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Compound-component and conditional
discrimination of colors and odors by

honeybees: Further tests of
a continuity model

P. A. COUVILLON and M. E. BIITERMAN
University of Hauiaii; Honolulu, Hawaii

In experiments previously reported, individual honeybees were trained in a variety of problems
to discriminate color-odor compounds. The results could be modeled accurately on the assump­
tion that the associative strength of each component of a compound stimulus changes indepen­
dently with reinforcement or nonreinforcement of the compound (independence rule) and that
the associative strength of a compound is equal to the sum of the strengths of its components
(summation rule). In the present experiments, which were designed to challenge the model, honey­
bees were trained in compound-component problems (choosing between compounds and their
separate components) and in conditional problems (choosing between colors on the basis of a com­
mon odor or between odors on the basis of a common color). The new data, together with all of
the previous data, could be modeled accurately on the further assumption that interaction among
the components of a compound generates a new, compound-unique component that gains and
loses associative strength in the same way as other components and contributes in the same way
to the strength of the compound; the independence and summation rules continue to apply.

In recent experiments with honeybees, we studied the
discriminative learning of individual foragers shuttling
back and forth between the hive and the sill of an open
laboratory window. On the sill, two targets were pre­
sented, one (S+) containing a drop of sucrose solution
and the other (S-) containing a drop of tap water that
was unacceptable to the animals. Using targets that at first
differed only in odor (Couvillon & Bitterman, 1985,
1986), we were able to model performance in a variety
of problems with simple equations for computing growth
or decline in associative strength produced by reinforce­
ment or nonreinforcement and for predicting choice on
the basis of relative strength. Later (Couvillon & Bitter­
man, 1987), adding a difference in color, we were able
to model performance in a variety of compound problems
on the further assumption that the associative strength of
each component of a compound changes independently
with reinforcement or nonreinforcement of the compound
(independence rule) and that the strength of a compound
equals the summed strengths of its components (summa­
tion rule). In short, the parsimonious "conditioning­
extinction" interpretation of Hull (1929) and Spence
(1936)-or the "continuity" interpretation, as it soon
came to be called (Lashley, 1942)-proved perfectly ade­
quate to the compound data.
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Okamoto, Susana Pulawa, and Mei Vee Wong in collecting the data.
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Neurobiology, 1993 East-West Road, Honolulu, HI 96822.
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Change in associative strength is expressed in the model
by a linear equation (Bush & Mosteller, 1951) in the
familiar notation of Rescorla and Wagner (1972):

LlVA = 13<A - VA)'

with VA representing the associative strength of compo­
nent A; LlVA, the change in strength produced by rein­
forcement or nonreinforcement; A, the asymptotic associa­
tive strength; and 13, the learning-rate parameter. Rescorla
and Wagner's salience parameter, a, does not appear in
the equation on the assumption that the colors and odors
used are equally salient, supporting evidence for which
is provided in our 1987 paper. Although associative
strength may vary with a, the prediction ofchoice, which
is based on relative strength, does not. The value of A
is taken as 1 when there is reinforcement (on the assump­
tion that the magnitude of reinforcement-feeding to reple­
tion on 50% sucrose-is maximal), as 0 when there is no
reinforcement, and provision is made in the model for
the possibility that the value of 13 is different for reinforce­
ment and nonreinforcement (UI3 = incremental, or upl3;
DI3 = decremental, or downd), When choice of a com­
pound containing A is reinforced, LlVA = UI3(1- VA);
when it is not reinforced, LlVA = DI3(O- VA) = - DI3 . VA.
The independence rule is implemented by separately in­
crementing or decrementing each component of a rein­
forced or nonreinforced compound. Where A and Bare
two odors, X and Y two colors, and the animal is given
a choice of AX and BY with AX reinforced, VA and Vx
are incremented separately if the animal chooses AX; if
it goes first to BY, the associative strengths of Band Y
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are decremented before those of A and X are incremented.
By the summation rule, VAX = VA +Vx and VBy = VB +Vy.

