
Perception & Psychophysics
1979, Vol. 26 (2),153-162

Bloch's law and a Poisson counting model
for simple reaction time to light

JAMES D. HILDRETH
West Publishing co.. St. Paul, Minnesota 55165

A series of three experiments was conducted with identical design as an earlier series
(Hildreth, 1973). Its purpose was (1) to determine whether Bloch's law holds for simple
reaction time (RT) to still lower intensity visual stimuli, and (2) to provide data for testing
a stochastic generalization of the temporal integration model (TI-ED) reported earlier. RT
means were found to agree with Bloch's law for durations below 48 msec. By a statistical
test, Bloch's law was shown to hold for both means and standard deviations below about
65 msec. Latency statistics-means and standard deviations-were predicted by a Poisson
process counting model. This model assumes that a number of identical, parallel Poisson
processes, activated by light, with pulse interarrival times decreasing with light intensity,
trigger light detection when a critical number of pulses arrive at a counting center. For the
intensities investigated, both the estimated number of Poisson processes and critical number
of pulses required for detection range between 8 and 13. The model predicts the Broca-Sulzer
effect for mean RTs which is observed in several of these experiments.

At least two reports, Bruder and Kietzman (1973)
and Hildreth (1973), have provided evidence that
Bloch's law (BL) holds for RTs for durations less
than 16 msec. It was observed in the former to hold
when a narrow range of intensities (L to L/4) was
used within a given experiment. This is a report of
further experimentation with lower light intensities,
testing the applicability of BL to RTs to threshold­
level light stimuli.

Secondly, this report proposes a model, the Poisson
counting model, of a general class of models first
proposed by Luce and Green (1972). As a stochastic
generalization of the temporal integration - exponen­
tial decay model (TI-ED) presented in Hildreth
(1973), the Poisson counting model (1) provides a
mechanism for predicting RT means, variances, and
detection probabilities; (2) accounts for contextual
effects observed in mean RTs: the increase by a
constant amount of means to identical stimuli when
included in a lower intensity stimulus set; and (3) pre­
dicts the Broca-Sulzer effect for RT means, which
was observed most clearly in the lowest intensity
experiments.

METHOD
PrCK:edure

The purpose of these three experiments was to investigate RT
statistics for near-threshold light intensities.

Work on this project was supported in part by a research
grant from the University of Wisconsin-Eau Claire. The author
thanks John I. Yellott, Jr., for his helpful advice and David
LaBerge for the use of his laboratory at the University of
Minnesota. The author's address is: West Publishing Co., SO West
KelloggBlvd., P.O. Box 3526, St. Paul, Minnesota 55165.

Each experimental session consisted of a sequence of simple
RT trials, 25OJo of which were catch (no stimulus) trials. Over
the remaining 75OJo of the trials, stimulus duration and intensity
varied randomly, as described below. Altogether, there were three
experiments, corresponding to three different ranges of intensity.
Except for differences in luminance and duration values, these
experiments were identical in procedure, and the same two sub­
jects participated in all three.

The order in which the experiments for both subjects were run
was 4, 5, 6. The subjects were extensively practiced before each
experiment with new luminance parameters. About six l-h sessions
were typically required to reach asymptotic performance for a
single experiment, after which six l-h data collection sessions were
conducted for each. No RTs were discarded from any experiment,
although it was necessary to discard some complete day's results
due to equipment failure or subject fatigue. 1 In each such case,
the experimental condition was rerun on a subsequent day.

Stimuli
Stimuli were produced with two fluorescent lamps (GE F8T5

Daylight) in each of three fields of a Scientific Prototype tachisto­
scope. Each field provided one of the intensity levels. The cir­
cuits produced nearly rectangular stimuli, as confirmed by photo­
graphs of the electrical output of a photocell. Stimulus duration
was controlled by a small computer (CDC l60A) and was tested,
to an accuracy of within I msec at the electronic gate of the
tachistoscope. Durations used in the experiments varied from 4 to
256 (see Figures 2 and 3). Stimulus luminance was controlled by
neutral density filters calibrated with a Photovolt photometer
(520ME). The stimulus fields were congruent, circular, subtended
1.60

, and appeared white when transilluminated by the lamp. A
dim red dot, 10 below the stimulus, served as a fixation point.
The subject, dark-adapted for V2 h, sat in a dark room and viewed
binocularly. Head position was controlled by a rubber viewport.
The response button was a sensitive microswitch mounted ver­
tically below a handrest and closed by pulling action.

