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Quantitative relations between visual search
speed and target-distractor similarity

DONALD S. BLOUGH
Brown University, Providence, Rhode Island

Three pigeons worked on visual search tasks in which arrays of 32 small forms appeared in
computer-driven displays. Their task was to peck at a unique target among identical distractors;
the main dependent variable was the speed with which this target was found. The target and
distractor forms for each trial were chosen from a set offorms (usually 16); in most experiments,
all possible pairs offorms appeared in each experimental session. Six experiments were run; each
yielded a matrix of mean reaction times (RTs), one for each of the form pairs. Such matrices were
subject to multidimensional scaling, from which best-fitting interform distances were determined.
In four experiments with disparate form sets, Euclidean distance between pairs of forms in mul
tidimensional space was found to approximate an exponential decay function of RT-K, where
K was a constant set for each subject. Two additional experiments showed that RT distributions
for single-form pairs were well fit by the convolution of a fixed distribution, approximately Gaus
sian, and an exponential distribution whose decay parameter varied with interform similarity.
The exponential decay parameter may be taken to reflect momentary detection probability, and
interform distance in multidimensional space may be taken to measure similarity. Thus, the data
as a whole suggest an exponential relation between the probability of detecting a target and the
similarity of that target to its surrounding distractors. This relationship is analogous to Shepard's
law of generalization, which states an exponential relation between response probability and
similarity.

Stimulus similarity is important to most psychological
research, if only because we wish to specify the range
of stimulus conditions over which any finding may hold.
The similarity of visual forms is currently of particular
interest in the context of research on pattern recognition.
However, there are rather few data relating quantitative
measures of similarity to measures of form perception.
This article attempts to provide such data for the relation
between similarity and the speed of visual search, using
pigeons as subjects. Two sets of experiments are
described. The first relates target-distractor similarity to
mean search reaction time (RT) for several form sets. The
second attempts to identify the component of RT that is
affected by target-distractor similarity.

The first set of experiments follows Shepard (e.g.,
1957) and others in representing similarity between two
stimulus objects as a distance in psychological space be
tween points representing those objects. This approach
bypasses the psychophysics of similarity, in that no rela
tionship between physical stimulus properties and dis
tances or response measures need be assumed or deter
mined. Arguing from theoretical and empirical
considerations, Shepard (e.g., 1958) proposed that when
the response measure is conditional probability (relative
frequency), then a single similarity function, or gener
alization gradient, holds across all stimulus sets. This is
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an exponential decay function, or something close to it.
The supporting data sets include several from pigeon
generalization experiments (Shepard, 1965). Recently,
Shepard (1986, 1987) derived the exponential generali
zation function from a new set of fundamental assump
tions about the decision process.

Less well documented are generalization functions relat
ing similarity to measures other than relative response
probability. Some data suggest the exponential function
for similarity ratings (e.g., Ekman, 1954). Shepard (1981)
indicated that discriminative RT may bear a reciprocal
relation to similarity. To my knowledge, no function relat
ing search speed to similarity has been proposed, though
visual search is known to be affected by the similarity
among forms in the searched display in humans (e.g.,
Estes, 1972) and pigeons (e.g., D. S. Blough, 1979, 1984,
in press; D. S. Blough & Franklin, 1985; P. M. Blough,
1984). Nor have the various models of search (e.g.,
Harris, Shaw, & Altom, 1985; Harris, Shaw, & Bates,
1979; Hoffman, 1979) attempted to formalize the
similarity-speed relationship.

The multidimensional scaling procedure used here to
scale similarity assumes that the time taken to find a par
ticular visual stimulus in a multiple-item display increases
monotonically with the similarity between that stimulus
and surrounding forms. The term "similarity" seems ap
propriate, rather than' 'discriminability," for in this task
various pairs of quite different forms often yield differ
ent search speeds. In the first set of experiments, the
primary datum was the mean of many RTs with a given

Copyright 1987 Psychonomic Society, Inc.
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form (the "target") surrounded by many copies of another
object (the "distractor"). Such means were collected for
many pairs of forms. In each experiment, a set of forms
was presented in all possible target-distractor combina
tions. The resultant set of mean RTs yielded, through mul
tidimensional scaling, a function relating similarity to
search RT. For all of the experiments, this function proved
to approximate an exponential decay function, once a con
stant had been deducted from RT.

To explore the nature of the RT measure in greater
depth, a second set of experiments generated detailed RT
distributions for a few target-distractor pairs of differing
similarity. The resultant RT distributions could be fit, to
a good approximation, by the convolution of a constant
distribution (either Gaussian or empirically determined)
with exponential density functions varying in their decay
constants. This fit suggests that the exponential function
relating RT to similarity may be stated in a more fun
damental way: The momentary probability of finding an
object is an exponential function of the similarity of that
object to its background. The data as a whole thus sug
gest that a variant of Shepard's law of generalization may
be extended to visual search.

These experiments use the odd-item search method
(D. S. Blough, 1986): In a display with one unique tar
get and many identical distractors, the sUbject's task is
to find the target. All possible pairings (as targets and dis
tractors) of a rather large set of forms appear in each ses
sion. With well over 1,000 trials run per session, this
method generates the large number of RTs that are re
quired for quantitative analysis. Though odd-item search
is conceptually a simple procedure, its implementation as
an operant conditioning task involves a number of tech
nical aspects. The method has been set forth in detail else
where (D. S. Blough, 1986) and only major aspects are
described here.

GENERAL METHOD

Subjects
The same 3 male White Carneaux pigeons (Columba Iivia) served

as subjects in all experiments. The birds had been used previously
in a number of search tasks (e.g., D. S. Blough & Franklin, 1985).
The duration of food presentation during experimental sessions was
adjusted for each bird to maintain its weight at approximately 80%
of its free-feeding weight; durations ranged from 1.8 to 2.5 sec per
reinforcement.

Apparatus and Stimuli
The apparatus and display characteristics have been described

in detail elsewhere (D. S. Blough, 1986). Briefly, birds were run
in a standard operant chamber. Directly above a centrally located
feeder was the face of a black-and-white display monitor, on which
search displays appeared in a visible area of 10.5 x 6 cm. Six
response locations were defined across the display, each consist
ing of a vertical stripe 1.4 cm wide in which was centered one
column of four display forms. The occurrence of pecks to the screen
in each of these areas was sensed by an infrared detector system
(Figures I and 2 ofD. S. Blough, 1986). These arrangements are
depicted in Figure I. The chamber was illuminated by a dim over-

/

Figure 1. Display screen and response sensing array, showing a
typical odd-item display. (From "Odd-Item Search by Pigeons:
Method, Instrumentation, and Uses" by D. S. Blough, 1986, Behavior
Research Methods, Instruments, & Computers, 18, p. 414. Copyright
1986 by the Psychonomic Society, Inc. Reprinted by permission.)

head light and white masking noise was provided. An Atari 800
personal computer produced the display, controlled the experiment,
and recorded response RTs.