The relative associative strength, r, ofAX as compared
with BYis expressed as VAX/(VAX+ VBy). A simple com­
puter program evaluates r on the basis of the initial as­
sociative strengths of the components (which are assumed
to be greater than °in consequence of pretraining with
the components), dictates a choice, and then calculates
the resulting changes in associative strength. Choice is
dictated by one of a family of power functions that may
beincorporated in the program-functions relating prob­
ability of choice, P, to r. Some examples are shown in
Figure 1. To generate the choice functions, we used the
scaling equations

P = .5 + s(2r-l)K

for r ~ .5, and

P = .5 - s(1-2r)K

for r < .5, which, with s = .5, yield a set of sigmoid
curves passing through the points (0,0), (.5,.5), and (1,1).
When K > 1, P changes slowly in the region of r=.5
and progressively faster at the extremes; when K < 1,
the opposite is true; and when K = 1, the relation be­
tween P and r is linear. (The curves of Figure 1 are plot­
ted only for r ~ .5, because all the functions are per­
fectly symmetrical for r < .5.) When s > .5, with P
truncated to °::s P ::s 1, the functions are steeper; the
truncation implies, of course, that the choice measure is
insensitive to differences in extreme values of r. For each
of a variety of functions, we set out to find the initial value
of VA =VB= Vx= Vy (the value after pretraining) and the
values of UI3 and DI3 that would yield the minimal root­
mean-square (RMS) deviation of predicted from obtained
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Figure 1. Choice functions.

choices in the entire series of compound problems-that
is, the difference between the computed and the actual
proportions of animals making a given choice on each
visit-and we compared the functions in terms of their
minimal RMS deviations. Good fits were achieved with
the cluster of five similar functions plotted in the upper
region of Figure 1, among which K=.75, s=.833 and
K=.5, s=.625 were the best. For both functions, the
RMS deviation was minimal (.114 or .115) with initial
VA = VB=Vx= Vy=.4, UI3=.15, and DI3=.25, reflecting
the rapid changes with reinforcement and nonreinforce­
ment that were observed in the performance of the
animals.

As noted in our 1987 paper, the good fits to the com­
pound data were surprising, because the results of some
of our earlier work on compound conditioning with
resistance to extinction as the measure of associative
strength (Couvillon & Bitterman, 1982) seemed to call
into question both the independence and the summation
rules. For example, the earlier work produced clear evi­
dence of overshadowing, which suggested that the com­
ponents of a compound stimulusmight in some sense com­
pete with each other for associative strength, and clear
evidence as well of compound uniqueness, which sug­
gested that a compound stimulus might be more than a
loose aggregation of components. We began the analysis
of our 1987 results with the simple model in the expecta­
tion that it would fail, hoping only to be guided by the
nature of the failure (the regions of the data to which it
seemed especially inadequate) in the development of a bet­
ter model. Concluding from the good fits obtained that
the various problems chosen did not after all sufficiently
constrain the model, we turned in the present work to
more demanding ones, emphasizing to begin with the
question of compound uniqueness.

EXPERIMENT 1:
COMPOUND-COMPONENT DISCRIMINATION
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account for negative patterning, it may be well to look
at the actual performance of honeybees both in positive
and in negative problems.

Method
Subjects. The subjectswere 32 honeybees (Apis mellijera) forag­

ing for nectar. They came from our own hives, situated in the vi­
cinity of the laboratory, and all were experimentally naive.