Instructions
Instructions to the subject were to respond as quickly as pos­

sible to the light flashes while maintaining a false alarm (FA)
rate of less than 4OJo.
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Event Sequence
The content and duration of fixed foreperiods and stimulus

periods, stimulus randomization and selection, latency measure­
ment and recording, and conditional feedback were controlled by
the computer. The trial event sequence, contingent feedback, and
sequencing control are shown in Figure I. This sequence applied
on every trial. Because of the critical importance of maintaining
equal stimulus characteristics among fields, each trial contained
a special bulb warm-up period of 300 msec in all three fields.
The resulting flash was masked from the subject's view by a
shutter. The warm-up had the effect of minimizing sequential
dependencies in latencies due to lamp temperature.

Subjects
The author served as Subject I (SI). A paid male college student

served as Subject 2 (S2). Both subjects served in all three experi­
ments.

Experimental Design
Three experiments were conducted. These were identical in pro­

cedure except for luminance and duration values used; luminances
are shown in Table 1 by experiment number. Note that the lowest
of three intensity values for Experiment j becomes the highest of
the three intensities of Experiment j + 1 (j = 4,5). This affords
a test of replicability for these luminances and allows investigation
of the effect of the context within which a stimulus appears
(as the brightest or dimmest of the set).

Each experiment consisted of 6 experimental sessions. Essential­
ly, each experimental session consisted of a sequence of simple
RT trials about 3.5 msec apart, with rest periods between each
block (32). Within each block, 25010 (8) were catch trials (no stim­
ulus). Over the remaining 75% (24) trials, stimulus duration
and luminance varied randomly; permutations of the 32 stimuli
(3 x 8 luminance-duration combinations plus 8 catch trials)
were selected randomly and presented to the subject. Altogether,

Experiment Luminance (fL)

Table I
Luminances by Experiment Number

Luminances in Terms of L = .6 fL

4
5
6

.009375

.002344

.000586

.00469

.00117

.000293

.002344

.000586

.000146

LX Z-7
LX Z-9
LX Z-1I

r.x Z-'
LX Z-IO
LX 2-12
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detection and by changes in the residual, nonpercep­
tual component of RT.

False alarms were consistently below 4%, and were
typically less than 2%. Misses were, however, a more
significant factor than in earlier experiments. Open

Figure 2. The lines, solid, dashed, and solid, represent mean
RTs for both subjects for Experiments 4, S, and 6, respectively.
Luminance parameters on the right, which decrease successively
by a factor of a half, may be converted to footlamberts by using
the value L = .6 fL. Open circles represent mean RTs with miss
proportions greater than .05; the proportion of hits accompanies
each such point. Arrows are drawn between points representing
equal stimulus energy (luminance by duration product); Bloch's
law holds to the extent that they are horizontal.

Exp 6
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Figure 3. See caption for Figure 2.
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Mean RTs as a function of duration and intensity
are shown in Figures 2 and 3. Each data point repre­
sents an average of up to 90 RTs. Open circles repre­
sent mean RTs with fewer than 90 observations due
to misses. Arrows are drawn between means to stim­
uli of equal energy. BL predicts they should be
horizontal. It appears that BL is not upheld for
means to stimuli over about 48 msec. A statistical
test of the goodness of fit of BL was applied, how­
ever, to both means and standard deviations. As
reported by Bernstein, Futch, and Schurman (1973),
variation within data points to stimuli of equal
energy was compared to variation within points to
stimuli of equal intensity, using the F statistic. After
points beyond the estimated critical duration were
excluded, the test showed BL fitted both means and
standard deviations of Experiments 4 and 5, but not
of Experiment 6. Table 2 shows significance levels
and F statistics obtained by experiment number. Esti­
mated critical durations for Experiment 5 range up
to 68 msec for the lowest intensity, supporting the
conclusion that BL holds for critical durations below
that point.