The display on a given trial consisted of an array of 32 black
forms in four rows and eight columns. One of these forms, the "tar
get," was unique; it could appear in either of the middle two rows
and any of the middle six columns of the display. Thirty-one iden
tical copies of another form, the "distractor," filled all remaining
locations in the display (see examples in Figures I and 3). The pair
of forms used on each trial was drawn from a larger set, which
differed for each experiment.

Procedure
Each trial began with the appearance of a stimulus matrix on the

previously blank white monitor screen. If two successive pecks to
the target location occurred within 8.5 sec after the display appeared,
the forms briefly changed color from black to white and disappeared,
while the feeder light came on for I sec. On 7 % of such trials, the
feeder light stayed on and food was presented. A 2-sec intertrial
interval followed. An RT was recorded if the trial was not a cor
rection trial, as specified below. A new combination of forms ap
peared on the next trial.

If the pigeon failed to peck the target twice in succession within
8.5 sec, the trial terminated after two pecks to any location, the
screen went blank, and a "miss" was recorded. One or more cor
rection trials followed a miss. The first correction trial was a re
presentation of the missed display. After a second miss, the target
appeared on the screen with a set of extremely different distrac
tors, either four black dots in each form position or a large gray
square in each form position. Such trials invariably elicited a cor
rect response within 8.5 sec, and testing then proceeded with a new
display.

On each trial of a given experiment, 2 forms were chosen from
the set used in that experiment. Each form in the set appeared as
a target equally often in every block of 32 trials (for sets of 16 forms)
or 12 trials (for sets of 4 or 6). Every possible combination of 2
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different forms appeared equally often during each session, and the
target for each combination was equally often placed in each of the
six target location areas. • II • •••

EXPERIMENT lA

where T is the transformed value, RT is the bird's mean reaction
time for a given target-distractor combination, and K is a constant
equal to the bird's minimum RT in a given experiment, less 0.05 sec.
The constant K represents the commonly accepted "irreducible mini
mum" RT that is assumed invariant with stimulus factors, but which
varies across subjects; the specific value chosen for K depended
on results from Experiment 2 (see Appendix). Equation I thus pro
vides a way to make the data from different subjects comparable
before combining them. Also, this transformation of RT turned out
to be approximately linear with similarity, a matter discussed at
length below. Prior to scaling, each data matrix was also "folded"
by averaging the matrix with its transpose. Each resulting value
was the mean of two values, one for each member of a stimulus
pair appearing as target with the other as distractor.

Data Analysis
Data were combined across a number of sessions as specified for

each experiment. The performance of the birds was indicated by
the following statistics, determined for each bird' s data and for the
mean across birds: Percent correct responses across all stimulus
pairs, proportion of stimulus pairs yielding more than 75 % correct
responses, mean RT for each stimulus pair, and split-half (alter
nate block) reliability of RT. Interbird correlations were also de
termined.

Reduction of the RT data was complicated by the fact that for
quite similar forms, search was sometimes not completed within
8.5 sec after trial onset, and a miss was recorded. Omission of such
misses from the calculation of mean RT led to an underestimation
of the value that would have been obtained had each trial continued
indefinitely. Thanks to the regularity of the RT distributions (Ex
periment 2), it was possible to estimate the mean of these missing
RTs for each stimulus pair (see Appendix). However, points for
those few stimulus pairs that were missed on more than 25 % of
trials were excluded from the RT-similarity functions presented
below.

Matrices of mean RTs were input to ALSCAL, a multidimen
sional scaling program run under the SAS system (SAS Institute,
1982). Nonmetric ("ordinal") and metric ("interval") options were
used as stated below, as was the INDSCAL variation, which uses
individual subject differences to advantage. The fits of Euclidean
distances to optimally scaled data are stated in terms of variance
accounted for (r 2

) and Kruskal stress, Formula I (stress). For
most of these purposes, each bird's RT data were transformed as
follows:

T = 10g(RT-K), (1)

Figure 2. The set of forms used in Experiment lAo Relative size
is to scale; the largest form was actually 3.2 mm square.

to 3.2 mm (8 pixels) in steps of 0.4 mm. The squares filled the
standard 8 x4 display matrix described above, except that their po
sitions were randomly perturbed within rows and columns. Each
form could appear at one of four positions, such that it was cen
tered at one corner of an imaginary square 3.2 mm on a side. A
typical display appears in Figure 3.

Each square was paired as target 43 times with every other form
as distractor in every session, for a total of 1,290 trials per ses
sion. The birds were run for nine sessions, of which the last six
provided the data reported below; thus, each bird contributed 258
RTs for each target-distractor pair.

Results and Discussion
Data were analyzed as described above. Mean percent

correct responses for the 3 birds were 93.5, 97.3, and
89.3. Ofthe 30 stimulus pairs, 28 (93%) yielded correct
responses within 8.5 sec on more than 75 % of trials. Split
half reliability for the mean RT data was .996. Mean in
terbird correlation was .975.

For the simplest and most direct look at distance con
figurations for these data, RT data were combined across
birds and folded, but the log transformation described
above (Equation 1) was omitted. The data were then fit
with the nonmetric (ordinal) version of ALSCAL in one
and two dimensions, with the results shown in Figures 4A
and 4B. As one would expect with so few data points,
the fit was good in both cases (stress = .01 and .003,
r2 = 1.0).

The tendency of scaling algorithms to bend an essen
tially one-dimensional relation into a C-shaped curve has
been noted previously. Shepard (1974) argued that often
in such cases the underlying one-dimensional structure is
distorted by noisy data. This is probably the case here,
and the use of an extra dimension appears to clarify the
data in the experiments below as well. A fuller account
of this matter is given in the Appendix.

Figure 5A displays a point for each pair of stimuli, with
mean RT on the ordinate and distance, as shown in
Figure 4B, on the abscissa. The curve through the points,

This experiment considered search among simple forms
differing only in size. It provided a relatively uncompli
cated look at similarity in a putatively one-dimensional
case, and also served as a prototype for the subsequent
studies. The stimuli were six black squares of different
sizes. Each of the six squares was paired with every other
square; the bird had to fmd the different-sized square in
each display.

Method
The experiment followed the general method outlined above, with

additional details as follows. The six stimulus forms appear in
Figure 2. The sides of the squares varied from 1.2 mm (3 pixels)

• • • • • • • •
• • • • • •• •
• • • • •• •

• • • • • •• •
Figure 3. A typical display for Experiment lAo Two forms ap-

pear, one singly as target, the other repeated as distractor. Target-
distractor pairs were chosen randomly from the set shown in
Figure 2.
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A .-.-.-.- .. -
certain of the scaling outcomes, and such sets were gener
ated in the next three experiments.