Procedure. Individual bees were pretrained to fly fromtheir hives
to the laboratory and to drink to repletion from a large drop (about
100 JLl) of 50% sucrose solution on a target that was set on the sill
of an open window.An animalwasselectedat randomfrom a group
of foragers at a feeding platform equipped with a large jar of
10%-12% sucrose solution, carried in a small matchbox to the
laboratory,and placedon the target. There it waspermittedto drink
its fill of 50% solution (during which time it was marked with a
spot of colored lacquer) and then to fly to the hive. Typically, the
animal returned to the laboratory of its own accord in 3-4 min,
continuingthereafter to shuttlebackand forth betweenthe hiveand
the laboratory as long as food was available. If the marked bee did
not return to the laboratory after the first placement, it was picked
up again at the feedingplatform (where it usually could be found),
carriedbackto the laboratory, and setdownon the targetoncemore.
Thepretrainingendedwiththe subject's secondreturn to the labora­
tory of its own accord. It should be noted that the work could be
done with individual foragers becauserecruitment is not a problem
under our conditions. Intruders (bees which have not themselves
been carried to the laboratory) are rare and can quickly be cap­
tured, as is each subject at the conclusion of its training.

The targets were covered petri dishes of clear plastic, 5.5 em in
diameter, with gray covers. In each cover, eight equally spaced
holes, .5 em in diameter, were drilled at the outer circumference.
To someof thecovers, ringsof green plastic, I cm wideand 5.5 cm
in outside diameter, were cemented, with holes in the rings cor­
responding to the holes in the covers. The dishes themselvescon­
tained wads of cotton that were either impregnated with the odor
of peppermintor unimpregnated. In all, three sets of targets were
used in the training: green ring with peppermint scent (AX), pep­
permint scent without the green ring (A), and green ring without
the peppermint scent(X). Thecoversusedon eachvisitwerewashed
and exchanged for others in the same set after the visit in order
to balance extraneous stimuli. For purposes of pretraining only,
there was an additional set of targets without either the green ring
or the peppermint scent.

On each of 32 trainingvisits, the animal foundtwo targetsplaced
10 emapart on a line parallel to the outer edge of the window sill.
One of the targets contained a drop of 50% sucrose solution, and
the other contained a drop of tapwaterthat wasdistinguishable from

the sucrose only by taste. The target first chosen on each visit was
recorded, and the trial ended when the animal had found the cor­
rect target, fed to repletion, and gone back to the hive. For 16
animals in the positive patterning group (P), there were 16 visits
to AX+A - intermixedin quasi-randomsequence with 16 visits to
AX+X-. The sequence began with A - for half the animals and
with X- for the rest. Position also was balanced: AX+ was at left
on half the A - visits and on half the X-visits, and at right on
the remaining visits, again in quasi-random sequence. In all, four
differenttrainingorders were used, eachfor 4 animalsin the group.
For 16 animals in the negative patterning group (N), the training
was exactly the same as for Group P except that the components
rather than the compound were reinforced(A+AX-and X+AX- ).

Results
The performance of the two groups is plotted in

Figure 2 in terms of the proportion of animals in each
group choosing correctly on each visit. The two curves
are very much the same except on the first visit, when
both groups showed a preference for the component over
the compound, which tended to impair performance in
Group P and elevate it in Group N. Thereafter, the curves
merge, gradually approaching a common asymptote of
about 80% correct choice, and the overall performance
of the two groups does not differ significantly (median
test, Fisher's exact p < .14). Although the asymptotic
level is not high, each of the 32 animals made fewer than
16 errors in the 32 training visits (exact p < .0001).

One way to account for the better-than-chance perfor­
mance of Group N is to assume" afferent neural interac­
tion" (Hull, 1943). In Hull's view, the animals dis­
criminate not between AX and the componentsbut between
A I X' and the components, where A' and X' are the com­
ponents as altered by interaction. (Actually, of course,
it is not the component stimuli that are assumed to be al­
tered by interaction but the corresponding afferent com­
ponents, which are distinguished in Hull's notation.) This
solution requires the addition of a generalization principle
to the model, which ultimately will be necessary in any
case. Another proposal (Rescorla, 1972; Whitlow &
Wagner, 1972) is that, instead of changing A and X, the
interaction generates a compound-unique component,
which we may refer to here as Q. In thisview, the animals
distinguish AXQ from A and X (again conceived as affer-
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Figure 2. Performance in the positive-patterning (Group P) and negative-patterning (Group N) problems of Ex­
periment 1.
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ent components), which helps us to account for negative
patterning only if the model is extended to permit Q to
become inhibitory. We have been able thus far to deal
with all of our data on the assumption that the function
of nonreinforcement is simply to reduce associative
strength (excitation), which cannot be less than zero. It
is interesting to note that neither proposal requires us to
abandon the independence and summation rules, although
they now apply to afferent components rather than to
stimulus components.

