A computer-controlled cardiotachometer

WOLFGANG KLOSTERHALFEN
University of Düsseldorf, 4000 Düsseldorf, Federal Republic of Germany

Abstract

A versatile display system for presenting heart rate information is described. The display has a table with 10 rows and 50 columns. This 10 by 50 matrix contains all integers from 0 to 499 , so that it can display the instantaneous $\mathrm{R}-\mathrm{R}$ intervals of a rat's EKG to the nearest millisecond. At each beat 1 of 10 vertically and 1 of 50 horizontally arranged indicator lights are turned on to provide the coordinates for reading the table. Either beat-to-beat or averaged heart rate or period is displayed. Small and large changes can be easily and accurately observed on the same scale. The lights are controlled by a PDP-8/e. A listing of the assembler program is presented.

In a large number of psychophysiological investigations involving measurement of heart rate (HR), an immediate indication of ongoing HR behavior is essential or at least helpful (e.g., studies of biofeedback, stress, habituation, or classical conditioning).

TYPES OF CARDIOTACHOMETERS

Several different cardiotachometers are available. The design of these units is usually based on analog circuitry that provides a voltage proportional to the reciprocal of the time interval between successive R waves. HR is indicated by a needle or pen that points to a scale (voltmeter type) or writes "staircases" on recording paper (tachograph) (e.g., Pope, Deboo, \& Smith, 1968). Readings from these instruments are far from being exact.

Digital tachometers are highly accurate (e.g., Elings \& Holly, 1973), but the dynamics of HR changes are poorly represented by numbers, and watching beat-tobeat changes in HR over a longer period of time on a LED display is a tedious job that absorbs most of the experimenter's attention.

Computers have been used successfully for the interpretation of the EKG complex (e.g., Wartak, Milliken, \& Karchmar, 1970), but they have contributed little to improving HR monitoring. A computer-controlled cardiotachometer (CCC) that is accurate, easily readable, and versatile is described here.

COMPUTER-CONTROLLED CARDIOTACHOMETER

Display

The CCC's display has an interchangeable table of HR or heart period values. Ten vertically and 50 hori-

[^0]zontally arranged indicator lights provide the coordinates for reading this 10 by 50 table (see Figure 1): At each beat one of the vertical and one of the horizontal lights are turned on. The first row of this matrix may, for example, contain R-R intervals from 0 (upper left corner) to 49 msec (upper right comer). For these values the top light of the vertical string and one of the horizontal lights point to the corresponding number in the table. The second verticle light is used for the second row (50 to 99), and so on, so that the lights can indicate any integer from 0 to 499.

The table shown in Figure 1, which is used for monitoring HR in rats, is based on this scaling. But following a convention, values are expressed in beats per minute (bpm).

Computer

A PDP-8/e computer with an almost noiseless reed relay interface (special fabrication) and a real-time clock (DK8-ES) was employed to control the CCC. However, almost any microcomputer with real-time clock and (multiplexed) TTL outputs to drive LEDs should be satisfactory (e.g., Brown \& Deffenbacher, 1978). The EKG signal is fed directly or via an R-wave detector circuit (Shimizu, 1978) into the clock's Schmitt trigger input. An assembler program written in PAL8 uses approximately 100 locations (see Appendix). It measures R-R intervals and sets the relays for the lights of the CCC (see Figure 2). The 50 horizontal lights are multiplexed: They are connected to power in groups of 5 by 10 relays of Register 1, and grounded in groups of 10 by 5 relays of Register 2; 50 diodes (omitted in Figure 2) are connected in series to prevent loops. The 10 vertical lights are turned on by 10 relays of Register 3.

Depending on the position of bit 0 of the switch register, the CCC displays either beat-to-beat or averaged HR.

Applications

The CCC has operated reliably for several years and

Figure 1. Prototype of a computer-controlled cardiotachometer ($100 \times 30 \times 8 \mathrm{~cm}$) indicating 375 beats per minute.

Figure 2. Relay circuits for control of the tachometer's lights.
has proved very helpful in studying the effects of acoustic stimulation on HR in rats. Using the table shown in Figure 1 and an average over four intervals, the lights performed fairly continuous movements rather than jumps. The green, yellow, and red horizontal lights, indicating ranges of $241-300,302 \cdot 400$, and 402-600 bpm, respectively, required little attention. As each range is spatially represented by a meter, rather than by a centimeter as in conventional tachographs, good HR readings can be obtained at a glance, even from several meters away.

The program for the CCC is short and does not
require fast serving. It may be easily integrated into larger EKG programs. The CCC can be adapted easily to meet the experimenter's special needs. Changing its range, the time spacing between lights, or the number of averaged intervals can be done by changing the table and a few instructions in the program.

Principally, any variable changing over time may be displayed. Because of its large range, the instrument is well suited, for example, to monitor skin conductance or resistance levels. In this case, other than the table, only the program's input routine has to be changed to accept data from an A/D converter (e.g., AD8-EA).