B
EXPERIMENT 1B

•

•
•

Figure 4. A: One-dimensional ALSCAL representation derived
from RTs in Experiment IA. Mean RTs were not transformed be
fore input. B: Same, two-dimensional configuration.

The results of Experiment IA suggested an exponen
tial relationship between pigeon visual search time and
target-distractor similarity. The following three experi
ments provided further information on this relationship,
with larger form sets selected to emphasize differing
aspects of stimulus dimensionality. (The psychophysics
and dimensional structure of these stimuli require fuller
treatment, which is reserved for a future publication.)

Experiment IB used a set of forms that expanded both
conceptually and numerically upon the forms used in Ex
periment lA. The stimuli were 16 rectangles varying in
two dimensions-height and width. To minimize percep
tual discontinuity, all of the rectangles were wider than
any was high. Estimates of the similarity of such rectan
gles have been obtained from humans in several experi
ments (e.g., Krantz & Tversky, 1975; Monahan & Lock
head, 1977; Wender, 1971; Wiener-Ehrlich, 1978). It has
been argued that, for humans, rectangles exemplify "in
tegral," holistically processed stimuli, from which dis
tinct dimensions (e.g., height and width) are not percep
tually extracted (e.g., Wiener-Ehrlich, 1978), although
this conclusion has been questioned (e.g., Schonemann,
Dorcey, & Kienapple, 1985).

Method
The general method described above was followed. The set of

stimulus rectangles is shown in Figure 6. The largest rectangle mea-

•

•
•

drawn by eye, appears approximately exponential. This
appearance is confirmed by a similar plot based on data
subjected to the log transformation shown in Equation I
(see also Appendix). The exponential function is indicated
by the linear relation between the transformed data and
distance. The lack of scatter of the points in Figure 5B
is doubtless due in part to the fact that these data were
exponentially transformed before input to ALSCAL; a
good fit to relatively few points may demand little re
scaling. Thus, larger data sets are necessary to be more
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Figure 5. A: Distances between the points shown in Figure 4B (data of Experiment IA), plotted against the corresponding RT values.
B: Distances from comparable two-dimensional scaling of the same RTs transformed according to Equation 1. The numbers on the or
dinate are natural logs of time in milliseconds.
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however, this is modified in the present case by a slight
negative curvature.

D lI_

D D 01 I
DDDLJ

Figure 6. The set of stimulus forms used in Experiment 1B; the
rectangles vary orthogonally in width and height.

EXPERIMENT Ie

The exponential relation between search RT and form
similarity, suggested in Experiment lA, was supported
by scaling results from the "integral" stimulus rectan
gles used in Experiment lB. Experiment lC investigates
this relationship with stimuli defined by two "separable"
dimensions. Stimulus aspects like those used in the first
two experiments were combined in a manner that favors
their separate processing. One might expect Euclidean
scaling (as with ALSCAL) to be less successful with data

Figure 8. Distances derived from three-dimensional scaling of the
data of Experiment 1B, plotted against their corresponding
log(RT-K) values. The straight line was fit by eye.

Figure 7. Two-dimensional representation derived by ALSCAL
from RT results of Experiment lB. Monotonic rescaling of the in
put data was permitted (ordinal scaling option).

3

o

~o

~

0..

2

ALSCAL Distance

•
..00

o 0.: ..
o

3

6

7

o
D

DO
c=J

- 0 ---__ [==:J =_

D 1° ~
o 0

o

sured 6.4x3.6 mrn on the display screen, and the smallest mea
sured 4.0 x 1.2 mrn. Figure 6 shows the relative proportions of the
other rectangles. The 16 stimuli yielded 240 different target dis
tractor pairs. In every daily session, each such pair appeared six
times, for a total of 1,440 trials. Each of the 3 birds was run for
15 sessions; data from the last 12 of these are reported here. Thus,
the results from each bird were based on 72 trials with each target
distractor pair.

Results and Discussion
The data were analyzed as described under General

Method. Mean percent correct responses was 89.2; 83%
of stimulus pairs were searched correctly on 75 % or more
oftrials. Split-half reliability of mean RT data was .993,
and mean interbird correlation was .955. The mean, trans
formed, folded RT data were scaled in four, three, and
two dimensions with ALSCAL (ordinal option). The con
figuration found with two dimensions assumed a C shape
like that in Figure 4B, and as in Experiment lA, this prob
ably reflects variance at the extreme distances. The dis
tance along this C-shaped line was dominated by the ver
tical dimension of the rectangles. The relative contribution
of the stimulus variables is better represented by two of
the three dimensions found in three-dimensional scaling.
This result appears in Figure 7; here, stress = .021 and
r2 = .998. The details of this configuration are not our
major interest, but several aspects may be noted. The
stimulus variations in vertical and horizontal extent in
teracted markedly. The vertical changes were dominant,
with the horizontal playing an increasing role with the
larger forms. Such interactions, although less extreme,
characterize human judgments of rectangles (e.g.,
Wiener-Ehrlich, 1978), supporting the notion that for
pigeons, as for humans, the stimuli are integral and are
not parsed into dimensions in this task.

Our central interest here is the function relating inter
stimulus distance to RT. Despite the fact that arbitrary
rescaling of the 10g(RT-K) data was permitted, ALSCAL
made only minor shifts to achieve a fit, and a regular rela
tionship emerged from scaling in two, three, and four
dimensions. The function relating distance and 10g(RT- K)
appears for three dimensions in Figure 8 (r 2 = .995,
stress = .025). The essential linearity of the relationship
implies an exponential function relating distance and RT;
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L....J L....J L....J L....J- - - -Figure 9. The fonns used in Experiment IC; two separable dimen
sions, the width of the upper segment and the size of the lower block,
vary orthogonally.

All dimensionalities revealed a generally exponential form
of the similarity versus RT function, as shown with rela
tively little noise for the four-dimensional case in
Figure 11 (r 2 = .991, stress = .030).

EXPERIMENT 10

The three previous experiments used stimulus sets puta
tively composed of, respectively, one dimension, two in
tegral dimensions, and two separable dimensions. This
experiment extends the nature of tested stimuli to a set
defmed by the presence or absence of four binary features.

based on such stimuli, since they are predicted to follow
a "city-block" metric (e.g., Shepard, 1964). This turned
out not to be the case here (see below, and Appendix).

Method
The general method described above was followed. Sixteen stimu

lus forms were each composed of a V-shaped line above a black
rectangle; four Vs of different widths were combined in all possi
ble combinations with four different rectangle heights, as shown
in Figure 9. The black rectangle was 4.5 mm wide, and the other
dimensions were scaled to this as shown in the figure. The number
and composition of daily sessions were the same as in Ex
periment lB.
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Figure 11. Distances derived from four-dimensional scaling of the
data of Experiment IC, plotted against the corresponding
log(RT-K) values. The straight line was fit by eye.