While considering these alternatives, we hit upon
another way of looking at the patterning problems that
requires neither of them. The idea is to think of A not
as an odor in the absence of a color (peppermint in the
absence of the green ring) but as an odor in the presence
of a different color, Y (the plain gray target), and to think
of X not as a color in the absence of an odor (green ring
in the absence of peppermint) but as a color in the presence
of a different odor, B (the odor of the target with unim­
pregnated cotton). If this analysis is correct, the animals
discriminate AX from AYandBX, and we should be able
to simulate their performance with no change at all in the
model. In the positive case, with only A and X acquiring
any associative strength, VAX must be greater than VAyor
VBX; in the negative case, with Band Y consistently rein­
forced but A and X only inconsistently reinforced, VAX
must be less than VAyor VBX' Even before a formal simu­
lation, however, it should be noted that the analysis pro­
vides an explanation of the clear preference for the "com­
ponent" over the' 'compound" shown by the animals on
the first training visit. Since the pretraining was to the
plain gray target filled with unimpregnated cotton (BY),
the animals should prefer either AY or BX to AX.

The simulation was done with the same parameters­
the same choice function (K=.75, s= .833), the same ini­
tial V values of pretrained componentsVB = Vy=.4), and
the same learning rates (U(J= .15, D(J= .2S)-that yielded
the best fit to the combined data of our previous com­
pound experiments (Couvillon & Bitterman, 1987). Since
we were, for the moment, interested only in getting some
general sense of the validity of the analysis, we made the
simplifying assumption that all the components were equal
in salience (the salience of the unimpregnated cotton equal
to that of the scented cotton and the salience of the plain
gray target equal to that of the gray target with green ring).
Nevertheless, the results for two groups of 100 stat-bees
were close enough to those for the real bees, showing even
the clear preference for "components" on the first visit,
that we were encouraged to repeat the work with the stan­
dard stimuli of our 1987 experiments, which are known
to be equally salient and discriminable and are described
below.

EXPERIMENT 2:
FURTHER STUDY OF

"COMPOUND-COMPONENT" DISCRIMINATION

If compound-component problems as implemented in
Experiment I in effect only require the animals to dis-

criminate AX from AYand BX, we should get very much
the same results in explicit training on such problems with
the stimuli used in our previous work on compound
discrimination-homogeneous green and blue targets in­
stead of green circle on gray and gray alone as X and Y,
and the scents of peppermint and geraniol instead of pep­
permint and unimpregnated cotton as A and B. With these
stimuli, moreover, quantitative prediction of the new
results was possible. For the prediction, we again used
the choice function (K=.75, s=.833), the initial Vvalues
for A, B, X, and Y(=.4), and the learning rates (U(J=.15,
D(J= .25) that had yielded the best fit to the data of our
previous compound experiments. A new simulation
nevertheless was necessary here because of a change in
the pretraining procedure; for conformity with our previ­
ous work on compound discrimination, the animals in
Experiment 2 experienced all four components in
pretraining,

