
Fig. 1. The Queen is in her counting house.

ROBERT M. CHAPMAN and JOHN A. CHAPMAN
Eye Research Foundation of Bethesda, Bethesda, Maryland 20014

The General Automation 18/30 as a system
for the general analysis and acquisition of data

in physiological psychology*

We could have had a computer
center perform these analyses; why do
it ourselves? (1) Time is one of the
considerations. The tum-around time
not only includes delivering the data
to the computer center, but also
communicating what is to be done.
(2) We really wanted to operate on
these data in an interactive way, i.e.,
depending on the outcome of an
analysis on a subset of variables, we
would try various subsets. This is not
interactive at the level of the
experiment, but rather at the level of
data analysis. (3) Computer centers
prefer to have data come in on cards,
and ours were not on cards. Therefore,
considering the long chain of people
and expense of the machine involved ,
it seems less prone to error and
cheaper to do whatever analyses we
can ourselves.

large group of Ss. Using FORTRAN,
we wrote a program which gave us the
correlations among all the variables . In
examining the correlation matrix, we
saw some interesting patterns which
led us to want a multiple-regression
analysis that could combine the
questionnaire variables in an equation
best predicting the EEG scores. We
had not written a multiple-regression
program and had only a few days left
before a meeting. We dipped into the
IBM stockpile for the appropriate
subroutines, which we linked together
with a FORTRAN program. The
program read our correlations off our
disk (where they had been stored by
our correlation program) and typed
the results of the multiple regression
on the Teletype relatively quickly .

• eletype) cost less (approximately
$45 ,000) than a small-scale system
bought about 10 years ago (4K 22·bit
delay-line memory, A/D with
7-channel multiplexer, D/A with 2
channels, 22 digital input-outputs,
paper-tape reader, and fIexowriter).
Furthermore, the cycle time is 10 to
1,000 times faster on the 18/30.

Most of what we have to say applies
to a variety of computers. However,
one aspect of the GA 18/30 is
relatively unique : its command
structure has been patterned after two
IBM machines from which the 18/30
gets its hybrid name. The IBM
machines are the 1800, a process
controller discussed in the next talk,
and the 1130, which was designed as a
batch processor. The GA 18/30 has
the same commands plus another class
of "register-to-register" commands.
This means that the library of routines
developed for those IBM machines
may be used on the faster GA 18/30.

As one example, we had obtained a
large set of data (EEG scores from a
special -purpose EEG scorer and
answers to a questionnaire) from a

We are attempting to handle two
classes of problems with our General
Automation 18/30 system (Anaheim,
Calif.): (l)to use the computer
directly at the level of the experiments
(a) to control the experiments and
(b) to collect the data; and (2) to use
the computer with the data from
experiments, i.e., to analyze the data
and make theoretical calculations.
These two classes of problems are
similar to those which, in other
contexts , have sometimes been
characterized as (1) process control
and (2) batch processing.

At the level of the experiments, for
example, we want the system to t ime
and present various visual stimuli
according to a particular experimental
paradigm while the S's physiological
responses (EEG, averaged evoked
potentials, EKG, etc.), behavioral
responses (switch closures), and
control pulses are being collected.
Some of our research led us to
elaborate statistical analyses, and these
large problems forced us to go beyond
the capacity of the small computer
system we have been using (a Packard
Bell 250). Our difficulties in dealing
with large computer centers reinforced
the notion of attempting to perform as
much computation on site as possible .
This was one of the considerations in
setting up a medium-size computer
system rather than staying with a small
system. Another consideration was the
lowered costs of computers, especially
the central processors. It is possible to
obtain a four th-generation
medium-size central processor at about
the same or lower cost than previously
designed small-scale computers and get
more powerful organization and
command struc ture . For example , our
GA 18/30 system (8K 18-bit core ,
512K-word disk, 8 priority interrupt
levels, 5 direct memory-access
channels, 3 programmable timers, A/D
with 16-channel multiplexer, D/A with
8·channel output holding amplifiers,
16 digital inputs, 16 digital outputs,
paper-tape reader, card reader, and

*The research was supported by Grants
PHS 5·S01 RR05698-02 and
NIH-NEI-5-ROI-EY0049O-04. This report is
not to be construed as an endorsement of
the products named.