Figure 10. Two-dimensional representation derived by ALSCAL
from RT results of Experiment Ie.

Results and Discussion
The data were analyzed as described under General

Method. Mean percent correct responses was 96.9; 97%
of stimulus pairs yielded correct responses on 75 % or
more of trials. Split-halfreliability of mean RT data was
.979. Mean interbird correlation was .765, notably lower
than in the previous experiments. This reduced intercorre
lation is consistent with the analyzable or separable na
ture of the stimuli used in this experiment, thus suggest
ing that different subjects selectively attended more to one
or the other of the stimulus aspects (Shepard, 1964). In
any case, the individual differences prompted scaling both
with ALSCAL, as above, and with INDSCAL, which uses
individual differences to find nonarbitrary dimensional
axes. INDSCAL also provides different weights for each
subject on each dimension. As it happened, the configu
rations yielded by the two methods did not differ substan
tially, so the ALSCAL results, comparable to those above,
are reported here.

A two-dimensional configuration from ALSCAL (or
dinal fit) appears in Figure 10 (r2 = .957, stress = .088).
It is evident that this representation organizes the stimuli
along dimensions consistent with their two physical com
ponents. Because of the apparent separability of these
components, it is worth mentioning that city-block fits
were comparable to Euclidean fits in two dimensions and
somewhat less good in three and four dimensions (see Ap
pendix for details). As in the previous experiments, at least
one more dimension is needed to accommodate the curl
of the extremely dissimilar stimuli back toward each other.
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Figure 12. The forms used in Experiment ID. The forms consist
of a V-shaped line to which are added from zero to four line seg
ments in different locations.

Method
The general method described above was followed. The set of

stimulus forms is shown in Figure 12. All the forms included a U
shape; they differed by the presence or absence of four short line
segments, three horizontal and one vertical, which appeared in all
possible combinations. The U form was 3 mm on a side.

For reasons irrelevant to the present analysis, the birds had two
series of runs with these forms, one of 17 sessions and the second
of 12 sessions, separated by other training. The data reported here
are from the second series of 12 sessions. Session length and trial
organization were as described under General Method and under
Experiment lB.

is approximately an exponential function of the similar
ity between the target and distractor forms, after a con
stant has been subtracted from all RTs. The following ex
periments sought a deeper interpretation of this function
through exploration of RT distributions, which led to the
suggestion that the reciprocal of mean search RT (beyond
a constant component) approximately estimates the instan
taneous probability that a target will be found among
copies of a distractor.

o
G U
U-

-0

D
U

U-

6

2 ........~~~~....,...i ~~~"""'i'-""'~~~Ti~~~~i
2 3 4 5

ALSCAL Distance

Figure 13. Two-dimensional representation derived by INDSCAL
from RT results of Experiment ID. The presence or absence of a
line segment at the left or at the bottom of the form derme the dimen
sional axes•
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EXPERIMENT 2A

Results and Discussion
The data were analyzed as described under General

Method. Mean percent correct responses was 96.2; 93%
of stimulus pairs yielded successful searches on 75 % or
more of trials. Split-halfreliability of mean RT data was
.990, and mean interbird correlation was .889. As in Ex
periment IC, the somewhat low interbird correlation
prompted the use of both INDSCAL and ALSCAL. Again
there was little substantive difference in the two configu
rations, but INDSCAL provided a meaningful orientation
of the dimensional axes. A two-dimensional INDSCAL
outcome appears in Figure 13 (r 2 = .857; stress
= .154). It is evident that presence versus absence ofthe
left line segment defines the horizontal dimension. The
lower line segment similarly defines the vertical dimen
sion and the other segments control local clustering. In
three dimensions, INDSCAL found the top horizontal seg
ment to control the third dimension. Interestingly,
searches for any target that differed from a distractor only
in the presence or absence of the right line segment were
extremely difficult, accounting for almost all errors and
very long RTs.

Again, in all dimensionalities, the similarity versus RT
function followed an exponential trend. An ALSCAL
result based on four dimensions appears in Figure 14
(r 2 = .990, stress = .030).

Experiments 1A through 1D indicate that for several
sorts of stimulus forms, the time taken in odd-item search

Figure 14. Distances derived from four-dimensional scaling of the
data of Experiment ID, plotted against the corresponding
10g(RT- K) values. The straight line was fit by eye.
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The experiments were similar to Experiment lA, ex
cept that a very large number of trials was run with each
of a few target-distractor combinations in order to develop
detailed RT distributions.

Method
The procedure followed that of the general method described

earlier and Experiment lA, except in the following particulars. The
four smallest forms from Experiment IA served as stimuli. Instead
of using all possible combinations of these four forms, only those
combinations were used in which a larger form appeared as a tar
get on the background of a smaller form; thus, there were only six
trial types. This set was designed to yield a few target-distractor
combinations across a range of similarities, to the exclusion of ex
treme similarities that would generate errors. As before, the target
could appear in any of 12 locations, and the remainder of the dis
play was filled with 31 copies of the distractor. The birds were run
for 12 sessions, of which the last II supplied data for analysis. Each
session included 1,188 trials, with each target-distractor combina
tion appearing 198 times. The final data for II sessions included
2,178 RTs for each target-distractor combination.

Data analysis differed from that in Experiments IA-ID, for here
the basic data were RT distributions for a few stimulus pairs, in
stead of mean RTs for many pairs. RTs for each bird and pair, across
all sessions, were distributed into YJo-sec bins, with the few errors
counting as 8.S-sec RTs.

For some analyses, RT distributions were combined across sub
jects in the manner recommended by Ratcliff (1979) for RT data.
The combination process was equivalent to "Vincentizing": The
2,178 RTs for each stimulus pair and bird were ordered from least
to greatest, and the ordinally corresponding RTs were averaged
across birds. The resulting mean RTs were distributed into YJo-sec
bins just as though they had come from one subject. The analyses
next to be described were performed on the individual and the group
results; since the group analyses appeared to well represent all key

20

features of the individual data and were a bit smoother, they are
shown here for simplicity.

The RT distributions were fit by combinations of underlying dis
tributions that varied in few parameters. Fits were done by a hill
climbing procedure, seeking maximization of w2 through gradual
shifts in the parameters.

Results and Discussion
As planned, error rates were very low, with an overall

mean percent correct of99.7. Thus, a negligible propor
tion of RTs were clumped at the 8.5-sec cutoff.

The RT distributions were unimodal with a skew
qualitatively resembling RT data from many tasks with
humans. The combined distributions for the six stimulus
conditions appear in Figure 15 (black dots).