Method
Subjects. The subjects were 32 foragers from our own hives,

all experimentally naive.
Procedure. The pretraining procedure was the same as in Ex­

periment 1, except that it was done with a set of targets that were
half-blue, half-green, and scented both with peppermint and ger­
aniol. In the discriminative training, four sets of targets were used­
green-peppermint, green-geraniol, blue-peppermint, and blue­
geraniol-but only three of them for any given subject. For exam­
ple, 4 of 16 positive-patterning animals (Group P) were trained with
green-peppermint (AX) reinforced versus blue-peppermint (A Y)
or green-geraniol (BX) nonreinforced; 4 of 16 negative-patterning
animals (Group N) were trained with the same targets but with
blue-peppermint and green-geraniol reinforced and green-pepper­
mint nonreinforced. The two pairs of targets (AX,AYand AX,BX)
appeared equally often in two balanced, quasi-random sequences,
with each target of each pair presented equally often at right and
left. Other P and N subgroups were trained with AYversus AX and
BY; BX versus BY and AX; and BY versus BX and AY. Since the
performance of the animals of Experiment 1 appeared to be asymp­
totic after 16 training visits, that was the number of visits permit­
ted the animals of the present experiment.

Results
In Figure 3, the performance of the two groups is plot­

ted in terms of the proportion of animals (Group P, up­
per panel, and Group N, lower panel; large circles) choos­
ing correctly on each visit. The marked initial separation
of the curves of Figure 2 does not appear in these curves
and, because of the pretraining with all four components,
is not, of course, predicted by the theory. There is some
indication of better overall performance in Group P than
in Group N, but the difference is not statistically reliable
(median test, exact p > .07). What appears to be the
asymptotic level of performance again is not high, but
there is no question about better-than-ehance performance;
31 of the 32 animals made fewer than eight errors in the
16 visits (exact p < .0001).

The predicted results, based on simulations with 100
stat-bees, also are plotted in Figure 3 (small circles).
Although the fit is encouraging, the performance of the
real animals is somewhat underpredicted by the model.
If we had no other information, we might be tempted to
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EXPERIMENT 3:
CONDITIONAL DISCRIMINATION

treat the discrepancy simply as a parametric problem, but
the results of a further experiment, to which we now tum,
showed that a change in the theory was required.

Figure 3. Actual Oarge circles) and simulated (small circles) per­
formance of Groups P and N in Experiment 2. The simulation was
done with the parameters that yielded the best fit to the Couvillon
and Bitterman (1987) data.

Method
Subjects. The subjects -were 24 foragers from our own hives.

All were experimentally naive.
Procedure. The pretraining procedure was the same as in Ex­

periment 2, with special targets half-green, half-blue, and scented
both with geraniol and with peppermint. There were 32 training
visits. The 12 subjects of the color group were trained to choose
between green and blue targets that were scented with geraniol on
half the visits and with peppermint on the rest, in quasi-random
order. The 12 subjects of the odor group were trained to choose
between geraniol- and peppermint-scented targets that were green
on half the visits and blue on the rest, in quasi-random order.
Green-geraniol and blue-peppermint were correct for half the
animals in each group, and blue-geraniol and green-peppermint
were correct for the rest. Each compound was presented half the
time on the left and half the timeon the right, again in quasi-random
order.

of each pair only if VA +Vx > VA +Vy and VB+Vy >
VB+VX, or, by addition, VA+VB+VX+Vy >
VA +VB+Vx+ Vy. Nevertheless, we had reason to look at
least for better-than-chance performance on the basis of
an earlier demonstration of color-odor compound unique­
ness as a determinant of resistance to extinction in honey­
bees (Couvillon & Bitterman, 1982). In that experiment
(which was done with other stimuli), bees that had been
fed by turns on AX and BY responded more persistently
to the two compounds than to AY and BX.

