A computer-controlled cardiotachometer

WOLFGANG KLOSTERHALFEN University of Düsseldorf, 4000 Düsseldorf, Federal Republic of Germany

A versatile display system for presenting heart rate information is described. The display has a table with 10 rows and 50 columns. This 10 by 50 matrix contains all integers from 0 to 499, so that it can display the instantaneous R-R intervals of a rat's EKG to the nearest millisecond. At each beat 1 of 10 vertically and 1 of 50 horizontally arranged indicator lights are turned on to provide the coordinates for reading the table. Either beat-to-beat or averaged heart rate or period is displayed. Small and large changes can be easily and accurately observed on the same scale. The lights are controlled by a PDP-8/e. A listing of the assembler program is presented.

In a large number of psychophysiological investigations involving measurement of heart rate (HR), an immediate indication of ongoing HR behavior is essential or at least helpful (e.g., studies of biofeedback, stress, habituation, or classical conditioning).

TYPES OF CARDIOTACHOMETERS

Several different cardiotachometers are available. The design of these units is usually based on analog circuitry that provides a voltage proportional to the reciprocal of the time interval between successive R waves. HR is indicated by a needle or pen that points to a scale (voltmeter type) or writes "staircases" on recording paper (tachograph) (e.g., Pope, Deboo, & Smith, 1968). Readings from these instruments are far from being exact.

Digital tachometers are highly accurate (e.g., Elings & Holly, 1973), but the dynamics of HR changes are poorly represented by numbers, and watching beat-tobeat changes in HR over a longer period of time on a LED display is a tedious job that absorbs most of the experimenter's attention.

Computers have been used successfully for the interpretation of the EKG complex (e.g., Wartak, Milliken, & Karchmar, 1970), but they have contributed little to improving HR monitoring. A computer-controlled cardiotachometer (CCC) that is accurate, easily readable, and versatile is described here.

COMPUTER-CONTROLLED CARDIOTACHOMETER

Display

The CCC's display has an interchangeable table of HR or heart period values. Ten vertically and 50 hori-

Development of this system was supported in part by Grant Li 74/10 from the Deutsche Forschungsgemeinschaft to Gustav A. Lienert. Requests for reprints should be addressed to Wolfgang Klosterhalfen, Institut fuer Medizinische Psychologie der Universitaet Duesseldorf, Universitaetsstrasse 1, 4000 Duesseldorf, Federal Republic of Germany. zontally arranged indicator lights provide the coordinates for reading this 10 by 50 table (see Figure 1): At each beat one of the vertical and one of the horizontal lights are turned on. The first row of this matrix may, for example, contain R-R intervals from 0 (upper left corner) to 49 msec (upper right corner). For these values the top light of the vertical string and one of the horizontal lights point to the corresponding number in the table. The second verticle light is used for the second row (50 to 99), and so on, so that the lights can indicate any integer from 0 to 499.

The table shown in Figure 1, which is used for monitoring HR in rats, is based on this scaling. But following a convention, values are expressed in beats per minute (bpm).

Computer

A PDP-8/e computer with an almost noiseless reed relay interface (special fabrication) and a real-time clock (DK8-ES) was employed to control the CCC. However, almost any microcomputer with real-time clock and (multiplexed) TTL outputs to drive LEDs should be satisfactory (e.g., Brown & Deffenbacher, 1978). The EKG signal is fed directly or via an R-wave detector circuit (Shimizu, 1978) into the clock's Schmitt trigger input. An assembler program written in PAL8 uses approximately 100 locations (see Appendix). It measures R-R intervals and sets the relays for the lights of the CCC (see Figure 2). The 50 horizontal lights are multiplexed: They are connected to power in groups of 5 by 10 relays of Register 1, and grounded in groups of 10 by 5 relays of Register 2; 50 diodes (omitted in Figure 2) are connected in series to prevent loops. The 10 vertical lights are turned on by 10 relays of Register 3.

Depending on the position of bit 0 of the switch register, the CCC displays either beat-to-beat or averaged HR.