The appropriate mathematical description of RT dis
tributions has occasioned much debate. A convenient tabu
lation of major alternatives is provided by Burbeck and
Luce (1982), and extensive discussion is given by Luce
(1986). Familiar unitary distributions (such as Poisson)
neither fit the present data nor recommend themselves on
rational grounds, and most investigators assume that RTs
reflect a minimum of two groups of processes operating
serially (McGill, 1963). Lumped together in one group
are processes such as neural transmission and motor
response, which together contribute a duration that is es
sentially independent of stimulus conditions. The other
group includes perceptual and decision processes, which
contribute durations that vary with stimulus parameters.
HoWe (1965) suggested that the former component might
have a Gaussian distribution, and the latter an exponen
tial distribution. If this were true, an observed RT distri-
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Figure 15. Separate points represent RT frequency distributions for the six target-distractor combina
tions used in Experiment 2A. The fitted curves represent the convolution of two distributions, a Gaussian
(the same for aU fits) and an exponential with the decay constant indicated. Omega-squared, the measure
of goodness of fit (variance accounted for) exceeded .9999 for all fits.



bution should be well fit by the convolution of Gaussian
and exponential functions, specified by three parameters:
the mean and the variance of the Gaussian, and the decay
constant of the exponential. This convolution has subse
quently been strongly advocated by Ratcliff and Murdock
(1976) as at least a useful summary ofRT data, relatively
easy to fit, with rationally interpretable parameters. It was
effectively used by Ratcliff in his memory retrieval model
(1978) and recently by Hockley (1984) to model both
memory and visual search data. Unfortunately, Hockley's
task (list scanning) and independent variables are not suffi
ciently comparable to those in the present experiments to
permit meaningful comparison of results beyond the shape
of RT functions.

The Gaussian-exponential convolution seems well suited
for the present case. The simplest account of search for
a randomly placed target is that the target has a fixed
chance of being found at any moment; this yields the ex
ponential decay component of RT. As for the other com
ponent, the familiar assumption of many factors indepen
dently varying in time suggests the Gaussian, though there
are other plausible alternatives, and the Gaussian yields
some difficulties that we shall encounter below.

Fits of the data by Gaussian-exponential convolutions
were derived by the hill-climbing method described above.
Because we assume that the Gaussian contribution to the
fit is the same for all stimulus pairs, a single Gaussian
mean and variance were estimated, while a separate ex
ponential decay constant was found for each RT distri
bution. The fitted functions are shown as continuous
curves in Figure 15, with the numerical values of the de
cay parameter noted. Since only a crude iteration across
the several data sets was used to fit the Gaussian
parameters, it is likely that these are not quite optimal.
Nonetheless, the fitted exponential decay constant was
closely related to observed mean RT across the conditions;
a linear relation would be expected between the recipro
cal of the decay constant and mean RT if variation in the
exponential component were the sole source of observed
changes in mean RT. In fact, the correlation of these
values was .999.

Although the normal-exponential convolution provided
a good fit to the search-time data in Experiment 2A, a
systematic discrepancy appears in most instances, for the
RT curve is a bit too steep to the right of its mode, and
the obtained data tend to lie under the theoretical curve.
(Interestingly, this is also a feature of sample RT distri
butions presented by Ratcliff & Murdock, 1976.) This dis
crepancy appears more prominently if the RT distribu
tion is converted to a conditional frequency distribution,
or hazard function, which estimates the probability of a
response at a particular time, given that no response has
occurred until that time. For the Gaussian-exponential
convolution, this conditional probability increases mono
tonically, rising at first where the Gaussian dominates,
and gradually leveling off.

In contrast to the Gaussian-exponential model, the
present data yielded peaked conditional functions, with
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the peak becoming quite prominent for easy searches (see
data points in Figure 17). Such a pattern has suggested
to others that the underlying decision (here, search)
process might have two components. For example, an
analogous pattern of RT results was found by Burbeck
and Luce (1982) for human reaction times to pure tones
in noise: Conditional detection probabilities for relatively
strong tones peaked early and then declined, while those
for relatively weak tones remained level after an initial
rise. This pattern, together with other evidence, led Bur
beck and Luce to support a two-process view of detec
tion, with a "change" detector and a "level" detector
operating in parallel. The possibility that something simi
lar might occur in visual search has been suggested a num
ber of times (e.g., Hoffman, 1979; Neisser, 1967). A
familiar idea along these lines is that some sorts of tar
gets capture attention by "popping out" from the back
ground, while other targets, sharing (for example) cru
cial features with distractors, require extended serial
search (e.g., Treisman & Gelade, 1980; Yantis & Jonides,
1984). These considerations suggest the possibility that,
in the present experiments, strongly dissimilar target
distractor pairs might invoke somewhat different process
ing than more similar pairs. This would complicate the
interpretation of the results, and would make puzzling the
apparent simplicity of the similarity-RT relation found in
the first set of experiments.

However, the pattern of conditional probabilities just
described does not necessarily imply the operation of two
search-related processes. Although the Gaussian
exponential convolution cannot account for variable peaks
in the conditional probability functions, other distribu
tions, convolved with the exponential, might do so. The
Gaussian component presents other problems as well, and
the next experiment was designed to produce an empiri
cal substitute.

EXPERIMENT 2B

The data of Experiment 2A were fit on the assumption
that the RT component unrelated to stimulus variables has
a Gaussian distribution. Although it is convenient, yields
quite a good fit, and is justified in the literature, this as
sumed distribution for the constant RT component is
somewhat unrealistic. Any process triggered by an event
at time T cannot produce RTs distributed indefinitely back
ward as well as forward from a later time T+K, since
this implies negative RTs. Here, these impossible RTs
would correspond to the left-hand tail of the Gaussian den
sity function. Also, as we have seen, the Gaussian
exponential convolution predicts a monotonically rising
conditional probability function, rather than the peaked
function obtained.

Experiment 2B was run under conditions designed to
reduce the "search" (exponential) component of the RT
to a minimal and possibly negligible value. If we continue
to assume that the empirical RT distribution reflects the
convolution of the exponential with a second distribution,
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the results of the experiment should provide an empirical
estimate of that second distribution. This strategy has some
precedent in previous RT analyses of discriminative
processing. For example, in the paper already cited, Bur
beck and Luce (1982) estimated the constant RT compo
nent in their sound detection task from RTs to a very large
change in sound level. The present analogue to such an
intense signal was a very easy search task. In Experi
ment 2B, black targets appeared alone on a blank white
field. Presumably, relatively little time should be spent
in finding the target under these conditions, and the search
component of RT should be minimal.