Behav. Res. Meth. & Instru., 1972, Vol. 4 (2) 77

Table 1
DBOS: Disk Based Operating System

Logical Units Ph ysical Devices or Files

CC Control command input TY Teletype keyboard
SI Symbolic input CR CaJICi reader
SO Symbolic output WS Working symbolic file DISK
BI Binary input WB Working binary file DISK
BO Binary output WB Working binary file DISK
LO Listing output LP Line printer
IS Intermediate symbolic WS Working symbolic file DISK
OM Operator messages TY Teletype printer

. CI Core image data WC Working core image file DISK
LB Binary library LB Directoried library file DISK
SL System log LP Line printer
SB Secondary binary library CR Card reader
UL User library UL Directoried user library file DISK

User disk temporary DK Unformatted disk I/O file DISK
User pack disk temporary DP Disk
NO NO Delete I/O

DS Directoried source language DISK
DC Direetoried core imaCe DISK
DJ Direetoried job string DISK
PP Paper tape puncb

MACHINE CHARACTERISTICS
What are the characteristics of the

GA 18/30? It has a 16-bit word, plus a
parity bit and a storage-protect bit.
The storage-protect bit may be set on
any word in core memory, and it
prevents changing the contents of
those locations without going through
special procedures. The storage-protect
bit, then, can protect programs that
are running when you do something
else. Unfortunately, it doesn't get
around the problem of protecting the
data which have to be changing. We
have not used it yet, but possibly the
storage-protect feature could be useful
in a research environment.

The memory in the GA 18/30
cycles at 960 nsec. Presently, we have
8K of core memory, although the
enclosure is wired to hold up to 32K
of core. The processor is fast and
powerful. It does not have a hardware
square-root command (like our
PB 250), but it does have all the
double-precision arithmetic and shift
commands and hardware multiply and
divide. The hardware multiply, for
example, takes 12 microsec.

Getting a computer is somewhat
like buying a car. One of the similar
merchandizing practices that often is
used is selling the basic machine at a
reasonably low price. However, by the
time you drive it off the lot, it is
almost certain that a few extras have
been added on to make the system
useful. Most of the features of the
18/30 central processor are available
on most other computers, but they are
often merchandized as extras. The
18/30 philosophy seemed to have been
to include these "extras" as standard.
It has 5 direct memory-access channels
(cycle-steal data channels), 8 priority
interrupt levels, of which 6 are for
external use, 3 hardware index
registers, 3 internal, programmable,
crystal-controlled timers (0.1, I,
10 msec), and multiple addressing

modes. Single-word instructions can
specify addressing relative (±128) to a
base register (instruction counter or 1
of 3 index registers); double-word
instructions can specify direct (up to
32K core memory), indexed, or
indirect addressing without need for
memory paging. The internal timers
give a priority interrupt when they
time out and can be preset, read any
time, and started and stopped under
program control. These timers are very
useful in controlling experiments and
logging data.

The piece of hardware that has
made the biggest difference from our
previous computer experience is the
disk. It is a mass-storage device that
considerably eases our interaction with
the system. Disk drives have gotten
cheaper and now cost about the same
as magnetic tape. Ours uses a
stngle-platter (two-surface) disk
cartridge which holds a half-million
16-bit words. Our disk drive has an
average access time of 160 msec
(adjacent track access time of
1.74 msec). The function of the disk is
to hold programs and data in a way
that is faster but similar to the use of
DEC tape on other systems. Various
locations on the disk may be
addressed, and thus the disk may be
used as an extension of core memory.