One puzzling aspect of these results also occurred
in the earlier experiments (1-3): The same stimulus
gave rise to different mean RTs, depending on wheth­
er they were the highest or lowest in the experiment.
In the context of brighter stimuli: the same stimulus
produced faster responses than when in the context of
dimmer stimuli. One possible explanation is that this
latencydifference may be due to dark adaptation, since
less adaptation was possible for higher intensity experi­
ments due to trial-to-trial effects. Some evidence
exists that visual latency increases with the amount of
dark adaptation (Standing, Dodwell, & Lang, 1968).
Another possibility is "expectancy": Since flashes are
generally perceived later in the lower intensity experi­
ments, the subject may expect to see them later,
causing a delayed RT in those cases. The model to
be described below accounts for this latency differ­
ence both by changes in the subject's criterion for

EXPERIMENTAL RESULTS

within each session there were 360 stimulus trials and 120 catch
trials, or 15 observed RTs for each of the 24 data points (means)
per session. Each experiment of 6 sessions therefore consisted of
2,160 observed RTs from stimulus trials and 720 catch trials, with
each mean RT data point an average of 90 RTs. To determine
stimulus intensity, the three stimulus fields were first equated for
intensity to 15 fL2 and the neutral density filters inserted into fields
of the tachistoscope. Within each session, one-third (6) of the blocks
of 32 trials each were run with a given filter-field assignment to con­
trol for a possible effect of differences in stimulus characteristics
of the three fields, with the first block of each discarded as practice.

It was pointed out that for the lowest intensities, catch trials
and misses were confounded so that, in effect, Experiment 6
had more "catch trials" than Experiment 4, possibly increasing
resultant RTs. The only precaution in this regard was the contin­
gent feedback: misses were rewarded by white noise 1 sec after
the stimulus was presented, whereas correct identification of "no
stimulus" was rewarded with no feedback (see Figure 1).
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experiment. Thus, for each experiment, the subject is
expected to gradually adopt a fixed criterion, K, which
will not significantly affect the variance of Te.r- We
may, however, expect adoption of different criteria
(K) for detection under different experimental condi­
tions which are known in advance.

Table 2
Significance of Bloch's Law

Experi-
Mean Standard Deviation

ment df F p* F p*

Subject 1
4 12,9 20.95 .001 6.91 .005
5 11,8 5.23 .01 6.09 .01
6 5,4 .84 n.s. 2.53 n.s,

Subject 2
4 10,8 14.60 .001 6.63 .01
5 14,10 14.80 .001 19.51 .001
6 8,6 .81 n.s. 2.01 n.s.

*fJ < valuegiven; n.s. = nonsignificant.

circles in Figures 2 and 3 indicate over 3070 misses,
and are found as expected to the lowest energy stim­
uli. The standard deviations of both subjects are
shown in Figures 4 and 5. For clarity, the SD scale
is displaced upward by 20 msec for each successive
experiment. SDs regularly decrease with stimulus
duration and intensity, and it is of interest whether
BL holds for these SDs. Although it is not clear by
inspection, when the Bernstein statistical test is
applied to them, the same result is obtained as for
means: BL holds for SDs of Experiments 4 and 5,
but not Experiment 6 (seeTable 2).

POISSON COUNTING MODEL
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(3) The subject's criterion for the event of detec­
tion is assumed fixed for each stimulus set. That is, he
is capable of varying this criterion, but it must be fixed
in advance of presentation of a stimulus. If uncer­
tainty exists as to which of a set of stimuli will be pre­
sented, the subject must adopt a fixed criterion for
the whole stimulus set. He might do this through
learning payoffs for accurate detections, false alarms,
misses, and accurate detections of no-stimulus. Inter­
esting as these considerations are, we have attempted
to eliminate their effects so far as possible by extend­
ed practice with each experimental condition, and by
randomly selecting from a set of stimuli within each

Assumptions
(1) The total human reaction time to a light stim­

ulus contains a component that is independent of the
nature of the stimulus itself. Often considered
"motor response time," it may be statistically sepa­
rated out by its independence. We denote this resid­
ual component as a random variable, Tt-

(2) The remaining reaction time, whether consid­
ered perceptual only or also involving some decision
process, may depend on stimulus characteristics. Of
interest to us are the variables of intensity and duration
as they affect this time. If d represents duration and 1
represents luminance, then we denote this component
Td,l. Thus, if R'T(d.J) denotes reaction time,

Figure S. See caption for Figure 4.
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Figure 4. Standard deviations for Experiments 4, 5, and 6 are
shown by solid dots connected by solid, dashed, and solid lines,
respectively. Luminance parameters are provided on the left. The
SD scale on the ordinate is increased by 20 msec for each experi­
ment for clarity.

(1)Td,l = RT(d,l) - Tr.



(4) (a) The output of the visual system is a set of
sequences of "neural pulses" on a number of parallel
channels.