Applications

The CCC has operated reliably for several years and

-							0		0		0		0	0	1	0	10	1	0		10	18	10	0	0		0	0	0									24	98						8	-33	
	594	588	583	577	571	566	561	556	550	545	541	53	531	526	522	517	513	508	50	50	0 498	42	2 -12	181	100	476	472	469	165	462	158	5	+51	118	m Y	11 1	8 8	5 43	2 2	9 42	5 42	3 420	111	-	411	108	Y
C	507	595	392	390	587	385	382	310	577	375	373	370	368	366	364	361	559	357	555	35	3 551	345	347	345	313	341	359	357	335	333	531	50	528	526 3	29 5	8 5	21 51	9 31	7 31	6 31	313	5 31	309	508	506	505	Call I
	299	237	296	294	293	291	290	288	287	288	287	283	222	280	275	278	277	275	274	27	3 271	27	269	268	267	265	281	263	262	261	260	259 2	258	256 2	55 Z	9 2	53 25	2 25	1 25	0 21	3 24	5 27	296	245	24	23	2
8																																															
9																																															
8																																															
8																																															

Figure 1. Prototype of a computer-controlled cardiotachometer (100 x 30 x 8 cm) indicating 375 beats per minute.

Figure 2. Relay circuits for control of the tachometer's lights.

has proved very helpful in studying the effects of acoustic stimulation on HR in rats. Using the table shown in Figure 1 and an average over four intervals, the lights performed fairly continuous movements rather than jumps. The green, yellow, and red horizontal lights, indicating ranges of 241-300, 302-400, and 402-600 bpm, respectively, required little attention. As each range is spatially represented by a meter, rather than by a centimeter as in conventional tachographs, good HR readings can be obtained at a glance, even from several meters away.

The program for the CCC is short and does not

require fast serving. It may be easily integrated into larger EKG programs. The CCC can be adapted easily to meet the experimenter's special needs. Changing its range, the time spacing between lights, or the number of averaged intervals can be done by changing the table and a few instructions in the program.

Principally, any variable changing over time may be displayed. Because of its large range, the instrument is well suited, for example, to monitor skin conductance or resistance levels. In this case, other than the table, only the program's input routine has to be changed to accept data from an A/D converter (e.g., AD8-EA).

REFERENCES

- BROWN, E. L., & DEFFENBACHER, K. Microcomputers big and little: Selecting a low-cost laboratory computer network. Behavior Research Methods & Instrumentation, 1978, 10, 241-245.
- ELINGS, V., & HOLLY, D. A cardiotachometer which calculates rate digitally. IEEE Transactions on Biomedical Engineering, November 1973, 468-470.
- POPE, J. M., DEBOO, A. J., & SMITH, D. B. D. A cardiotachometer with linear indication of beat-to-beat frequency. Psychophysiology, 1968, 4, 486-492.
- SHIMIZU, H. Reliable and precise identification of R-waves in the EKG with a simple peak detector. Psychophysiology, 1978, 15, 499-501.
- WARTAK, J., MILLIKEN, J. A., & KARCHMAR, J. Computer program for pattern recognition of electrocardiograms. Computers and Biomedical Research, 1970, 4, 344-374.

Appendix
Listing of a PAL8 Assembler Program to Control the Cardiotachometer

/ DEFINITIONS

CLSK=6131	/ SKIP ON CLOCK INTERRUPT
CLOE=6132	/ SET CLOCK ENABLE REGISTER PER AC
CLBA=6136	/ CLOCK BUFFER TO AC
LDR1=6141	/ LOAD RELAY REGISTER 1 WITH AC
LDR2=6143	/ LOAD RELAY REGISTER 2 WITH AC
LDR3=6145	/ LOAD RELAY REGISTER 3 WITH AC

/ ROUTINE TO SET THE CLOCK ENABLE REGISTER:

- / ON EACH SCHMITT TRIGGER INPUT THE CLOCK
- / TRANSFERS THE CLOCK COUNTER CONTENTS TO THE CL. BUFFER
- / CLEARS THE CLOCK COUNTER