MONITOR PROGRAM
PACKAGE

A variety of operating-system
packages are available from GA. We
have been operating our system under
GA's DBOS (Disk Based Operating
System), which gives us the power and
ease of device-independent
programming, job sequencing,
programming in symbolic assembly
language and/or FORTRAN, building
programs from subroutines held on
parts of the disk, etc. DBOS is a

program which may be rapidly loaded
from the disk by an initial
program-load feature. Part of this
program ordinarily resides in core,
occupying approximately 4K.

Table 1 shows part of the DBOS
organization which employs a
separation between logical
input/output units (which have various
functions) and physical devices or files
(which perform the input or output).
There are a standard set of assignments
connecting the logical units to the
physical devices; for example,
control-command inputs (logical I/O
unit) is usually assigned to the
Teletype (physical device). However,
the control-command inputs can be
temporarily changed to the card reader
or a disk file, known as directoried job
string, by typing: $CC=CR or $CC=DJ
(Name 1). Thus, we can assign various
of these physical devices (fIles) to
various of these logical units at will.
Various parts of the disk are thought
of as independent devices or files; the
large contribution of the disk to the
power and ease of the system is
attested to in Table 1 by seeing the
large number of devices or files which
are various parts of the same disk.
Several of the logical I/O units (listing
output; system log) are usually
assigned to a physical device (line
printer), which we do not have. At
system generation (or later), it is
possible to reassign these logical units
to a Teletype, which we do have (e.g.,
$LO=TY,P). It is possible to have
several of the logical units connected
to the same physical device, so our
Teletype does yeoman service. At run
time of a program, we can decide
which devices are used by equating the
logical units used in programming with
the desired device fIles. Some of these
functions are illustrated by the
example in Table 2.

The DBOS package includes several
programs which operate quickly using
the disk files. These include
FORTRAN IV, the 18/30 Symbolic
Assembler, a co-resident DEBUGging
program, the Core Image Converter
program (CIC), and a library of
subroutines (many for FORTRAN
use).

The outputs of the FORTRAN IV
and Assembler programs are in
relocatable binary code, as are all the
subroutines in the library file on the
disk. The CIC links the main program
and the subroutines together by
operating on the relocatable binary
code. The result is a nonrelocatable
core-image binary code where absolute
locations have been assigned, and the
finished program, residing in the
working core-image file on disk (WC),
is ready to be run. The program may
be run immediately ($LOAD) or
stored on the disk in the directoried
core image file ($COPY, WC, DC

78 Behav. Res. Meth. & Instru., 1972, Vol. 4 (2)

?-Typed by computer (keyboard release) Prr'User-program-tvpeti output from computer
U:-User·typed input to computer I-Command symbol in DBOS
M:-Monitor·typed output from computer @-Command symbol in EDIT
F:-FORTRAN·typed output from computer *-Command symbol in CIC

(NAME3», if one wants to call the
program "Name3," and run at later
times by a simple command
($NAME3).

The usefulness of the disk system
can be easily seen when using the edit
system. One disk file is assigned to
symbolic input ($SI=DS(INPUT», and
another file is assigned to the symbolic
output (normally SO=WS). Then,
u sing the EDIT commands, the
program or data is transferred from
one file to the other with the
insertions and deletions desired. The
DBOS control commands can then
allow the corrected file to get the same
name as the old file had, deleting the
old, incorrect file ($REPLACE,
DS(lNPUT),WS). Combining the
input/output assignment features with
the EDIT program, step-by-step
control of the data analysis can be
maintained with ease, flexibility, and
speed.

Line Teletype Typing

Table 2
User Controlled Analysis Example

Beforehand
(1) The data array (160 x 15

numbers) was transferred from the
card deck onto the disk in the
directoried symbolic me named
"SET03" via the card reader (CR) by
monitor command ($COPY, CR,
DS(SET03». (2) The analysis of
variance program (AVACE) was
compiled, converted to core-image
binary, and stored in the directoried
core image file named "AVACE" on
the disk. (3) The AFORM program, in
FORTRAN IV, was placed in the
directoried symbolic me named
"AFORM" on the disk via the
Teletype (TY) by a monitor command
($COPY, TY, DS(AFORM».