Results
In Figure 4, the performance of the two groups is plot­

ted in terms of the proportion of animals in each group
choosing correctly on each visit. The curves suggest that
the problems are equivalent in difficulty (median test, ex­
act p < .34) and certainly not insoluble, although the
asymptotic performance is far from perfect. Of the 24
animals, only 2 failed to show better-than-chance perfor­
mance in the 32 visits, 1 of them making 17 errors and
the other 16 (exact p < .(016). In the last half of the
training (the last 16 visits), the mean number of incor­
rect choices was 3.8 (76% correct; SE= .48). Given this
performance, we seemed to have no alternative but to in­
corporate in the model some notion of compound unique­
ness, and of the two suggested in the vertebrate literature
we chose to rely on the more easily implemented-the as­
sumption of compound-unique components. The im­
plementation is easier because, for the moment at least,
we can ignore not only generalization (which the Hullian
interpretation would require us to deal with immediately)
but also (given our analysis of the negative patterning in
Experiment 1) the possibility of inhibition.

Consider again the conditional problem involving
AX+AY- and BY+BX-: If A and X together generate
a new element, Q, and if Band Ytogether generate a new
element, R, then, by the independence rule, a rewarded
response to AX increments VQ as well as VA and Vx, and
a rewarded response to BY increments VR as well as VB
and Vy. By the summation rule, VAX = VA +Vx+ VQ , and
VBy = VB+Vy+ YR. Note that VQ and VR are never
decremented because AX and BY always are reinforced.
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In early experiments, Lashley (1938) trained rats to
choose between upright and inverted triangles on black
or striated backgrounds, with the upright triangle correct
when the backgrounds were black and the inverted trian­
gle correct when the backgrounds were striated. Lash­
ley's results were confirmed by North, Maller, and
Hughes (1958), whose further tests showed that the per­
formance of the animals was determined by properties of
the separate compounds as distinct from properties of the
pairs of compounds ("configurational" properties). Con­
ditional discrimination has been demonstrated also in rab­
bits (Saavedra, 1975) and goldfish (Bitterman, 1984)
trained with compounds of visual and auditory stimuli.
In the present experiment with honeybees, we used two
different conditional problems, one that required the
animals to choose between differently colored targets on
the basis of a common odor, and one that required them
to choose between differently scented targets on the ba­
sis of a common color. The model predicted failure, of
course: Trained, for example, with AX+AY- and
BY+BX- , an animal could prefer the positive compound



72 COUVILLON AND BITTERMAN

1.0
w
o 0.8
is
J:

0.6o
l-o 0.4w
IX:
IX:
0 0.2o

0.0
0 2 4 6

~
COLOR ...

-.. I

I '. ..•\ ~

\ "\ I

tI ODOR

8 10 12 14 16 18 20 22 24 26 28 30 32

VISITS

Figure 4. Performance of the color and odor groups in the conditional problems of Experiment 3.

Note, too, that the hypothetical elements unique to AYand
BX (S and T) can be ignored because AYand BX are never
reinforced; Vs = VT = O. Given the implication of our
previous results (Couvillon & Bitterman, 1987) that the
colors and odors used are equally salient
(aA=aB=ax=ay= 1), the model suggests that the four
possible conditional problems (AX+AY-,BY+BY-;
AY+AX-,BX+BY-; and AX+BX-,BY+AY-; and
BX+AX-,AY+BY-) are equivalent if Q, R, S, and T
are assumed to be equally salient, which seems a reasona­
ble first approximation. There is, however, no way to de­
cide in advance what the salience of the compound-unique
components should be, except that it must be greater than
zero.

Our procedure, therefore, was to simulate the perfor­
mance of 100 bees in the conditional problem, with the
salience of the compound-unique components varying
from 0 to I in steps of .1, and to compare the results with
the combined performance of the color and odor animals.
Again, we used the same choice function (K=.75,
s= .833), initial V values of the pretrained components
(= .4), and learning rates (U{j= .15, D{j= .25) that we
used throughout (those that yielded the best fits to the com­
bined data of our previous compound experiments). As
expected, the fit was poor for a=O (RMS deviation of
simulated from obtained values = .25). With increases
in the assumed salience of the compound-unique compo­
nents, the RMS deviation decreased progressively, reach­
ing a minimum of .098 at a = .7, and then increased again
with further increases in a to . 117 for a = 1.