Method
The method was similar to that employed in Experiment 2A. The

three largest forms used in that experiment served as stimuli. Each
of these forms appeared alone on an otherwise blank white screen,
in one of the 12 central matrix positions reserved for targets in the
other experiments. Each form appeared 528 times per session, and
five sessions were run.

Results and Discussion
Within birds, RT distributions for the largest forms

differed little, whereas RTs were slightly longer for the
smallest form. Therefore, since the data were intended
to estimate minimum RTs, those from the smallest form
were omitted from further consideration. RTs for the two
largest forms were combined within birds, and then across
birds by the Vincentizing procedure described above. The
resulting distribution then replaced the Gaussian in the
curve-fitting process described above. That is, the newly
obtained "minimum" RT distribution was convolved with
an exponential distribution, and the exponential decay con
stant was adjusted to give the best fit to each of the six

RT distributions from Experiment 2A. The resulting fit
ted distributions are shown in Figure 16, together with
the exponential decay constant. The fits are good, except
for the one for the most similar target-distractor pair,
which was also poorly fit by the Gaussian-exponential con
volution. As before, the reciprocal of the exponential de
cay constants closely mirrored the mean RT of the data
(r = .999).

Although good, the fits shown in Figure 16 account for
little, if any, more variance than the Gaussian-exponential
fits described above. However, as we saw above, the
Gaussian-exponential distribution had the disadvantage of
a monotonically increasing conditional probability func
tion. In contrast, the new convolutions produced condi
tional probability curves that rougWy mirrored those from
the data, moving from a markedly peaked function for
dissimilar stimuli to a monotonically rising function as
the exponential parameter declined. A sample of these
results appears in Figure 17, with curves representing the
most different stimulus pair (top) and the second most
similar pair (bottom). This outcome demonstrates that the
changing shape of the conditional probability function
across data sets does not imply a complex search process.
Thus, the data remain consistent with the idea that differ
ences in mean RT for different form pairs flow from
changes in a single variable, which can be identified with
the momentary probability of target detection.

GENERAL DISCUSSION

The results of Experiments 1 and 2 jointly suggest the
following formulation of the relation between similarity
and the speed with which a pigeon searches an odd-item
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Figure 17. Curves showing the conditional probability of RT as a function
of search time ("hazard functions"). These functions are based on two of the
panels in Figure 16. The connected points represent the theoretical fits; they
show that a change in the exponential decay constant alone may change the
shape of the hazard function from monotonic to nonmonotonic (see text).

display: The probability that, at any moment, a target T
will be found on a background of distractors D is approx
imately an exponential decay function of the dissimilar
ity between T and D, where dissimilarity is given by the
Euclidean distance between T and D as determined by non
metric multidimensional scaling.

If accepted, this relationship provides a tool that is
potentially useful in the study of interstimulus similarity ,
including such classic problems as metrics and combina
tion rules. Conversely, the relationship provides an avenue
through which quantitative estimates of similarity may be
introduced into models of the search process.

Before turning to such matters, we consider two possi
ble limitations on the generality of the results. First, any
measure of similarity doubtless depends to some degree
on the method employed. For example, in experiments
with human subjects, reaction time measures and similar
ity ratings have given rather different estimates of rela
tive interform similarity (e.g., Podgorny & Gamer, 1979).
Even within the search task, the manner in which stimuli
are displayed could affect the results. For example, de
tecting a target in an array ofclosely spaced stimuli could
result from detecting an irregularity in spacing between
the target and nearby distractors, rather than form dis-

similarities. Despite these cautions, there is reason to be
lieve that the search procedure used here produces rather
general results in pigeons. We have found little effect of
array configuration on similarity estimates from search
tasks. Also, similarities among letters of the alphabet
based on search, with arrays more closely spaced than
those used here, correlated highly (.89) with similarities
found with a discrimination-learning method (D. S.
Blough & Franklin, 1985).

A second potential problem is an apparent defect in the
proposed relationship between RT and similarity. An ex
ponential relationship predicts that as dissimilarity ap
proaches zero, search RT approaches a rather large but
certainly finite value. This implies that, given enough
time, a subject should be able to find a target that is iden
tical to the distractors in a display! This paradox may be
resolved in at least two ways. First, and perhaps most
likely, the exponential relationship may not hold for very
small interstimulus differences. Shepard (1986) has ar
gued that a Gaussian rather than an exponential result
might be expected when a task involves extended prac
tice and the stimuli are very difficult to discriminate. Un
fortunately, the form of the RT-similarity function is
difficult to determine for highly similar stimuli because,
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as errors rise, the meaning of the remaining correct RTs
is difficult to interpret (see Appendix).

Possibly, the exponential RT-similarity relationship
continues to hold as the target-distractor difference ap
proaches zero. As we just saw, this implies the success
ful completion of searches despite target-distractor iden
tity. However, such completion is not impossible if one
allows for successful "guesses"; given enough time, the
subject will certainly guess the target. Thus, the situation
seems amenable to a probabilistic analysis that provides
continuity between "true" and "chance" detections based
on random variables, perhaps along the lines of signal de
tection theory. Related matters will be considered briefly
below.

Does the exponential relationship suggest hypotheses
about the search process? It is interesting that a very simi
lar relationship underlies Shepard's hypothesis about the
decision process involved in stimulus generalization (e.g.,
Shepard, 1987). The difference between Shepard's result
and the result suggested here reflects the complementar
ity of discrimination and generalization: For search, the
discriminative detection response decreases in probabil
ity with similarity, whereas, for generalization, response
probability increases with similarity. For the generaliza
tion case, Shepard has derived the exponential relation
ship from general assumptions that an animal might make
about whether a novel stimulus is in a "consequential
region" containing a reinforced stimulus (Shepard, 1986).
His argument is functional and cognitively oriented: "The
problem that the individual faces is that of deciding
whether the new stimulus, even though different from the
preceding one, is nevertheless similar enough that it, too,
might belong to the class of objects possessing the same
reinforcing consequences" (Shepard, 1986, p. 60). In this
model, response probability reflects the probability that
a stimulus is found to be in the appropriate class.

Although both the generalization and the odd-item
search tasks involve partitioning stimuli into "same" and
"different" categories, it is not obvious how a decision
process like that proposed by Shepard might apply to the
search situation. In generalization, a test stimulus may
clearly differ from a reinforced stimulus and yet be in the
consequential region. In search, any difference should
contribute to target detection. Instead of being determined
by the chance that a stimulus is in a consequential region,
RT would seem to be determined by how fast any differ
ence at all can be detected. In short, search would not
seem to involve the sort of cognitive decision processes
that Shepard suggests for generalization. Furthermore, the
most comparable measure for which there appears to be
extensive data, namely discriminative reaction time, seems
to be related to distance by a reciprocal rather than an
exponential function (Shepard, 1981).