Initially
(1) The EDIT program was used to

modify the AFORM program to select
the desired column of the data array.
(See Table 2, Lines 3-8. Note that
Line 7 is unique to a particular subset
of the data.) (2) The AFORM program
was then compiled (FORTRAN IV
compiler) and converted to core-image
binary (core-image converter). (See
Table 2. Lines 10-16.) (3)Then
AFORM was run to select and arrange
the data column in proper order, and
place the data in a temporary disk file
(working symbolic) where the AVACE
program could retrieve it. (See
Table 2, Lines 18-21.)

Finally
With the reassignment of the disk

files, the AVACE program was run,
yielding accurate results. (See Table 2,
Lines 23-45ff.) To do the analysis on
the next data column, the procedure
using the EDIT program was repeated,
changing the FORMAT statement
(Table 2, Line 7), i.e., recycling to
Initially above. The total time per
analysis, including typing in and
printing out, approached about 5 min
as the operator became familiar with
the procedure and increased the typing
speed.

COMMUNICATION WITH
GROSS COMPUTER CENTERS

I wish that our computer centers
with the large machines would be set
up to read these disk cartridges so
that, when we are forced to run
large-scale analyses on large machines,

selected and rearranged the data into
the form required by the analysis of
variance program, to use the EDIT
program to control the AFORM
program, and to use disk files to
tr ansfer information between
programs. Thus, the problem of
insufficient core-memory space for a
subroutine was surmounted. The exact

.method is shown in Table 2, which
shows the Teletype printing and
commentary.

F Ratio

Explanation

DBOS monitor running
Initialize job and logical files
Reassign symbolic input to DS(AFORM)
Call EDIT program (to change the No.2
FORMAT statement)
Insert no leading blank spaces
At fourth line delete one line (the old
No.2 FORMAT statement)
(Enter) New No.2 FORMAT statement
Yes, complete and close files
DBOS monitor running
Reassign symbolic input to working sym­
bolic (EDIT output)
Call FORTRAN IV compiler
Compilation complete
DDOS monitor running
Write end of data (fUe) mark.
Call core imale converter prolrUJ1
ExecuteCIC. construct AFORM prolrUJ1
DDOS monitor running
Reassign iymbolic input to the data on
di* file DS(SET03)
Reassiln listing output to workin& sym­
bolic file on disk
Load and execute modified AFORM
program
End of AFORM program run
DDOS monitor running
Reassign symbolic input to AFORM
output
Reassign listing output back to Teletype
Call analysis of variance program stored
at DC(AVACE) on disk
A 0
N U
o T
V P
A U
C T
E

EXAMPLE OF USER CONTROL
AND DATA ANALYSIS

To illustrate some operating
procedures in controlled data analysis,
an example is outlined below. The
data for this example were the output
from a large program run at a
computation center and were received
by the 18/30 as a punched card deck.
We wished to run 15 separate analyses
of variance on subsets of that data
array. The analysis of variance
program (AVACE), which we had
written, required the input data to be
arranged in a particular order
(case-wise) which was different from
what appeared on the punched cards
(factor-wise). Thus, the problem was
to run efficiently an analysis of
variance program, which used almost
the entire core memory, on each
rearranged column of the data array.

The solution used was to write a
short program (AFORM) which

df Sum of Squares Mean SquareSource

DBOSCC M:
? $JOB U:
? $SI = DS(AFORM) U:
? $EDIT U:

?@B=N U:
?@+4.1 U:

? 2 FORMAT (5x,F15.5/1) U:
?@C=Y U:
DBOSCC M:
?$SI=WS U:

? $F U:
END OF COMPILATION F:

DBOS CC M:
?$EOD U:
? $CIC U:
? *BUILD U:
DBOSCC M:
? $SI = DS(SET03) U:

?$LO=WS U:

? $LOAD U:

STOP P:
DBOS CC M:
?$SI=WS U:

? $LO = TY U:
? $AVACE U:

3128.123 P:
54436.320
Mean

17.442
13.470
16.361

20

1
2
3
4

24
25

5
6

21
22
23

45
etc.

