of parameters.

estimation begins to break down (see Catania, 1970;
Killeen, 1975), the two shorter intervals were fit to a
single set of parameters, accounting for 96.4070 of the
variance. The 200-sec interval was fit by a unique set
of parameters that accounted for 95.5% of the vari­
ance. Thus, while Equation 5 does well in accounting
for most of the data, it appears to have limitations
when a wide range of interval values is encountered.
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If n such intervals are contained within i, the average
interreinforcer interval, then the total number of
responses in i is

This, of course, is just the value obtained by assum­
ing that a single reinforcer generates N = k(ea - 1)
responses, distributed over the average interreinforcer
interval, i. (The quantity i, the interreinforcer inter­
val, is the reciprocal of r, the reinforcement rate.)
When inhibition is included, VI responding then is:

(6)
c(ef3 -1) ,

1+--­
i

RV! = ----::--

which is the Herrnstein equation, including the addi­
tional constants e, a, and {3 that allow for direct
comparison with FI levels of responding.

While this is a consistent result, it lacks detail with
respect to the mechanism responsible for smoothing
the exponentially growing excitatory and inhibitory
functions of the FI to constant VI levels. Some pro­
gress in this direction may be suggested by assuming
that organisms experienced with such VI schedules
treat them as a succession of fixed intervals of
arbitrarily small intervals, with an associated proba­
bility of reinforcement in each interval (cf. Farmer,
1963; Millenson, 1963). Assume that each interval
contains a number of responses proportional to the
probability (p) that the interval will end with a rein­
forcer. Then the number of responses within each
small interval of I duration (ignoring inhibitory
effects) is

senting an increased control of not responding by the
initial, extinction-like period of the fixed interval. As
can be seen in Figures 4 and 5, the theoretical curve
is higher than the data points at the initial portions of
the fixed interval. This suggests either an additional
postreinforcement inhibitory effect or the develop­
ment of stimulus control by an extinction-like period
immediately following reinforcement.

In general, the proposed models of fixed-interval
responding to date (e.g., Ambler, 1976; Gibbon, 1977;
Killeen, 1975) fail because they do not make contact
with the general response-reinforcement input-output
function, that is, the Herrnstein equation. The pres­
ent model assumes that the inhibitory effects of
reinforcement derive from the reinforcers provided
by the experimenter's reinforcement schedule rather
than from extraneous reinforcers as suggested by the
standard interpretation. That is, the inhibitory func­
tion grows simultaneously with the excitatory func­
tion, because the temporal location of the source of
the excitation and inhibition (the reinforcer) is identi­
cal. If the inhibitory effects emanated from sources
of reinforcement other than the scheduled reinforcer,
we could not expect the inhibitory effect to be great­
est at the moment of reinforcement. In the standard
fixed-interval schedule, the inhibitory function can
only be inferred, because it is obscured by the more
powerful excitatory effect. Nevin (1974), however,
has provided an empirical demonstration of the
inhibitory function. He ran pigeons on concurrent
VI FI schedules. The VI schedule provided a constant
response baseline against which to evaluate the effects
of the FI reinforcer. As the time to the FI reinforcer
grew near, responding gradually decreased on the VI
schedule: an elegant demonstration of the growth of
the nonspecific inhibitory function of the reinforcer.

The Transition Back to VI
When reinforcement is made available on a variable­

interval schedule, responding is constant rather than
scalloped. This constant response rate (not as high as
the terminal FI response rate: Dews, 1970; Schneider,
1969) suggests that there is no change in reinforcer
strength throughout the interval, that the excitatory
and inhibitory growth functions "smooth out" to
some constant level. Intuitively, we might suggest
that the functions have leveled to a value midway
between the initial level of S (the reinforcer's momen­
tary strength) in the fixed-interval case (k) and the
terminal value (kev/i),

By the mean value theorem, and ignoring inhibi­
tion for the moment:

n

N = LPak(ea -1) = k(ea -1),
a=!

since

n

LPa = 1.
a=!

The average response rate is, therefore,

r i kaea tli

Jo-i-dt k(ea -1)
RV1 = . :=: --'----'­

!

Similar reasoning applies to the inhibitory function,
and the rate of VI responding is as in Equation 5.

If I is very small, the resulting response rate may
just reflect the average rate, i.e., the exponentially
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increasing scallop may go unobserved or may be
washed out on output because of the variability with
respect to an animal's timing of the smallest inter­
vals. But if experimental conditions are such that the
distribution of interreinforcer intervals does not
approximate a constant probability, then marked
departures from constant responding would be ob­
served. Catania and Reynolds (1968) manipulated
probabilities in this fashion and in fact observed
response rates to be sensitive to this variable.

Summary and Extension to Nonoperant Studies
Catania's interpretation of the Herrnstein equa­

tion implies that reinforcers excite responding in pro­
portion to their magnitude but also inhibit respond­
ing in proportion to both their magnitude and the
magnitude of the ongoing responding. Such a perfor­
mance mechanism preserves the matching law when
more than one response is available. Combined with
the assumption of proportionate timing of intervals
and an exponential growth of excitation and inhibi­
tion across the fixed interval, that interpretation
generatesa quantitative description of the fixed-interval
scallop, rendering the standard interpretation of ro
less plausible.

One point needs further clarification. Reinforce­
ment rate (r) and response rate (R) are suitable inde­
pendent and dependent variables in the Herrnstein
equation because a single reinforcer has the ability to
support a number of responses. These responses are
distributed as a rate because they must be emitted
within the interreinforcement interval. However, a
single reinforcer also has a magnitude-amount or
concentration, for example. And, thus, Equation 4
needs to be expanded to include the absolute magni­
tude of the reinforcer as well as the reinforcement
rate. Since behavioral studies that do not use rein­
forcement rate as a parameter also conform to the
Herrnstein equation, the suggested amendation is:

R = kar - carR,

where a is the single reinforcer quantity. In the fixed­
interval case:

R=---~-

Here the quantity a interacts with k and c to deter­
mine the level the excitatory and inhibitory growth
functions will reach. The quantity r, reinforcement
rate, acts in a different manner. Since r is the recip­
rocal of i, the interreinforcer interval, it effectively
sets the temporal limits within which a given number

of responses must be "squeezed." And so, although
the mechanisms whereby the quantities a and r act
to produce given levels of responding are different,
both enter into the equation as multipliers of the
excitation and inhibition. In situations where it is
inappropriate to include the quantity r, as in runway
or discrete trial studies, the general equation is simply

R = ka - caR.

The form of the equation is nevertheless preserved in
studies that do not involve reinforcement rate or
response rate as the independent and dependent
variables.
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NOTE

I. It has been suggested that the response ceiling reflects a
limitation on the animal's ability to respond at high rates, a kind
of natural ceiling due to the time it takes a response to be executed
(e.g., Staddon, 1977). Such an interpretation is here considered
unlikely, since animals are able to emit exceptionally high response
rates under different reinforcement schedules (e.g., ratio, differen­
tial reinforcement of high rates). Ratio schedules are not con­
sidered in the present treatment, although a suitably modified
version of the Herrnstein equation is apparently appropriate as a
description of performances generated by ratio schedules (Herrnstein
& Heyman, 1979; Pear, 1975). The range of response measures
that conform to the Herrnstein equation also renders the inter­
pretation of a response ceiling based upon the time necessary to
emit a response unlikely.
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