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The multidimensional analysis of asymmetries
in alphabetic confusion matrices: Evidence for

global-to-local and local-to-global processing
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This study examined the ability of an asymmetric multidimensional scaling program (DEDI
COM) to reveal information about letter-perception processes. To demonstrate its potential, we
applied it to the controversy concerning local-to-global versus global-to-local letter perception.
These two theories lead to different predictions about stimulus confusion asymmetries. Since DEDI
COM is capable of recovering the structure of asymmetric or directional patterns, it should re
veal whether a stimulus-response confusion matrix contains patterns of asymmetry more consis
tent with one or the other perceptual theory. This was tested using two data sets. The first (from
Lupker, 1979) revealed an additive hierarchy of asymmetry strongly consistent with global-to
local processing, although unexpected additional structure and reliable anomalies indicated the
need for a more refined theoretical account. The second (a full alphabetic confusion matrix com
bining data from Gilmore et al., 1979; Loomis, 1982; and Townsend, 1971) revealed five distinct
patterns, each consisting of transformations attributable to the failure to detect specific local
letter features. This solution strengthened support for local-to-global processing, in sharp con
trast to the first analysis. Possible reasons for this divergence are discussed, including differ
ences in the stimuli, exposure durations, and a hypothetical two-stage process of perception. Despite
their differences, both solutions demonstrated how asymmetric scaling can reveal structure in
asymmetries, which is relevant to perceptual theory and which would have been difficult to recover
by other means.

The purpose of this paper is to introduce a new method
of analyzing patterns of asymmetries in visual confusion
matrices, and to demonstrate that the detailed structure
of asymmetry patterns revealed by this analysis can pro
vide important evidence concerning the type of process
ing used during perception. As an example, we hope to
show how the analysis of "dimensional structure" of
asymmetries in alphabetic confusion matrices can shed
light on the global-to-Iocal versus local-to-global nature
of letter perception. In passing, we will also note how
structure in the asymmetries may also be relevant to differ
ent feature-based theories of perception.

Asymmetry and Letter Perception
Let X and Y be two arbitrary cognitive or perceptual

entities, and let Rxy be some arbitrary relationship between
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them (e.g., R.y might be the amount that X resembles Y
or the amount that X is preferred over Y). If this relation
ship is asymmetric, then the order in which X and Yare
considered with respect to R influences the result of the
comparison-i-R, will not lead to the same result as Ry x •

Of particular interest in the present paper is the fact that
the relationship of perceptual confusability is asymmet
ric. For example, in data analyzed later in this paper, it
is evident that Q is mistakenly reported as 0 much more
often than 0 is mistakenly reported as Q.

Confusion asymmetries can have considerable theoreti
cal importance. One case in point is the recent controversy
in the study of perception concerning the nature of the
first information extracted during visual processing. Some
researchers assume that global features, such as the
general shape of a stimulus, become available earlier than
do the more local features such as particular lines or in
dentations (Bouma, 1971; Coffin, 1978; Navon, 1977,
1981). This is the global-to-local processing hypothesis.
A different perspective, the local-to-global processing
hypothesis, assumes that visual perception involves ac
cumulation of locally detected visual features (e.g., Lind
say & Norman, 1972; Neisser, 1967; Selfridge, 1959;
Treisman & Gelade, 1980; Wolford, 1975).

Different assumptions about the nature of visual
processing lead to opposite predictions about the direc
tion of greatest stimulus confusability (e.g., Lupker,
1979). Loosely speaking, global-to-Iocal assumptions lead
to the prediction that small-envelope letters will be more
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frequently reported as large-envelope letters than vice
versa. On the other hand, local-to-global assumptions lead
to the prediction that many-featured letters will be more
frequently reported as few-featured letters (see, e.g.,
Gamer & Haun, 1978; Goldstein, 1980). These differ
ent predictions about patterns of asymmetry result from
the different hypotheses about the order in which percep
tual information becomes available to the subject.