7
8
9

10

26
27
28
29
30
31

11
12
13
14
16
16
17
18

19

Behav. Res. Meth. & Instru., 1972, Vol. 4 (2) 79

we could simply deliver them a disk
cartridge with our data on it. The
usual medium for carrying data to
computer centers is cards or magnetic
tape, which is bulky, and the
machinery is expensive. We have been
using paper tape to get data to the
computer center, but it is relatively
slow and cumbersome. Our paper tape
goes to a special system that converts
the paper tape to mag tape, and then
the mag tape is read into a computer
which punches cards. One of the first
uses that we found for the card reader
on our GA 18/30 was to check the
cards that a computer center punched,
because we found a large number of
errors. This was very important
because the programs that the
computer center was going to run on
these cards would not have detected
the errors and would have given
answers tha could have had
considerable distortion.

Getting data back from a large
computer center can also be a
problem. The usual medium is a stack
of line printer output. Often we want
to feed some of that output into our
computer to (1) do further analysis
and/or (2) plot graphs. Both of these
tasks we often want to do in an
interactive way that we can do better
with our hands-on system. Our present
solution to this problem is to have the
large computer center punch cards
with the same information they
output to their line printer. Then,
using either DBOS control commands
(e.g., $COPY, CR, DS(Name 1» or a
program we have written, we can copy
toe mrormanon nom their cards mto a
disk file. From the disk file, we can
edit the data and transfer it into
another file or use the disk file as a
source for some desired program.

DOCUMENTATION
Our text hooks and courses about

computer programming emphasize the
importance of flow diagrams. Why is it
so rare to find flow diagrams as part of
the documentation supplied by
computer companies? One answer
sometimes heard from the pros: "This
program was written by a genius who
just sat down and wrote the program
without the need of flow diagrams."
Perhaps this explains some of the
troubles we mortals have when we try
to use those programs. Another answer
seem; to be: "You users don't need to
know what is in the machine or in the
program; please just board the bus and
leave the driving up to us." The
problem is that we're not always
interested in riding nonstop from one
end of the program to the other;
often, we want to use the
"general-purpose" nature of the
computer and alter the programs to
suit our needs. We would like to see all

programs accompanied by flow
diagrams with locations marked.
Several levels of diagrams would be
useful, so that the user can first look
at a general diagram which leads him
to look at the right detailed flow
diagram and listing. And why not have
a glossary-index with every program?
Imagine the joy of being able to look
up a term by alphabetically consulting
the index and finding a definition of
the term (how it is used in the
program or machine) and references to
where it is used in the flow diagrams,
the program listing, and program
description. It is regrettable that the
orderly thinking required in
programming and engineering gets
burned out in the process, leaving
ashes in place of flow diagrams,
glossaries, indexes, and
documentation, in general.

EXPERIMENTAL INTERFACING
Some of the research we're doing is

a combination of what Dr. Armington
and Dr. Murdock talked about earlier
today. We are studying the relation of
physiological to sensory and cognitive
processes. The first stage of some of
our analyses involves averaging analog
signals. Our 12·bit analog-to-digital
converter takes 40 microsec per
sample. If that much accuracy is not
required, time can be saved by
stopping the conversion process sooner
to 0 btain the accuracy desired. Some
small computers have only a 12·bit
word, so, in averaging programs which
sum samples to increase signal-to-noise
ratio, a 12-bit machine may overflow
by the time two 12-bit samples are
taken. With an 8-bit converter, only 31
samples may be taken before overflow
might occur. Consequently, most of
the averaging programs written for
these 12·bit machines require two
words of memory for each piece of
data which is being sampled. With a
16-bit machine (like our 18/30), you
ean make an 8-bit conversion which
leaves 28 number of times that the
converted samples may be added
before a one-word overflow. This is
sufficient for most purposes, and a
large number of core-memory
locations may be saved by using one
word per sample point. This is
important in our work because we are
sorting averaged evoked potentials into
a variety of categories, which requires
much space. We also can extend our
capacity by using the disk storage to
hold the several accumulated sums.