A question that now must be considered is why, if
compound-unique components of substantial salience are
generated in compound problems, we should have been
able to simulate our 1987 results so well without taking
them into account. One possibility is that compound­
unique components acquire control of performance only
when other components are nondifferentially reinforced
(Spence, 1952), which would violate the independence
rule. A second possibility is that compound-unique com­
ponents always function as do other components, but that
the error of neglecting them in our previous simulations
was compensated for by complementary errors in the

selection of a choice function and the estimation of learn­
ing rates.

To examine the second (much simpler) possibility, we
simulated performance in all of the compound problems
described in our 1987 paper together with performance
in the present Experiments 2 and 3, using each of the
cluster of five choice functions shown in the upper region
of Figure 1 that previously had provided the best fits of
the first compound model to the 1987 data. We also used
K= 1, s= .5, the linear function that had provided a much
poorer fit, and-entering again a region of the functional
space unexplored since the beginning of our work with
compounds-the still more different K= 1.5, s= .5. These
functions, too, are shown in Figure 1. For each function,
performance in all problems was simulated with initial
values for VA = VB = Vx = Vy of .1, .2, .3, or .4, values for
U{j and D{j (varied factorially) of .15, .20, .25, .30, or
.35, and saliences for the compound-unique components
(assumed to be equal) ranging from .1 to 1 in steps of
.1; the initial V values of the compound-unique compo­
nents were taken as 0, since they were not encountered
in pretraining. In all, there were 1,000 simulations for
each choice function (4 initial Vvalues X 5 values ofU{j
x 5 values of Dd x 10 values of a), each simulation for
100 stat-bees. The RMS computation for each simulation
was based on the 108 data points provided by the earlier
compound experiments and 61 new points provided by
the present Experiments 2 and 3. The 16-visit positive­
and negative-patterning problems of Experiment 2 were
treated as separate problems, because there was no a pri­
ori reason to suppose that they should be equivalent.
Together, they contributed 30 of the 61 new points; the
first visit in each case was, as usual, excluded on the
ground that any deviation from .5, either in the simulated
or in the actual performance, must represent random er­
ror. The 32-visit conditional discrimination of Experi­
ment 3 contributed 31 of the new points; the color and
odor problems were not treated separately because they
are mathematically equivalent on the assumption that the
colors and odors used are equally salient (Couvillon &
Bitterman, 1987). Actually, there were two RMS com­
putations for each simulation, one based on untransformed



CONDITIONAL DISCRIMINATION IN HONEYBEES 73

cr. + cr. = (.056)2

as .040. On the assumption of independence, it is possi­
ble also to estimate the data and model error combined
(l1d"') from the equation

data continued to yield good fits of the revised model to
the entire set of compound data. Here, however, the fits
were best not as before for K=.5, s=.625 and K=.75,
s= .833, the two steepest functions (untransformed RMS
= .125, arcsin RMS = 7.2°), but for K=.75, s=.625
and K=l, s=.833, two of the less steep functions (un­
transformed RMS = .119, arcsin RMS = 6.8°). The
goodness of fit for K=.75, s=.625 (initial V=.3, U{j=.2,
D{j = .35, and 0.=.7) is illustrated in Figure 5 with the
data of the two groups of Experiment 2 and in Figure 6
with the pooled conditional data of Experiment 3 (large
circles, obtained proportions of correct choice; small cir­
cles, simulated proportions). For K= .5, s= .5, the good­
ness of fit declined again (untransformed RMS = .123,
arcsin RMS = 7.1°). As expected from previous work,
the best fit possible with the "matching" function (K= 1,
s=.5) was considerably poorer (untransformed RMS =
.139, arcsin RMS = 8.3°) than for any of the clustered
five, and the best fit possible with the more extreme
K=1.5, s=.5 was poorer still (untransformed RMS =
.171, arcsin RMS = 1O.r).