Global-to-Iocal theory. Consider a letter-identification
task from the global-to-local processing perspective. Un
der this hypothesis, letter perception is viewed as being
analogous to the gradual sharpening of focus in a camera
(Navon, 1977). Early in this process, the only informa
tion available is a blurred stimulus outline, called the
stimulus envelope. From this, certain global characteris
tics, such as the size and general shape of a letter, can
be recognized, but no specific local features can be de
tected. Local characteristics emerge later, when the fo
cus has sharpened sufficiently. For example, in process
ing the letter Q, one would first be able to detect that it
was large and round; later, the tail of the Q would come
into focus. Navon (1977) has supported this hypothesis
by showing that the identity of a large stimulus letter that
is built from many small letters becomes available sooner
than do the identities of the smaller components.

As Lupker (1979) points out, the focusing metaphor of
the global-to-local approach hypothesizes that "at each
point in processing, the observer should have a wider ar
ray of perceptual data than is actually contained in the
stimulus" (p. 306). If processing is interrupted, perfect
focusing will not be achieved, and a specific kind oflet
ter confusion will result: A subject should tend to respond
to small-envelope letters as if they were large-envelope
ones more often than he should to large-envelope letters
as if they were small-envelope ones; because of blurring,
the small-envelope stimuli will be seen as being broader
than they really are.

Local-to-global theory. Perception would proceed very
differently if it were accomplished by local-to-global
processing. The mechanisms would build up the percept
by accumulating independently perceived local letter fea
tures. For example, perceiving the letter R might involve
accumulating the local features of long vertical line, raised
curved line, and short diagonal line plus, presumably, in
formation about the location of these features. Correct let
ter identification requires that enough stimulus features
be correctly detected and located to remove stimulus am
biguities. If perceptual processing is interfered with (e.g.,
by short stimulus durations), then feature detection will
not be perfect-some features will be missed-and incor
rect identification will often result.

Feature detection failures should lead to particular pat
terns of asymmetries of confusions. In general, many
featured letters will be confused with few-featured letters
more often than vice versa. This is because failure to de
tect a feature can transform a many-featured letter into
a few-featured letter but cannot cause a transformation
in the opposite direction. For example, R can be trans-
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formed into P by the failure to detect the feature of a short
diagonal line, but no feature deletion will transform a P
into an R. In addition to this general trend, the pattern
of confusions should have a detailed internal structure,
since particular many-featured letters will be confused
only with particular few-featured ones-namely, only
those that can be produced by the deletion of meaningful
local features from the stimulus object. Feature-detection
failure will not transform an R into a C, for example.

This is not to say that the failure to detect features is
the only source ofletter confusions according to the local
to-global approach; feature false alarms or ghost features
can also occur (Townsend & Ashby, 1982). Furthermore,
most feature accumulation models of letter perception ex
plicitly recognize that this type of task involves both a
perception stage and a decision stage (e.g., Townsend &
Ashby, 1982; Wandmacher, 1976). In the decision stage,
such nonperceptual factors as response bias are assumed
to be relevant sources of confusion. Nevertheless, the
local-to-global approach carries with it a commitment that
feature detection failure will be an important and com
mon source of error.

Testing the models. It is apparent that the two com
peting hypotheses can be tested empirically by studying
patterns of asymmetry in confusion matrices. Unfor
tunately, standard analysis methods do not provide a good
way to represent such patterns. Several interesting special
purpose scaling models have been recently proposed
which incorporate parameters to help explain asymmetry
(e.g., Bentler & Weeks, 1978; Chino, 1978; Krurnhansl,
1978; Nakatani, 1972; Tobler, 1976-1977; Young, 1974;
see also Keren & Baggen, 1981; Takane & Shibavama,
1985). But what is needed for our purposes is a more
general method, one that can uncover and represent pat
terns of asymmetry in much the same way that factor anal
ysis can uncover and represent patterns of intercorrela
tions among variables. In the next section a technique that
solves this problem is described.