One of the points in
Dr. Armington's presentation
concerned the use of an interface
between the experiment and the
computer input. One of the uses of
such an in terface is to prevent damage
to the system, to match voltages, etc.
We would like to underline the

usefulness of relatively simple devices
that he referred to: operational
amplifiers. Op amps, together with a
few resistors and capacitors, can do a
variety of useful operations, such as
scaling signals, shifting dc levels,
filtering out unwanted frequencies,
inverting signals, integrating signals,
converting signals into triggering
pulses, etc. Learning to do these
operations with op amps is about as
easy as learning to program (see
Swinnen, 1968, for a good
introduction). One of the things we
have found useful was to bring out the
legs of the op amps to terminal posts
so that the input and output are
accessible, as Walter Kropfl did 'some
years ago at Walter Reed. This permits
ease in changing the resistors and
capacitors used to control the gain,
filtering, etc., of the op amps. We put
a variable resistor with a dc voltage on
the positive input to act as a balancing
pot which adjusts the dc bias.
Integrated circuit op amps are very
inexpensive.

Many uses of the computer require
multiple passes of the data, not only
because of the limited storage
capacity, but also because of the desire
to run quite different programs on the
same data. For this, the data must be
on mag tape and the computer is not
used on-line in a strict sense.
Advantages of recording the data on
tape are that (1) the analysis can be
done at a more convenient time and
(2) often the playback tape speed can
be faster than real time. For example,
we routinely run the analog mag tape
four times faster than the speed at
which it was recorded, resulting in a
large savings in computer time when
multiple passes of the data are
required.

DATA ACQUISITION EXAMPLE
Dr. J. R. Jennings has used the

system to look at the way heart rate
relates to cognitive processes. His
b eh avioral paradigm involves
presenting various levels of
information-processing problems to
the S. He has programmed the
GA 18/30 to look at the heart rate on
a beat-by-beat basis. There were
options as to how to program this.
One option was to have a priority
interrupt whenever a beat occurred.
This forces the difficulties of beat
detection on external equipment, and
the external interface (perhaps using
op amps) would have to be designed to
perform that detection task. If the
central processor were busy doing
other things at the same time, then the
priority-interrupt option would be a
reasonable solution. Since the
computer was not "busy," another
option was used. The EKG signal was
put into an analog input, and the

80 Behav. Res. Meth. & Instru., 1972, Vol. 4 (2)

PAUL ELLEN, C. HERBERT DeLOACHE, and JOSEPH BONDS·
Georgia State University, Atlanta, Georgia 30303

Time-shared control of a variety of
psychological laboratories using the IBM 1800

data acquisition and control computer

internal programming capability was
used to detect the occurrence of a
heart beat. This required sampling
sufficiently often to detect the beat
and measure the time interval to the
desired accuracy. The programmable
internal timers were used to determine
the interbeat interval. After a simple
conversion to instantaneous rate, the
measure was stored in a disk file. The
information about the experimental
periods came in as pulses on another
analog channel, which also was
sampled by multiplexing under
program control the analog-to-digital
converter in the same fashion. This
information allowed the program to
sort out the chains of heart beats into
different experimental classes. All of
the data was stored on the disk so that
later analyses could be made by
referencing the appropriate disk file.

The parts of the program that deal
with the experimental connections
(analog sampling, timing, etc.) were
written as Assembly (machine)
language subroutines. However, most
of the program, including the
executive routine, was written in
FORTRAN, with the resultant savings
on programmer time. This also makes
it relatively quick and easy to change
parts of the program and recompile,
letting the core-image converter
program do the work of mixing
FORTRAN and Assembly language
and building the final running
program.