REFERENCES

Brown, E. L., \& Deffenbacher, K. Microcomputers big and little: Selecting a low-cost laboratory computer network. Behavior Research Methods \& Instrumentation, 1978, 10, 241-245.
Elings, V., \& Holly, D. A cardiotachometer which calculates rate digitally. IEEE Transactions on Biomedical Engineering, November 1973, 468-470.

Pope, J. M., Deboo, A. J., \& Smith, D. B. D. A cardiotachometer with linear indication of beat-to-beat frequency. Psychophysiology, 1968, 4, 486-492.
Shimizu, H. Reliable and precise identification of R-waves in the EKG with a simple peak detector. Psychophysiology, 1978, 15, 499-501.
Wartak, J., Milliken, J. A., \& Karchmar, J. Computer program for pattern recognition of electrocardiograms. Computers and Biomedical Research, 1970, 4, 344-374.

Appendix
Listing of a PAL8 Assembler Program to Control the Cardiotachometer

```
/ DEFINITIONS
CLSK=6131 / SKIP ON CLOCK INTERRUPT
CLOE=6132
/ SET CLOCK ENABLE REGISTER PER AC
CLBA=6136 / CLOCK BUFFER TO AC
LDRI=6141 / LOAD RELAY REGISTER I WITH AC
LDR2=6143 / LOAD RELAY REGISTER 2 WITH AC
LDR3=6145 / LOAD RELAY REGISTER 3 WITH AC
/ ROUTINE TO SET THE CLOCK ENABLE REGISTER:
/ ON EACH SCHMITT TRIGGER INPUT THE CLOCK
/ - tRANSFERS THE CLOCK COUNTER CONTENTS TO THE CL. BUFFER
f - Clears The clock counter
/ - AND STARTS COUNTING FROM ZERO AT I KHZ
*209
CLOC
/ CLEAR ACCUMULATOR
/ GET CLOCK CONTROL WORD
/ LOAD IT INTO CLOCK ENABLE REGISTER
```

6200	7260
0261	1322

/ ROUTINE TO MEASURE THE INTERUAL BETWEEN THE LAST TWO
, SCHMITT TRIGGER INPUTS

3203 6131
の234 52 の3
02956136
62363323

9207	7604
0210	7500
0211	5234

SWITCH, LAS	LOAD AC WITH SWITCH REGISTER
SMA	IS SWITCH O SET ?
MMP INIT	NO: PROUIDE A BEAT-TO-BEAT DISPLAY

/ LOAD AC WITH SWITCH REGISTER
/ IS SWITCH 6 SET ?
/ NO: PROUIDE A BEAT-TO-BEAT DISPLAY
, ROUTINE TO CALCULATE A MOUING AUERAGE

0212	7200
0213	1326
0214	3327
0215	1325
0216	3326
0217	1324
0229	3325
9221	1323
1222	3324
0223	1327

/ ROUTINE TO CHOICE BETW. AVERAGED AND BEAT-TO-BEAT DISPLAY

MOUAUR,	CLA
TAD RRINT3	YES: CALCULATE MOUING AVERAGE
DCA RRINTA	STORE THE
TAD RRINT2	FOUR
DCA RRINT3	ROST
TAD RRINT1	RECENT
DCA RRINTR	IN INTERUALS
TAD RRINT	CHRONOLOGICAL
DCA RRINT1	ORDER.
TAD RRINT4	DO

0224	1326
0225	1325
0226	1324
0227	7116
0230	7110
0231	7430
0232	7001
1233	3323

$3224 \quad 1326$
02251325
02261324
0227 7116
$0230 \quad 7110$
02317430

32333323
TAD RRINT3 / ADDITION
TAD RRINIE \quad OF
TAD RRINTI / LAST FOUR INTERVALS,
CLL RAR / DIVIDE SUM
CLL RAR \quad BY 4
SZL / AND STOAE
IAC / AUERAGED
DCA RRINT /R-R-INTERVAL
, ROUTINE TO RESET CONTROL WORDS AND COUNTERS

0234	7201
0235	1341
0236	3339
0237	1341
3249	3331
1241	1341
0242	3332
0243	1337
0244	3333
9245	1349
0246	3334
3247	1337
1259	3335
3251	1323
1352	7949
1253	3336

```
1NIT, CLA
    IAD <4!n@ / INITIALITE
    DCA HORPWG / CONTROL
    IAD : 4MGO星 / WORDS
    DCA HORGRP / FOR
    TAD KAOGO / RELAY
    DCA URTPOS / REGISTERS
    TAD MIG / AND
    DCA PWGMIO / RESET
    TAD M5 / COUNTERS
    DCA GRPM5 / FOR
    TAD MIO / RELAY
    DCA VRTMIO / SELECTION
    IAD RRINT / SET UP COUNTER
    CMA / ACCORDING TO
    DCA COUNTR / MILLISECONDS ELAPSED
```