(b) The duration of each pulse is negligible.
(c) Interarrival times (lATs) on each channel

are independent random variables.
(d) IATs have a common distribution with

expected value which is a strictly monotonic decreas­
ing function of light intensity.

(e) For a given light intensity, 1, these stochas­
tic processes are Poisson processes with the same
intensity parameter, r1. That is, IATs are indepen­
dent, identically distributed exponentials with mean
lIrl·

(5) A decision rule is adopted by the subject where­
by the visual system triggers a "detect" response
after K pulseshave been observed(cf. Assumption 3).

(6) (a) The number of parallel Poisson processes
at any time is determined by a renewal process with
a rate depending on light intensity. The number of
processes resulting from this renewal process, N1,
is strictly a function of light intensity, 1. This is a
simplifying assumption, since it implies that Nl
processes will be activated, independent of how short
a time the light flash is presented. From the results
of parameter estimation, described below, it became
apparent that a better fit of the model could be
obtained at the cost of introducing another param­
eter representing the rise of N to a maximum value
for very short durations and intensities. However,
in the following, we assume that the rise of N to its
maximum value, Nj , occurs practically instanta­
neously; hence the notation Nl.

(b) A sudden reduction in light intensity during
the detection process, e.g., light offset, results in a
lower renewal rate and smaller number of active
channels, Nl. For light offset, we assume Nl = 0
from the background illumination of our experi­
ments. This is yet another simplifying assumption,
since we might be able to account for light adaptation
effects by introducing a nonzero parameter here. J

However, it is the renewalrate that changes with light
intensity, and each of the original N1 Poisson pro­
cesses are left with exactly one more pulse to deliver
to the detection center. Therefore, the number of
processes still active at any point in time will decay
exponentially, on the average, after light offset.

Model Statistics
The statistics of detection times are then a straight­

forward matter of calculation and curve fitting with
parameter estimation. Individual detection times are
"waiting times," denoted Wk,I' the time required
for the Kth pulse to arrive at the detection center
for intensity 1. Let Xt,1 denote the number of pulses
received by time t. Then, at the instant of detection,
t, Xt,1 = K and t = Wk,I' Therefore, P(Wk,1 ~ t)
= P(Xt,l~ K). Three cases may occur in the relation
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between Wk,1 and d, light duration, for any stimulus
event:

(1) Detection at or before light offset (Wk,1 ~ d).
This is the simplest case, since the number of Poisson
processes is constant and equal to N1. The waiting
time, Wk,I' is a random variable with gamma dis­
tribution of order K with pdf

fk,l(t) = (K~ I)! Nlrl(Nlrlt)K-le-Ntftt(Nlrlt>O),

(2)

where lIrl is the decay constant, the common mean
interpulse time for a single Poisson process.

(2) Detection after light offset (Wk 1 > d). Because
the renewal process ends at light offset, the number
of processes, N1, decrease gradually to zero.

(3) Failure of detection (Wk,1 = 00). Under weak
stimulus conditions, K pulses may never arrive within
the observing period (the time from warning tone
offset to the beginning of the next trial-cf. Fig­
ure 1), so no detection occurs.

Expectations
Conditioning on the event Wk,1 ~ d, detection

before light offset,

1 rd
E(Wk,1 IWk,1~ d) = P(W

k,1
~ d) Jo tfk,l(t)dt, (3)

where fk,l(t) is as defined in Equation 2. This condi­
tional expectation is of a gamma distribution trun­
cated at d. For d = 00, E(Wk,l) = K/(Nlrl).

The conditional expectation of the waiting time for
the event "detection after light offset" is computed
differently: After the time of light offset (d), the
remaining expected waiting time depends on how
many pulses (Xd,l) have been received by time d.
Here the assumption is that exactly one pulse resides
in each Poisson process after light offset. Clearly,
if Xct,I < K - N1, i.e., Xd,1 +N1 < K, then no detec­
tion is possible, since even with N1 more pulses, the
critical number ofpulses (K) will still not be reached.
Also, if Xd,1 ~ K, detection will occur before or at
light offset, so Equation 3 would apply.