More appropriate comparisons may be sought in the
search literature, but here, unfortunately, researchers typi
cally have used just two classes of stimuli: confusable and
nonconfusable (e.g., D. S. Blough, 1979; Estes, 1972;
Farmer & Taylor, 1980). This dichotomous classification

is reflected in models of search as well. A dominant view
holds that targets dissimilar from their distractors are iden
tified by fast, automatic, parallel processes, which yield
rapid pop-out of the target and an insensitivity of search
speed to display size. In contrast, similar target-distractor
pairs are said to invoke slower, attention-demanding,
serial processing that is sensitive to display size (e.g.,
Hoffman, 1979; Schneider & Shiffrin, 1977; Treisman
& Gelade, 1980). It is not clear whether the automatic
process is of variable duration or may occur with a short
and invariant RT, once some threshold of dissimilarity
is reached. For the slower serial process, speed decreases
with target-distractor similarity, but little has been done
to delineate the details of this relationship.

Research restricted to extreme classes of stimulus
similarity could not, of course, yield functional relations
of the sort reported here. However, the idea that these
classes are processed differently does suggest that such
functions, once found, might be of a particular sort. If
dissimilar stimuli are processed differently than similar
stimuli, the function relating RT to similarity might well
differ in the two cases, leading to a discontinuity at the
point of switchover from dissimilar to similar. Thus, one
might expect to see distinct limbs in the RT-similarity
functions of Experiment 1. In fact, there was no indica
tion of such discontinuities, either in the mean data
(Figures 5, 8, 11, and 14) or in the data from individual
subjects (not shown). The only indication of altered
processing when targets and distractors became quite simi
lar appeared in the RT distributions from Experiment 2:
Theoretical fits of the data for the most similar stimulus
pair were notably poorer than for the other pairs (lower
right panel, Figures 15 and 16).

Even if two processes are generally needed to account
for search data, there are several reasons why the results
reported here might not distinguish these processes. First,
the range of similarity may have been insufficient to gener
ate complete RT-similarity functions; we have noted that
stimulus pairs leading to high error rates were excluded.
Second, variability in the data may have smoothed over
the predicted discontinuity in the RT-similarity function.
Third, the procedure may not have isolated the hypothe
sized automatic parallel process. It has been argued that
automatic pop-out of a dissimilar target occurs prior to
the localization of the target, which requires slower fo
cal attention (e.g., Treisman & Gelade, 1980). The
present procedure requires the pigeon to peck at, and thus
to localize, the target. This requirement may necessarily
invoke a slow localization process that masks rapid pop
out regardless of stimulus similarity.

A final reason for the absence of evidence for two
processes in the present results could be that pigeons em
ploy only one process. Past work has revealed more
similarities than differences between pigeons and humans
in the area of search and perception. In search, for ex
ample, the RT-display-size function steepens with target
distractor similarity (D. S. Blough, 1979; P. M. Blough,
1984); the two species show similar patterns of confu-



sions between alphabetic letters (D. S. Blough, 1985) and
mirror images (D. S. Blough & Franklin, 1985).
However, there is some suggestion that feature conjunc
tions are processed differently by pigeons (D. S. Blough
& Franklin, 1985), consistent with the idea that early
processing in these birds is more thorough than in humans.
Though highly speculative, this suggestion is also con
sistent with a single-process interpretation of the present
data. We may hope for more data bearing on this matter,
for cross-species comparisons, revealing patterns of
similarity and difference, have been a key factor in un
derstanding many biological processes.

As we just saw, current models of human visual search
are largely inapplicable to the present data because they
tend to dichotomize similarity. In contrast, something like
a similarity continuum is common to models of discrimi
nation and detection; the "decision axis" of signal de
tection theory is perhaps the most familiar example (e.g.,
Green & Swets, 1966). Starting from the idea that stimu
lus differences can be represented by the distance between
points on such a continuum, discriminative reaction times
may be derived in various ways. Often suggested is the
random walk, where stimulus differences accumulate over
time until a decision boundary is reached (e.g., Link,
1975). Ratcliff (1978) incorporated this idea in an impres
sive model of memory search, which is of special interest
here because same-different memory search presents some
of the same problems as odd-item visual search and the
two may involve common processes. Interestingly, Rat
cliffs model also predicts reaction time distributions of
the form found in Experiment 2.

Following these leads, it would doubtless be possible
to construct a model of visual search that would yield data
like those found here. However, so many processes yield
exponential decay that a model tailored to generate only
the data presented here could carry little conviction. We
hope eventually to state a model that would account as
well for other aspects of pigeon search (e.g., display size
functions and search asymmetries), and that would also
relate effectively to data from human subjects.
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APPENDIX

Determination of K
Functions relating reaction time to scaled distance (Figures 5,

8, 11, and 14) depend on the scaling of the variables on the axes.
Distance-the abscissa-is the Euclidean distance in multidimen
sional space between the points representing stimulus objects,
as fitted by ALSCAL. Arbitrary monotonic rescaling was al
lowed in this process; that is, only the ordinal characteristics
of the data were preserved by ALSCAL. Thus, it should make
little difference what monotonic transformation of the RT data
were input to ALSCAL, and in fact ALSCAL produced very
similar results for all experiments, regardless of whether linear
or log-transformed data were used.

The monotonic transform found by ALSCAL to yield the best
fit to distance was approximately exponential. The transforma
tion of Equation 1 renders this a linear function (Figures 5, 8,
11, and 14), but assumes a constant value K. As the analysis
of Experiment 2 indicates, K may be taken to represent a fixed
component of RT or, more exactly, the mean of a fixed distri
bution with which an exponential distribution of search times
is convolved. Experiment 2B was an attempt to estimate this
fixed distribution. However, the mean of this distribution could
not be used for K in the 10g(RT - K) transform for all of the
experiments because minimum RT appeared to drift slightly over
the many sessions during which the experiments were run. Thus,
for example, the minimum RT obtained for "easy" searches
in a few cases in Experiment I was a little below the K deter
mined in Experiment 2B.

Experiment 2B was run in just 5 sessions immediately after
Experiment 2A. Thus, we may assume that the K for each sub
ject from Experiment 2B applies reasonably well to the data for
that subject from Experiment 2A. The difference between the
fastest true search (Le., with many forms on the screen) in Ex
periment 2Aand the minimum determined in Experiment 2B
averaged 50 msec. On this basis, the value of K for each of the
other experiments was estimated for each subject by subtract
ing 50 msec from the lowest mean RT obtained from that subject:

K = min RT - 50, (2)

where min RT is the minimum RT in msec actually obtained
in a given experiment. This estimate is doubtless somewhat ques-

tionable, but variations in this value between 10 and 100 msec
had rather little effect on the functions displayed here.