Analyzing Patterns of Asymmetry
The structure of the asymmetries in an alphabetic con

fusion matrix can be decomposed by a novel method of
analysis called DEDICOM (for DEcomposition into
DIrectional COMponents; see, e.g., Harshman, 1978;
Harshman, Green, Wind, & Lundy, 1982). This method
can be thought of as a generalization of multidimensional
scaling (MDS) or factor analysis in that it decomposes
a complex matrix into a few simple underlying patterns
or dimensions. However, unlike MDS or factor analy
sis, it can uncover structural patterns of asymmetric data
matrices. (Both factor analysis of covariance, or correla
tional data, and standard MDS of similarity data assume
that Xi) = Xji)'

Extracting asymmetries. We will use the expression
"dominance patterns" (of a confusion matrix) to refer
to regularities in the asymmetries of the matrix. In order
to focus on these regularities, it is helpful to separate the
asymmetries in the confusion matrix from the symmetric
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part of the matrix. This is done as follows: Let X be the
confusion matrix, with Xij the entry in row i and column j
(X is asymmetric if Xij "* Xji). The symmetric part of X
can be computed by averaging across the diagonal, that
is, by replacing Xij and Xji with the average (.5xij + .5xji)'

When this symmetrized version of X is subtracted from
the original X, the "pure asymmetries" are left (i.e., a
matrix in which Xij = -Xji)' This is called the antisym
metric, or skew symmetric, part of X, and it contains in
formation only about asymmetries of confusions.

Representing simple patterns. When DEDICOM is
applied to the antisymmetric part of a data matrix, it does
not decompose the matrix into a set of one-dimensional
factors or dimensions. Instead, it decomposes the matrix
into a set of two-dimensional factor planes, called bimen
sions (Harshman, 1981). Each bimension represents one
simple component pattern of asymmetry, just as a dimen
sion represents one simple component pattern of symmet
ric relationships. (Thus, one can think of a bimension as
a rank 2 analog of a dimension.) An explanation of why
antisymmetric relationships require this type of represen
tation is beyond the scope of this paper. It is related to
the fact that antisymmetric relations have two aspects: a
direction as well as a strength. Beyond this, we merely
note that it is a mathematical property of antisymmetric
relationships (see Harshman, 1981, for further dis
cussion).

The qualitative and quantitative aspects of the pattern
of asymmetric relationships captured in a single bimen
sion can be represented geometrically, using principles
first described by Gower (1977; see also Constantine &
Gower, 1978). The picture, which we call a Gower dia
gram (Harshman, 1981), is created by plotting the loca
tion of each stimulus on the bimensional plane, as deter
mined by its coordinates on the two axes that span that
plane. The general principle used to interpret this plot is
to look at areas of triangles. In particular, the strength
of the asymmetric relationship between two stimuli is
represented as the area of the triangle whose vertices are
the positions of the two stimuli and the origin of the bi
mensional plane. The direction of asymmetry is
represented by the order of points a and b in the triangle
(or, equivalently, in the plane). By convention, the plane
is drawn so that clockwise motion corresponds to a posi
tive relationship. Thus, if stimulus a is encountered be
fore stimulus b as one proceeds clockwise around the tri
angle, then the relation ofa to b is positive. For example,
suppose the triangle formed by the origin, a, and b has
an area of five units, then Rab is 5, and Ri; is -5.

Usually, the relationships between various pairs of
stimuli will produce simple and interpretable geometric
patterns. For example, when there is a single process
generating the asymmetries, and all the stimuli in a par
ticular data set participate equally in this process, the
asymmetry relationships often follow a simple additive
pattern (Rae = Rab + Rbe). If antisymmetric relations are
additive in this way, the areas of the corresponding tri
angles must also be additive. Thus, the area of the trian-

gle formed by the origin, a, and b plus the area of the
triangle formed by the origin, b, and c must be equal to
the area of the triangle formed by the origin, a, and c.
This implies that the stimuli a, b, and c must lie on a
straight line in the DEDICOM plot (Gower, 1977). From
such linear additive dominance hierarchies, one can read
off the relative dominance (asymmetry) between differ
ent stimuli simply by looking at their relative positions
along the line; the distance between two points is propor
tional to the asymmetry between them.