Therefore, using the fact that IATs after light
offset are independent exponential random variables
with successive mean values, lI(Nlrl), 1I[(Nl-1)rl1,
... lIrl,

(4)

(Xd,1 = 0,1, ... ).
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(10)

Finally, since misses have no reaction time associated
with them, and none are included in the set of reac­
tion times, the above two expectations combined
yield the expected detection time

E(Wk,ll detection)

= E(Wk,ll Wk,l <00)

= P(Wk,l ~ d)E(Wk,l IWk,l ~ d)

+ P(d <Wk,l <OO)E(Wk,11 d <Wk,l < 00). (5)

Equations 2-4 combined with Equation 5 yield
expectations for the visual component of reaction
time, Td, as a function of model parameters.

Finally, combining Equations 8 and 9 yields the
desired total variance estimate of Td, the visual com­
ponent of RT, as a function of model parameters.
Note that

~~ooVar(Wk,l) = .fooo Pfk,l(t)dt - [.foOOtfk,l(t)d~2

k(k + 1) (k)2 k
= (N1r)2 - Nlr = (N1r)2 .

The total E(RT) and Var(RT) estimates are obtained
by the assumption of independence of the perceptual
and nonperceptual components. Estimates of con­
stants ETr and VarTr were added to E(Td) and
Var(Td), respectively, to obtain RT statistics predic­
tions.

since d is a constant. Combining Equations 7a and 7b,

Secondly, for the former term of Equation 6,

Variance
The total variance of the waiting time, Wk, will be

the sum

Parameter Estimation
The model generates RT statistics-means and

standard deviations-and miss probabilities as a
function of: NI' the number of identical Poisson
processes generated by a light stimulus of intensity 1,
and lIrl, the expected interarrival time between
pulses for a single Poisson process generated by a
light stimulus of intensity 1.

The following are controlled by the subject and
assumed fixed within each experiment: K-the num­
ber of pulses required for detection-criterion;
ETr-the expected residual RT; and SDr-the stan­
dard deviation of residual RT.

In estimation of parameters NI and l/rj , the fact
that the identical stimulus was used in successive
experiments-the dimmest of a set of three in one
experiment was the brightest of a set in the next
experiment-was used to advantage: Nl and lIrl
must have the same values for RTs to the same stim­
ulus in each pair of experiments. Thus cross-experi­
mental data was used to initially estimate these
parameters via a least squares procedure. The subject­
controlled parameters were then estimated from
within-experiment data using the same least squares
method. Finally, the constraints on the parameters
were used simultaneously for their estimation: (1) NI
and lIrl were required to be identical for the same
stimulus even when it appeared in different experi­
ments, (2) K, SDr, and ETr were required to be
identical for the RTs within each experiment, and
(3) least squares estimation of parameters subject to
the above constraints was applied to the means and
standard deviations simultaneously.

Computation was accomplished in two steps:
Model predictions were generated as a function of
parameters and stored on a retrieval device, and then
least squares fits at points interpolated at 1/3 log,
(duration) intervals of predicted/observed means,
and predicted/observed standard deviations were cal-

(7b)

EVar(Wk,11 d <Wk,l <00)

~! . k-i 1
~ P(Xd I = 1)L -----

i=k-N, ' j=! (NI-j+l)2rI2

Starting first with the latter term, and again condi­
tioning on whether detection occurs before or after
offset,

EVar(Wk,l IWk,l ~ d)

= P(Wk~1 ~ d) {.fod t
2f

k,l(t)dt - r.fo
d tfk,l(t)d~2 }

(7a)

EVar(Wk,l)

= P(Wk,1 ~ d)EVar(Wk,ll Wk,l ~ d)

+ P(d <Wk,l < oo)EVar(Wk,ll d <Wk,l < 00).

(8)

VarE(Wk,l)

= P(Wk,1 ~ d)[E(Wk,11 Wk,l ~ d) - E(Wk,IW

+ P(d <Wk,l < oo)[E(Wk,ll d <Wk,l < 00)

- E(Wk,lW (9)
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Table 3
Parameter Estimates (L =.009375 fL)

24 32 48 64 128

DURATION (m••cl

Figure 6. Goodness of fit of the Poisson counting model to
observed means and standard deviations of RTs using parameter
estimates of Table 3. Least squares fits of means and variances
were made simultaneously as a function of model parameters.
Solid lines represent model predictions and dots observed data
points.