/ ROUTINE TO DETERMINE NUMBER OF LOOPS

$n 254$	2336
$n 255$	7416
0256	5310

LOOP,	IS7. COUNTR COUNTER $=\emptyset ?$
	SKP
	IMP LOADRG

/ ROUTINE TO DETERMINE A LIGHT'S POSITION WITHIN A HORIZON/ TAL GROUP: OVE ROTAIION FOR EUERY MILLISECOND

```
MSECA1, CLA CLL / CLEAR AC AND LINK
    TAD HORPWG / GET RELAY CONTROL WORD 1
    RAR / ROTATE AC AND LINK RIOHT
    DCA HORPWG / SAVE RELAY CONTROL WORD I
    IST PWGMIO / 1G. ROTATION ?
    MMP LOOP / NO: LOOP BACK
    TAD M1G / YES: RESTORE PWGMIG
    DCA PWGMIO / AS COUNTER
    TAD K4OnG / CLEAR BIT 10 AND SET BIT 3
    DCA HORPWG / OF RELAY CONTROL WORD I
```


, ROUTINE TO SELECT ONE OF FIVE HORIZONTAL GROUPS:
 / ONE ROTATION FOR EVERY 10 MILLISECONDS

0271	1331
0272	7010
3273	3331
0274	2334
3275	5254

9276	1349
92.77	3334
7309	1341
9391	3331

TAD MS／YES：RESTORE GRPMS
DCA GRPMS \quad AS COUNTER
TAD KA0go \quad CLEAR BIT 10 AND SET BIT 0
DCA YORGRP \quad OF RELAY CONTROL WORD 2
，ROUTINE TO DETERMINE A LIGHT＇S POSITION WITHIN THE ，VERTICAL STRING；ONE ROTATION FOR EUERY 5 G MSECS

9392	1332
9393	7319
9394	3332
9395	2335
9396	5254
9307	5310

9319	7299
9311	1339
0312	6141
3313	7293
9314	1331
9315	6143
9316	7299
9317	1332
9329	6145
3321	5293

MSECSO，	TAD VRTPOS
RAR	
DCA VRTPOS	
IST VRTMIG	
IMP LOOP	
JMP LOADRG	

1 get relay control word 3
/ ROTATE AC AND LINK RIGHT
, SAVE RELAY CONTROL WORD 3
, 10. ROTATION ?
, NO: LOOP BACK
, YES: OUT OF RANGE; NO UERT. LIGHT

f ROUTINE TO CLOSE THREE RELAYS

LOADRG． | | CLA |
| ---: | :--- |
| | TAD HORPWG |
| | LDRI |
| | CLA |
| | TAD HORGRP |
| | LDRE |
| | CLA |
| | TAD URTPOS |
| | LDR3 |
| | IMP IVPUT |

／SElect and Close
／ONE RELAY
／IN RELay REGISTER l
，SElect and Close
／ONE RELAY
，IN RELAY REGISTER 2
／SELECT AND CLOSE
／ONE RELAY
／IN RELAY REGISTER 3
／RETURN TO WAITING LOOP

0322	3307	ENABLE，	3397	1	CLOCK CONTROL WORD	
¢323	anom	RRINT，	9n3n	，	LAST R－R INTERVAL I	N MILLISECONDS
9324	9090	RRINT！，	nana	，	TEMPORARY	
3325	ดnan	RRINT2，	9000	，	STORAGE	
9326	0000	RRINT3，	0900	，	OF LAST	
9327	3 ngs	RRINT4，	nann	，	R－R INIERVALS	
6330	90¢刀	HORPWG，	の日ab	，	RELAY CONTROL WORD	1
－331	9 gag	HORGRP，	9800	，	RELAY CONTROL WORD	2
8332	пดna	URTPOS，	gana	，	RELAY CONTROL WORD	3
6333	3398	PWGM10．	gaon	，	ROTATION COUNTER 1	
3334	nnam	GRPM5．	gaba	，	ROTATION COUNTER 2	
0335	ด3ดด	VRTMIO，	9800	，	ROTATION COUNTER 3	
3336	9393	COUNTR，	0096	\prime	LOOP COUNTER	
9337	7766	M1s．	7766	，	DECIMAL－19	
3340	7773	M5，	7773	，	DECIMAL－5	
0341	4900	＜4906，	400%	，	OCTAL 40日日（AIT 0	

\％

CLBA	6136	Clock	929n	cloe	6132	CLSK	6131	countr	8336
Evarle	． 322	GRPM5	0334	HORGRP	3331	HORPWG	0339	IVIT	9234
INPUT	8293	K4393	3341	LDR1	6141	LDR2	6143	LDR3	6145
LOADRG	8310	LODP	0254	movavr	2212	MSECE1	0257	MSECIA	0271
MSEC5I	9302	M10	3337	M5	9349	PWGM10	0333	RRINT	0323
RRINTI	9324	RRIINT2	9325	RRINT3	0326	RRINTA	0327	SWITCH	¢207
VRTMIO	の335	URTPOS	0332						

[^0]: Development of this system was supported in part by Grant Li 74/10 from the Deutsche Forschungsgemeinschaft to Gustav A. Lienert. Requests for reprints should be addressed to Wolfgang Klosterhalfen, Institut fuer Medizinische Psychologie der Universitaet Duesseldorf, Universitaetsstrasse 1, 4000 Duesseldorf, Federal Republic of Germany.