On the other hand, when stimuli are involved in an
asymmetric process to different degrees, their asym
metries will not be additive and the plot of the stimuli will
be nonlinear. In particular, when stimulus a is reported
much more often as b than vice versa, and b is reported
much more often as c than vice versa, but for some rea
son the relationship between a and c is attenuated or sym
metric, then a and c will be pulled closer to the origin
of the diagram (so that their triangle will have a smaller
area), and so a backward c-shaped pattern will emerge,
with the a and c marking the two endpoints of the pattern.

Examples of both these patterns (and others) will be
demonstrated in Study I and Study 2 below, where we
reanalyze several previously published confusion ma
trices. In Study 1, we present the DEDICOM analysis of
a confusion matrix involving very briefly presented letter
like stimuli; in Study 2, we present DEDICOM analyses
of alphabetic confusions collected using longer stimulus
durations.

STUDY 1

Lupker (1979) was interested in empirically investigat
ing the type of processing involved during letter percep
tion. Concerned about the confounding influence of let
ter feature redundancy, he created a set of 12 artificial
letter-like stimuli designed to ensure that subjects could
not use feature redundancy to help them guess which
stimulus had been presented in the event of a feature
detection failure. He then collected eight different sets of
stimulus confusion data by manipulating the time before
processing was interrupted by a visual mask. To statisti
cally remove response bias, each of the eight resulting
confusion matrices was preprocessed through the appli
cation of Luce's (1963) choice model. Finally, noting that
all eight matrices appeared to be very similar, Lupker col
lapsed them into a single overall confusion matrix. He
then examined the asymmetries of confusions between
selected pairs of stimuli in order to find evidence for
global-to-local or local-to-global processing. The observed
patterns of asymmetry' supported the global-to-local
model.

The purpose of our first study was to apply the DEDI
COM model to Lupker's (1979) confusion matrix, to see
if the details of the dominance patterns underlying these
data were consistent with the global-to-local hypothesis.
Some agreement was expected, since Lupker's observa
tions had already indicated that, in his study, narrow



stimuli tended to be reported as wider stimuli. However,
if the details of the bimensions were consistent with Lup
ker's conclusions, the DEDICOM analysis would, for
several reasons, provide stronger evidence for global-to
local processing than was possible with Lupker's analy
sis: First, the dominance patterns recovered by DEDI
COM take into account many cells in the data matrix at
once, which cannot be done in an analysis of selected
stimulus pairs. This means that if the DEDICOM solu
tion is fully consistent with global-to-local processing it
will provide more comprehensive and more accurate sup
port for the theory (indeed, the DEDICOM analysis will
tell exactly what percent of the variance of the asym
metries is explained by the bimensional representation).
Second, the DEDICOM dominance patterns represent
more than just direction of asymmetry: they have quan
titative properties as well, and these properties must also
be consistent with the global-to-local hypothesis if it is
to be supported. There is a range of envelope size in the
stimuli constructed by Lupker. For example, X has a
larger envelope than L, which in turn has a larger enve
lope than I. This difference in envelope size should af
feet the degree of asymmetry in confusions among stimuli.
Specifically, narrow envelope stimuli should have more
asymmetric relationships with very wide envelope stimuli
than with moderately wide envelope stimuli.
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Results

Examination of the fit values indicated that only one
bimension was required to represent the main features of
the asymmetric patterns of the Lupker (1979) matrix. In
deed, the first bimension provided a remarkably good fit,
accounting for 96 % of the variance in the antisymmetric
part of the data. (The symmetric and antisymmetric parts
of X are orthogonal, and so contribute independent addi
tive components to the total variance.) The squared corre
lations between the one- through four-bimension DEDI
COM solutions and the anti symmetric part ofthe Lupker
matrix were r = .960, .986, .996, and .998, respectively.
With only 12 stimuli, more than three or four bimensions
are probably not feasible. Clearly most of the correlation
between the DEDICOM solution and the original data in
volves the first recovered bimension.