MEAN
RT

(msec)

SO
(ms'e)

N, (-1 ETR SDR,
13 33.0 183.0 9.0
13 43.5
13 54.5

13 54.5 210.5 7.0
11 60.0
10 68.5

10 68.5 230.0 9.0
10 73.0
8 90.0

11 42.5 231.0 10.0
11 52.0
11 68.0

11 68.0 254.0 10.0
9 63.0
9 80.0

9 80.0 287.1 7.0
8 90.0
7 114.0

both means and standard deviations were predicted.
The fit of RT SDs was observed to be extremely
sensitive to the magnitude of both K and NI, with
but a 2-unit change greatly affecting predicted val-

Subject Experiment Intensity <ll K
4 L 13

L/2
L/4

5 L/4 10
L/8
L/16

6 L/16 9
L/32
L/64

2 4 L 11
L/2
L/4

5 L/4 9
L/8
L/16

6 L/16 8
L/32
L/64

culated simultaneously. For the Poisson counting
model, the number of free parameters for a single
subject were: 3 values of K (one per experiment),
3 values of ETr (one per experiment), 3 values of
SDr (one per experiment), 7 values of Nl (one per
intensity), and 7 values of rI (one per intensity)-or
a total of 23 free parameters. The number of data
points for a single subject were 8 durations by 3
intensities by 3 experiments for both means and
standard deviations, a total of 144. Therefore, the
data-pointlfree-parameter ratio is 144/23, or 6.26.

Results of Parameter Estimates
The magnitude of NI varied from 7 to 13 with

stimulus intensity, 1, in the direction expected (cf,
Table 3), monotonically nondecreasing with 1. The
estimated interarrival time between successive pulses
for a single process, ii-I, generally increased from
about 35 msec with decreasing light intensity up to a
maximum of 114 msec for S2. These values are con­
sistent with similar estimates obtained from the
TI-ED model (Hildreth, 1973), considering the lower
stimulus intensities used in these experiments. (It
can, in fact, be shown that the TI-ED model is a
special case of this Poisson counting model, with N
and K = 00.) K, the estimated number of pulses
required for detection, varied from 8 to 13 with
average stimulus intensity, becoming lower as aver­
age light intensity decreased in later experiments.
Although Kand NI are similar in value," departure
from similarity occurs when the model is more strict­
ly tested by the larger RT variances and differences
observed in the later experiments. Figures 6-11 show
the goodness of fit of the model using parameter
estimates of Table 3. Note that SDs and expectations
were fitted simultaneously to observed data points.
Reasonably good fits were obtained, considering that
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Figure 7. See caption for Figure 6.
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Figure 8. See caption for Figure 6. Figure 10. See caption for Figure 6.
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DURATION (m.ec)

Figure 11. See caption for Figure 6.

(12)

aad RT(d,l)

= ~OOfk,l(t)dt -Ek,l(d) + Nr ~oofk,l(t)d~

K~ -Nrd (Nrd)i K~-i 1
X ~ e -.-,- (N' 1)'

i=K-N 1. j=! -J+ r

The latter is initially negative for values of d less
than the critical duration, then positive shortly after,
and finally drops to zero as d approaches 00.

Table 4 shows values of Equation 12 as a function
of d for Sl E4, luminance 3 (K = 13, N = 13, and
lIr = 54.5).

Thus, the Poisson counting model predicts a Broca­
Sulzer effect for RT due to the nature of the stochastic
process involved in the mechanism of detection.

Prediction of Detection Probability
As a stochastic model, the Poisson counting model

predicts miss probabilities as well as RT statistics.
If the sum of pulses counted by the time of light
offset, Xd,l' plus the Nl more remaining in each
Poisson process is still less than K, the criterion,
detection will not occur. Since

SUBJECT 2
EXPERIMENT 6

MEAN
RT

(msec)

30~

so
(msec)

ues. Means, on the other hand, were less sensitive
to their magnitude and more sensitive to their ratio.
One rather surprising result was the higher predicted
means for the highest durations (Broca-Sulzer effect).
This prediction of the model implies that after a
certain optimum duration, light offset would actually
lead to faster mean RTs than continued stimulation.

where Xd,l has a Poisson distribution, P(Xd,l < 0)
= 0, so the only cases where misses are predicted are

Table 4
Slope of Predicted RT Function for Sl E4 Luminance 3

Duration Slope

1 -37.4
6 -26.7

11 -20.0
16 -15.4
21 -11.9
26 - 9.2
31 - 6.9
36 - 4.9
41 - 3.2
46 - 1.9
51 - .9
56 - .4
61 - .1
66 + .04
71 + .07
76 + .06
81 + .04
86 + .03
91 + .02
96 + .01

101 + .01
106 + .00
111 + .00

Broca-Sulzer Effect
Figures 6-11 show mean RT predicted values

which rise after the critical duration. Observed mean
values also rise in several experiments, showing the
Broca-Sulzer effect for RT.