AND STARTS COUNTING FROM ZERO AT 1 KHZ -

*200 - ---

0200	7 2 0 0	CLOCK,	CLA	1	CLEAR ACCUMULATOR
0201	1322		TAD ENABLE	1	GET CLOCK CONTROL WORD
0202	61 32		CLOE	1	LOAD IT INTO CLOCK ENABLE REGISTER
		/ ROUTIN	NE TO MEASURE THI	E	INTERVAL BETWEEN THE LAST TWO
		/ JUNNI	I INTOLA THEOT.	3	
0203	6131	INPUT	CLSK	1	HAS A SCHMITT TRIGGER FIRED ?
0294	5203		JMP •-1	1	NO: CHECK AGAIN
0205	61 36		CLBA	1	YES: READ AND
0206	3323		DCA RRINT	/	SAVE CLOCK BUFFER CONTENTS
		/ ROUTI	NE TO CHOICE BET	Ň•	AVERAGED AND BEAT-TO-BEAT DISPLAY
Ø207	7604	SWITCH,	LAS	1	LOAD AC WITH SWITCH REGISTER
0210	7500		SMA	1	IS SWITCH Ø SET ?
0211	5234		JMP INIT	1	NO: PROVIDE A BEAT-TO-BEAT DISPLAY
		/ ROUTIN	NE TO CALCULATE #	11	MOVING AVERAGE
0212	7200	MOVAVR	CLA	1	YES: CALCULATE MOVING AVERAGE
0213	1326		TAD RRINT3	1	STORE THE
0214	3327		DCA RRINT4	1	FOUR
Ø21 S	1325		TAD RRINT2	1	MOST
0216	3326		DCA RRINT3	1	RECENT
0217	1324		TAD RRINTI	1	R-R INTERVALS
Ø220	3325		DCA RRINT2	1	IN
9221	1 323		TAD RRINT	1	CHRONOLOGICAL
0222	3324		DCA RRINT1	1	ORDER,
Ø223	1 3 2 7		TAD RRINT4	1	DO

Ø224	1326	TAD RRINT3	/ ADDITION
0225	1 3 2 5	TAD RRINT2	/ OF
0250	1324	TAD RRINTI	/ LAST FOUR INTERVALS,
0227	7110	CLL RAR	/ DIVIDE SUM
Ø23Ø	7110	CLL RAR	/ BY 4
0231	7430	SZL	/ AND STORE
0232	7001	IAC	AVERAGED
0233	3323	DCA RRINT	/ R-R-INTERVAL

/ ROUTINE TO RESET CONTROL WORDS AND COUNTERS

						OF TAD ACCURATE ATOD
0234	7200	INIT	CLA		/	CLEAR ACCUMULATOR
0235	1341		TAD	K4000	/	INITIALIZE
Ø236	3330		DCA	HORPWG	1	CONTROL
0237	1341		TAD	84009	/	WORDS
9249	3331		DCA	HORGRP	/	FOR
0241	1341		TAD	K4000	/	RELAY
0242	3332		DCA	VRTPOS	1	REGISTERS
0243	1337		TAD	M1Ø	/	AND
0244	3333		DCA	PWGM10	/	RESET
0245	1340		TAD	M5	1	COUNTERS
0246	3334		DCA	GRPM5	1	FOR
0247	1337		TAD	M10	/	RELAY
A25A	3335		DCA	VRTMIØ	/	SELECTION
3251	1323		TAD	RRINT	1	SET UP COUNTER
0252	7040		CMA		1	ACCORDING TO
n253	3336		DCA	COUNTR	1	MILLISECONDS ELAPSED

/ ROUTINE TO DETERMINE NUMBER OF LOOPS

9254	2336	LOOP,	I 57	COUNTR	1	COUNT	ER =	Ø	?		
0255	7410		SKP		1	NO:	MODI	FY	CONI	ROL	WORD(S)
0256	5310		MP	LOADRG	1	YES:	LOAD	RE	LAY	REGI	STERS

/ ROUTINE TO DETERMINE A LIGHT'S POSITION WITHIN A HORIZON/ TAL GROUP; ONE ROTATION FOR EVERY MILLISECOND

3257	7300	MSEC01,	CLA	CLL	/ CLEAR AC AND LINK
9260	1330		TAD	HORPWG	/ GET RELAY CONTROL WORD 1
3261	7010		RAR		/ ROTATE AC AND LINK RIGHT
9262	3330		DCA	HORPWG	/ SAVE RELAY CONTROL WORD 1
0263	2333		152	PWGM10	/ 10. ROTATION ?
9264	5254		JMP	LOOP	/ NO: LOOP BACK
0265	1337		TAD	M10	/ YES: RESTORE PWGM10
3266	3333		DCA	PWGM10	/ AS COUNTER
0267	1341		TAD	K4000	/ CLEAR BIT 10 AND SET BIT 3
9279	3339		DCA	HORPWG	/ OF RELAY CONTROL WORD 1