One-Bimensional Solution
Figure la is a geometric representation (Gower dia

gram) of the one-bimensional solution for this data. Note
that all stimuli in the solution are approximately collinear,
as is indicated by the solid line in the figure. (The un
filled circle in the diagram is the origin of the bimensional
plane.) As explained earlier, this type of pattern indicates
that the stimuli form a "linear additive dominance hier
archy," where the distance between two stimuli along the

Method
Data Set

The data set (from Lupker, 1979, p. 309) was a 12x 12 confu
sion matrix for letter-like stimuli. (The stimulus shapes are presented
next to the points in Figure 1.) Except for our split half analyses
(see below), we will follow Lupker's procedure and consider the
total confusion matrix, which gives the frequency of the various
responses, combined over all 11 subjects and all eight lSI condi
tions. As noted earlier, the data were adjusted for response biases
by means of the Luce choice model. The final matrix is based on
1,760 presentations of each stimulus.

" .• X
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Procedure
The antisymmetric part of the confusion matrix was computed

(as explained earlier), and the DEDICOM decomposition was ap
plied to it. The locations of the stimuli were then plotted on each
recovered bimension, using the x and y coordinates generated by
DEDICOM. This allowed us to represent the structure of the asym
metries geometrically. The optimal number of bimensions required
to represent the dominance patterns in the matrix was chosen, in
part, by performing a test similar to Cattell's (1978) scree. Four
solutions, containing one through four bimensions, were computed
for the matrix, and the variance accounted for by each solution was
plotted as a function of the number of bimensions in the solution.
The resulting curve was examined for a sharp flattening or "el
bow." followed by a slowly rising straight line. (It is at this "el
bow." if there is one. that most of the systematic variance in the
data is accounted for.) We also paid attention to the interpretabil
ity of the solutions for each number ofbimensions extracted, look
ing for the solution with the optimal separation of distinct inter
pretable dominance hierarchies without meaningless fragmentation
or redundancy. Finally. the replicability of dimensions across split
halves of the data was used to evaluate the statistical stability of
certain bimensions (see below).
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Figure 1. The results of Study 1. (a) The one-bimensional solu
tion for the Lupker data. (b) Two possible confusion patterns in the
one-bimensional solution. (c and d) The two-bimensional solution
for the data.
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axis of the pattern is proportional to the asymmetry be
tween them. The nature of the hierarchy can thus be in
ferred from the ordering of stimuli along the line.

The linear order in Figure 1a is generally consistent
with global-to-local assumptions. The direction ofasym
metry, given by the arrow, shows that narrow-envelope
stimuli (such as the horizontal bar) are more likely to be
mistakenly identified as wide-envelope stimuli (such as
the X) than vice versa. Also, the observed degree of asym
metry appears to be directly related to difference in enve
lope size: the more dissimilar two stimuli are in terms
of envelope size, the further apart they lie in the pattern.
To quantify this relationship, we created a dummy-coded
size variable and correlated it with position on the line.
Following Lupker's (1979) description of his stimuli, we
classified these stimuli into four groups based on enve
lope size: very wide (the X and the oblique T), wide (the
two V shapes), narrow (the T, the sideways Ts, and the
L), and very narrow (the four single-feature stimuli).
These four categories were dummy coded as 1,2,3, and
4. The perpendicular projections of the stimuli onto the
main axis of the dominance hierarchy of Figure la were
computed, and relative positions in the hierarchy were
calculated by taking the distance of each projection from
the most extreme projection (i.e., the projection of X).
The correlation between this relative position measure and
envelope size was substantial but not perfect (r=0.71).
This provides support for the claim that the general pat
tern of asymmetries is related to envelope size, while sug
gesting that other factors may also affect confusions.