The Poisson counting model's prediction of the
Broca-Sulzer effect is due to the fact that in the
predicted curve, the mean of the truncated gamma
function rises more slowly than the mean of the
Poisson portion drops. The magnitude of the pre­
dicted Broca-Sulzer effect depends primarily on the
last term of the equation

The Broca-Sulzer effect prediction for RT is con­
firmed by computation of both the mean RT func-
tion (Equation 5) and its derivative, Note- Parameters K == 13. N == 13, f= 54.5.

rd K rd K -Nrd (Nrd)K
Jo tfk.1(t)dt = NrJO fk,l(t)dt - Nr e ~.

(11)
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Table 5
Predicted and Observed MissProbabilities

Duration

24 32 48 64 96 128 192 256

81 E6 (13) Observed .27 .18 .03 .03 .00 .00 .00 .00
Predicted .12 .06 .01 .00 .00 .00 .00 .00

82 E6 (13) Observed .54 .42 .17 .08 .00 .00 .00 .00
Predicted .23 .14 .05 .00 .00 .00 .00 .00

Note-All other predicted miss probabilities were zero.

when the estimated criterion K exceeds N£, the esti­
mated number of Poisson processes. Table 3 shows
that this happens only for Experiment 6 at the lowest
intensity for both subjects. For SI, K = 9, N£ = 8,
and l/r£ = 90. For S2, K = 8, N£ = 7, and lIr£ =
114. Since for both subjects

P(Xd,l <K - N) = P(Xd,l < 1)

P(X 0) -Ntrtd= d,l = = e ,

SI 's prediction is the curve exp( -8d/90) and that for
S2 is exp( -7d/I14). Table 5 shows the observed and
predicted miss probabilities. These clearly are not the
best fit one might hope for. It is gratifying, however,
to see the predictions qualitatively approaching
observed miss proportions, considering that no
detection data was used for parameter estimation;
the detection probability prediction is solely from RT
data.

SUMMARY

The twofold purpose of this study was to (1) deter­
mine whether Bloch's law holds for reaction times to
light stimuli near threshold, and (2) provide a sto­
chastic basis for the regular results obtained both
from the experiments reported here (4-6) and from
Hildreth (1973) (1-3). Bloch's law was found to be
supported for both means and standard deviations
of Experiments 4 and 5, but not of Experiment 6.

A stochastic model, the Poisson counting model,
was advanced, which predicted RT standard devia­
tions as well as means. In addition, the model pre­
dicted a Broca-Sulzer effect for mean RTs, which
was observed in the lowest intensity experiments
reported here. Finally, the increase by a constant
amount of mean RTs to identical stimuli, when
included in a lower intensity stimulus set, was attrib­
uted to both a variation in perceptual criterion and
an increase in residual RT.
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NOTES

I. Sessions discarded were identified by excessivemisses and/or
false alarms, unusually high means, and variances. None were
discarded for Experiment 4, one was discarded for Experiment 5
(SI) and two for Experiment 6 (S2).

2. Stimulus intensity was rechecked at the beginning of each
experiment for each subject or when required by lamp failure.

3. Thus we have simplified the model to a noise-free modei.
Responses to catch trials could be predicted if it were assumed
that Nt for background illumination or noise were nonzero. This
appears to be a natural generalization of the model, since it is
obvious that background light is present and false alarms to catch
trials, as well as misses, do occur.

4. Since K is the subject's criterion for detection, and Nt is the
number of Poisson processes, there is no a priori relationship
between K and N. In model parameter estimates, however, the
higher intensity experiments lead to estimates where K = Nt,
and the lowest intensity experiments lead to estimates where K
exceeds Nt and the detection probability is substantially less than
1.0. The detection probability is 1.0 whenever K is less than or
equal to Nt. Still, the possibility exists that the criterion K could
be set by the subject to be less than Nt, as is seen in some esti­
mates of Table 3. The model predicts faster responses in such
cases, with a shallower mean RT slope and much shallower vari­
ance slope. Since this relationship between parameters is not seen
for the higher intensity experiments, it may somehow be optimal
to set K = Nt, perhaps because this leads to the fewest false
alarms from background illumination or noise (see footnote 3).
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