It may be well to note again that the RMS deviation
of simulated from obtained values is a reflection not only
of model error (11",) but also of random error in the data
(l1d) and of random error in the simulation process itself
(11,). To estimate the simulation error, we did a second
simulation of performance in the entire set of compound
problems for 100 stat-bees with K=.75, s=.625, initial
V= .3, U{j= .2, D{j=.35, and 0.=.7, the parameters that
yielded the fit illustrated in Figures 5 and 6. On the basis
of the RMS deviation of the two sets of simulated values
from each other, which turned out to be .056, 11. may be
estimated from the equation

cr. + ~'" = (.119)2

as .112. It is reasonable to assume from the nature of the
data that the model error alone is rather small.
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proportions and another after arcsin transformation, each
proportion, P, being replaced by an angle, cP, measured
in degrees, according to the equation

cP = (l80hr)sin-1p
.
5

•

The RMS scores based on untransformed proportions have
more intuitive meaning, but (because the variance of a
proportion decreases with distance from .5) they may not
give sufficient weight to small deviations at the extremes
of the scale. As it happens, the pattern of results proved
to be the same for both sets of scores.

The cluster of five choice functions (Figure I) that had
yielded good fits of the first compound model to the 1987

4 6 8 10 12 14 16

VISITS

Figure 5. Actual Oarge circles) and simulated (smaIl circles) per­
formance of Groups P and N in Experiment 2. The simulation was
done with the parameters that yielded the bestfit to the combined
data of the present and previous (Couvillon & Bitterman, 1987)ex­
periments.
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Figure 6. Actual Oarge circles) and simulated (small circles) performance of the combined color and odor groups

in the conditional problems of Experiment 3. The simulation was done with the parameters that yielded the bestfit
to the combined data of the present and previous (Couvillon & Bitterman, 1987) experiments.
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DISCUSSION

We came to this work with a simple continuity model
that nicely accounted for the choices made by honeybees
in a wide range of simultaneous color-odor discrimina­
tion problems but that was not; we suspected, sufficiently
constrained by those problems. Our skepticism was based
on the results of prior conditioning experiments with
resistance to extinction as the measure of associative
strength, in which a variety of phenomena were dis­
covered that seemed to challenge the independence and
summation rules. Of those phenomena, we turned first
to compound uniqueness, further evidence of which was
sought in a new series of choice problems culminating
in a demonstration of conditional discrimination. The new
data could not be accounted for in terms of the existing
model, but, together with all of the previous data, they
could be simulated accurately on the further (purely per­
ceptual) assumption that interaction among the compo­
nents of a compound stimulus generates a distinctive
(compound-unique) component that changes in associa­
tive strength and contributes to the strength of the com­
pound in the same way as other components. The extended
model remains a continuity model in its adherence to the
parsimonious independence and summation rules.

Still waiting to be considered are other phenomena dis­
covered in the extinction experiments that seem to present
more fundamental challenges to the model, among them
overshadowing and potentiation (Couvillon & Bitterman,
1982). Evidence against the independence rule may not
have appeared in the 1987 choice experiments for any of
a number of reasons, again perhaps because the designs
were not sufficiently constraining. The possibility also
must be considered that the training technique itself,
however efficient, is relatively insensitive; simultaneous
discrimination experiments with vertebrates certainly did
not in their heyday, now long gone, produce very much
in the way of clear and replicable evidence of noncon­
tinuity (Sutherland & Mackintosh, 1971). The model is
challenged as well by indications of inhibitory control that
appeared in the extinction experiments (Couvillon & Bit­
terman, 1980) but may prove difficult to find in choice
training if simultaneous discrimination experiments with
vertebrates are any guide; although inhibition often has
been inferred, as, for example, to account for transposi­
tion (Spence, 1937), other interpretations are available
and more direct evidence is wanting (Macphail, 1972).
We plan nevertheless to continue to test the limits of the
honeybee choice model along the lines suggested by the
extinction experiments.
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