Estimation of RT for Search Failures
For the great majority of stimulus combinations used in these

experiments, the target was responded to within the 8.5 sec al
lowed for each trial. Across Experiments lA-lD, 92% of target
distractor combinations yielded such "hits" on 75 % or more
of their presentations. For the most similar stimulus pairs,
however, search often failed within the allowed 8.5 sec. The
RTs for these arrays form a truncated distribution whose mean
presumably underestimates the mean of a distribution that would
have been obtained from the use of very long trials.

It is possible to correct the mean RT for difficult stimulus ar
rays by estimating the missing tail of the RT distribution. One
assumes, with the support of Experiment 2, that the tail of the
RT distribution is approximately exponentially distributed. The
argument then rests on two facts about the exponential distribu
tion: (1) The area under the distribution beyond a given cutoff
time is simply related to the decay constant, A, of the distribu
tion (e.g., McGill, 1963, p. 318), so percent "misses" can be
used to estimate A. (2) The mean of the distribution is VA, and
the mean of the area beyond the cutoff time is Ie + IIA. Here,
the cutoff time is measured from K, the "irreducible minimum"
RT at which the exponential component is assumed to com
mence. The derivation of K is given above. Thus, for each miss
ing RT for a given array we can substitute the mean RT of the
missing tail for that array:

F(t) Ae ->.t

A e->"e; A
A)/Ie

M = Ie+VA,

where F(t) is the exponential distribution of RTs, A is the rela
tive area of the missing tail, or percent "misses," Ais the ex
ponential decay constant, te = 8.5 - K, and M is the mean RT
in the tail.

Although this correction for misses seems reasonable for low
miss rates, it is questionable for high rates. If the probability
of detection is zero, the exponential formula predicts an infinitely
large RT. However, zero probability should not be assigned,
even to an impossible search among identical objects, because
of the occurrence of correct guesses. We estimate that such cor
rect guesses occur with our procedure, within 8.5 sec, on ap
proximately 15% of impossible search trials. (This estimate is
based on unpublished work that presented birds with such im
possible searches.)

As the number of misses becomes large, RT becomes progres
sively more dependent on estimated rather than real values, and
guesses presumably play an increasing role. Rather than deal
ing with the resulting questionable estimates, the RT - distance
functions displayed here omit points that represent stimulus pairs
successfully searched on fewer than 75 % of trials. However,
since multidimensional scaling required some estimate of these
extreme RTs and used only ordinal relationships, which might
not be too distorted, they were included in the multidimensional
scaling process.

Effect of Noise on Scaling Solutions
It is argued under Experiment 2 that obtained RT consists of

two components, one governed by stimulus factors such as
similarity, the other by motor response time and other nonstimu-



Ius factors. This argument implies that the stimulus-governed
RT component approaches zero with increasing stimulus dis
similarity. However, as it shrinks, this RT component may ap
proach the variance of the second component. When this hap
pens, random influences begin to disturb the order of mean RTs
obtained from different pairs of very dissimilar stimuli. To the
extent that this happens, monotonic rescaling cannot yield the
appropriate underlying structure.

Very low RTs, corresponding to large distances in psycho
logical space, may thus tend to be disordered by variability. In
attempting to fit such disordered points, ALSCAL tends to equal
ize long distances. To do this while still providing good fits at
shorter distances, the algorithm curls the representation of the
points into new dimensions. For an essentially one-dimensional
measure disordered in this way, the best-fitting representation
becomes the C-shaped configuration in two dimensions (Shepard,
1974), since this permits correct local distances but tends to
equalize longer ones. Several of the data sets from Experiment I
showed this sort of curl and yielded intuitively satisfying spa
tial representations in more dimensions than might have been
expected.

Can such noise alter the functional relation between RT and
distance? A partial answer to this question is provided when ar
tificial data sets with known data-distance functions are perturbed
before their structure is recovered through multidimensional scal
ing. A set of simulations tested the hypothesis that the apparent
exponential RT-distance function might be generated from an
underlying linear relationship that was subject to a lower bound.
Noise from a normal deviate was added to truncated data
(simulating a limit or asymptote) that were generated from one
dimensional distances. One-dimensional scaling produced some
what distorted distances; two-dimensional fits worked well,
producing the C-shaped configuration described above and better
representing local distances. In both cases, however, ALSCAL
recaptured the linear distance-data function rather clearly, with
only unsystematic perturbation.

The Influence of Metric Structure
A Euclidean psychological space has been assumed through

out this article. ALSCAL used Euclidean distances among stimu
lus objects to arrive at a best-fitting configuration, and Euclid
ean distances among objects in the final configurations defined
interobject similarity. However, it may be that the assumed Eu
clidean space is not appropriate, especially for some sorts of
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stimuli. It has often been maintained, for example, that the city
block metric is more appropriate for stimuli with separable
dimensions (e.g., Shepard, 1964). Perhaps the inappropriate as
sumption of Euclidean space generates misleading data-distance
functions.

To test this possibility, alternative metrics were explored.
First, the data sets from Experiments lB, IC, and lD were
scaled using another scaling program called MDS (SYSTAT,
1986) that permitted the use of Minkowski exponents (r) other
than the Euclidean (r = 2). The data were scaled in two, three,
and four dimensions using r = 1 (city-block), r = 1.5, and
r = 2. The results across these r values varied rather little in
spatial configuration, stress, and the shape of the RT-similarity
function. In every case but one, stress for the Euclidean (r = 2)
fit was lower than for the city-block (r = I) fit. The exception
was for the data of Experiment 1C (separable dimensions) where
stress in two dimensions was slightly lower for r = I (.076)
than at r = 2 (.079); this difference was reversed in three dimen
sions (.056 for r = I, .048 for r = 2) and four dimensions (.051
for r =1, .024 for r = 2). For these data, r = 1 also yielded
a slightly less linear function than r = 2 in two and three
dimensions.

In addition, a number of simulations were run with either 16
or 26 objects distributed in regular or random configurations
in two- or three-dimensional spaces, with distances defmed either
by the Euclidean formula (r =2) or by the city-block formula
(r = 1). These distances were then input to ALSCAL, either
as computed or after exponentiation. Despite the use by
ALSCAL of the Euclidean distance function, the spatial con
figurations were in general recreated quite closely for the vari
ous inputs. The relationship between the data and the original
distances was also rather well reflected in the relationship be
tween the data and the computed distances, though city-block
data induced noise around this function, and also induced some
curvature opposite in sense to that reflected in the basic exponen
tial relationship.

In summary, rescaling suggested that the Euclidean assump
tion was generally appropriate for these data sets, and both re
scaling and simulation suggested that the RT-similarity relation
ship was not severely dependent on the assumed metric.

(Manuscript received March 26, 1987;
revision accepted for publication July 13, 1987.)