/ ROUTINE TO SELECT ONE OF FIVE HORIZONTAL GROUPS; / ONE ROTATION FOR EVERY 10 MILLISECONDS

0271	1 3 3 1	MSECIA, TAD	HORGRP	/ GET RELAY CONTROL WORD 2
Ø272	7010	RAR		/ ROTATE AC AND LINK RIGHT
3273	3331	DCA	HORGRP	/ SAVE RELAY CONTROL WORD 2
9274	2334	ISZ	GRPM5	/ 5. ROTATION 7
3275	5254	JMP	LOOP	/ NO: LOOP BACK

0276 0277 0300 0301	1 340 3334 1 341 3331	/ ROUTIN / VERTIC	TAD M5 DCA GRPM5 TAD K4000 DCA HORGRP JE TO DETER CAL STRING;	MINE A ONE R	YES: R AS COU CLEAR OF REL LIGHT'S DTATION	ESTORE (NTER BIT 10 4 Ay Contr Positic For Ever	GRPM5 AND SET ROL WORD DN WITHI RY 50 MS	BIT 0 2 In The Secs	
9392 6393 9394 9395 9396 9397	1 332 7919 3332 2335 5254 5319	MSEC50,	TAD VRTPOS RAR DCA VRTPOS ISZ VRTMIA JMP LOOP JMP LOADRG		GET RE ROTATE SAVE R 10. RO NO: L YES: O	LAY CONT AC AND ELAY CON TATION ? OOP BACH UT OF RA	TROL WOR LINK RI ITROL WO (ANGE; NO	ND 3 GHT ORD 3 Vert. L	.IGHT
0310 0312 0312 0313 0314 0315 0316 0316 0317 0320 0321	7200 1330 6141 7200 1331 6143 7200 1332 6145 5203	/ ROUTIN	IE TO CLOSE CLA TAD HORPWG LDRI CLA TAD HORGRP LDR2 CLA TAD VRTPOS LDR3 JMP INPUT	THREE	RELAYS SELECT ONE RE IN REL SELECT ONE RE IN REL SELECT ONE RE IN REL RETURN	AND CLO LAY AY REGIS AND CLO LAY AY REGIS LAY AY REGIS TO WAIT	DSE STER 1 DSE STER 2 DSE STER 3 TING LOO	99	
0322 0323 0324 0325 0326 0327 0330 0331 0332 0333 0333 0333 0335 0336 0337 9340 0341	3307 0000 0000 0000 0000 0000 0000 0000	ENABLE, RRINT, RRINT, RRINT2, RRINT3, RRINT3, RRINT4, HORPWG, HORGRP, VRTPOS, PWGM10, GRPM5, VRTM10, COUNTR, M10, M5, K4000, \$	3307 0000 0000 0000 0000 0000 0000 0000		/ CLOCK / LAST R / TEMPOR / STORAG / OF LAS / R-R IN / RELAY / RELAY / RELAY / RELAY / ROTATI / ROTATI / ROTATI / LOOP C / DECIMA / DECIMA	CONTROL -R INTEF ARY E T TERVALS CONTROL CONTROL CONTROL ON COUNT ON COUNT ON COUNT ON COUNT OUNTER L -10 L -5 4000 (B)	WORD RVAL IN WORD 1 WORD 2 WORD 3 IER 1 IER 2 IER 3	MILLISEC	ONDS
CLBA ENABLI INPUT LOADRO MSECSO RRINTI VRTMIO	6136 E 0322 0203 G 0310 J 0302 I 0324 J 0335	CLOCH GRPMS K4000 LOOP M10 RRINI VRTPC	(9208 5 9334 9 9341 9254 9337 (2 9325 05 9332	CLDE HORGRP LDR1 MOVAVR M5 RRINT3	6132 9331 6141 9212 9340 9326	CLSK Horpwg Ldr2 Msec01 Pwgm10 Rrint4	6131 0330 6143 0257 0333 0327	COUNTR INIT LDR3 MSEC10 RRINT SWITCH	0336 0234 6145 0271 0323 0207

(Received for publication June 27, 1979; revision accepted November 15, 1979.)