The use of digital computers is a
fairly common practice within
psychology departments. These
devices are being used for the scoring
of tests, complex statistical analyses,
and similar applications. Less
common, however, is the utilization of
the computer for the actual conduct
of the experiment. Developments in

*The authors wish to acknowledge the
invaluable assistance of Mr. Herman Long,
IBM Systems Engineer, whose skill,
patience, and devoted effort brought the
idea described in this paper to fruition.

The present use of this system does
not exhaust the speed and power of
the GA 18/30 system. This leaves
considerable power for uses in the
future. For example, the direct
memory-access channels could be used
simultaneously for controlling a
variety of experiments and logging
data. One of the possibilities is a scope
display which takes advantage of the
block-chaining capability of the direct
memory-access channels, which could
link various subsets of the display and
refresh the display while allowing the
main program to continue.

Another expandable reserve is the
six external priority-interrupt levels,
each of which may be associated with
16 different events. These may be
connected to several experiments so
that the central processor need not
waste time testing for relatively rare
events. The high speed of the central
processor, especially the hardware
multiply and divide, makes possible
on-line digital filtering and
correlational adjustments. Some
additional interesting uses of the
GA 18/30 system have been made by
the Acoustical and Behavioral
Research Lab at Bell Labs at Murray
Hill, New Jersey.

REFERENCES
SWlNNEN, M. The design of biomedical

instrumentation made easy through the
use of operational amplifiers.
Psychophysiology, 1968, 5, No.2.

the technology of operant
conditioning with its requirement of
behavioral feedback (Weiss & Laties,
1965) and the real-time analysis of

i bioelectric data such as the averaging
of evoked potentials (Uttal, 1967)
have gradually focused attention on
the applicability of the computer as a
laboratory instrument which can be
used to conduct experiments. The
present paper is a report of our
department's experience in
implementing the concept of a
centralized departmental
data-acquisition facility.

The centralized data-acquisition
concept is an exercise in the practice
and art of sharing-rsharing of common
hardware, machine time, technical
talent, etc. Many techniques have been
worked out to make this sharing as
painless as possible. In fact, it is
possible in some cases to make users
entirely unaware that they are sharing
the resources of the system.

By indicating some of our thinking
in undertaking this venture, as well as
the kinds of problems encountered, we
hope to provide some insights which
will be of value to other groups who
might contemplate a similar enterprise.

GENERAL CONSIDERATIONS
The issue of major concern was

whether a centralized data-acquisition
facility should be obtained for the
entire department or a number of
dedicated systems assigned to each
departmental laboratory. It is not
uncommon today for individual
laboratories to have their own
data-acquisition computer. These are
not overly expensive and materially
upgrade the quantity and complexity
of the research carried on. However,
these are usually dedicated to a
specific task or group of tasks.

The major factor which led us to
choose a centralized facility in
preference to a number of dedicated
systems was that of growth, not cost.
The initial cost differential between a
number of dedicated systems and one
central system is negligible. Growth
possibilities, however, with dedicated
systems are generally limited, since the
system itself is the basic module in the
experimental environment. In
contrast, the resources of a centralized
data-acquisition computer, namely the
operating system and the working
core, are allocated among many users,
and the basic modules will not be the
computer (CPU) but rather the
interfaces between the laboratory
equipment and the computer. This
allows for a relatively inexpensive
incremental growth which is an
important consideration in a
developing program. That is, new
laboratories can be added by simply
increasing the number of interfaces-a
relatively inexpensive action as
compared to adding another CPU.
Moreover, as application programs
tend to be small and operating systems
large, this is a very significant savings
in total core requirements for a
department.

Another factor often overlooked is
the fact that with a centralized system,
the input/output devices such as disk
drives, card read/punch modules, etc.,
are all shared by the various users.
Such devices are generally
prohibitively expensive to the
individual user of a dedicated system.

Behav. Res. Meth. & Instru., 1972, Vol. 4 (2) 81