Anomalies
Indeed, inspection of Figure 1 reveals several excep

tions to the general rule based on envelope size. The most
striking exception is the position of the vertical bar. In
stead of being clustered with the other small-sized stimuli
(the horizontal and diagonal bars), it falls lower on the
hierarchy along with L, V, and other middle-sized stimuli.
Another anomaly is the position of the two sideways T
stimuli, particularly the left-leaning T. These appear to
be below the other middle-sized stimuli for no obvious
reason. It is particularly difficult to explain the differences
in position of the various T shapes, since these stimuli
are just rotations of one another and so necessarily have
the same envelope size.

Confronted with these anomalies, we must first ask our
selves whether they might be some kind ofdistortions in
troduced by the analysis. When we examine the raw data
set (Lupker, 1979, p. 309), however, we find abundant
evidence that these anomalies in the DEDICOM plot
reflect corresponding anomalies of the data itself. For ex
ample, the stimuli that are above the vertical bar in
Figure 1a do show asymmetric confusions with it in Lup
ker's table. They all tend to be reported as being the ver
tical bar more often than vice versa. This is even true for
the middle-sized stimulus L, which should show the op
posite direction of asymmetry according to the global-to
local theory. Furthermore, there is virtually no asymmetry
between the vertical bar and the middle-sized stimuli T,

V, and the upside-down V, although there should be, ac
cording to the theory. Finally, the vertical bar seems to
have smaller asymmetries with the larger stimuli X and
T than the other small-envelope stimuli. Similar support
for the anomalous position of other stimuli, such as the
left sideways T, is also provided by an examination of
the data.

We conclude that DEDICOM has drawn our attention
to anomalous characteristics actually present in the data,
characteristics not in accord with the overall pattern or
with global-to-local theory. Without the benefits of a
graphical representation of the asymmetries, Lupker only
noted a small part of these anomalies, and hence may have
underestimated their potential theoretical significance. In
particular, he pointed out (pp. 306, 308) that the vertical
bar might be easily confused with the other vertical
stimuli, and hence might be less perceptible (Lupker,
1979). But he did not predict, nor did he comment on,
the systematic direction of confusion involving the verti
cal bar and the other small stimuli, or the reversal of the
expected direction of asymmetry between it and some
medium-sized stimuli. He did, however, note that the
medium-sized stimuli "were perceived as the vertical line
with some regularity" (p. 309). Similarly, while he
predicted that the left sideways T might be less percepti
ble than the right sideways T (because it might be con
fused more with the L), he neither predicted nor noted
the systematic pattern of asymmetries involving these side
ways T stimuli, asymmetries which are not easily ex
plained on the basis of global-to-local processing theory
(e.g., the L is reported as a left sideways T 179 times,
but the left sideways T is reported as an L only 138 times).
Of course, Lupker is not to be faulted for this, since there
are 132 different confusion frequencies to be examined
and, without the benefit of the geometric DEDICOM
representation, the number of patternsone might consider
is astronomical. The ease with which we were able to dis
cover these anomalies provides a good demonstration of
the value of geometric representation of the asymmetric
structure.

The second question that could be asked is whether these
anomalous patterns could be attributed to chance fluctua
tions or whether they are reliable characteristics of the
data. There are several ways of approaching this ques
tion. One could test selected individual asymmetries to
see if they are too large to have arisen by chance if the
population proportions were 0.5; however, this approach
might fail to detect important patterns composed of many
small but consistent asymmetries. Some idea of the reli
ability of the overall DEDICOM representation can be
obtained by performing .one or more split half analyses
of the data. (There are also more sophisticated techniques
of estimating confidence bounds around locations of
stimuli, such as "bootstrapping" or "jackknifing," e.g.,
Weinberg, Carroll, & Cohen, 1984, but these are beyond
the scope of this article.)

Since there were eight different mask delay conditions
in the Lupker experiment, a split half reliability analysis
can be performed by combining the 1st, 3rd, 5th, and 7th



conditions into one half, and the 2nd, 4th, 6th, and 8th
conditions into the other. rNe thank S. J. Lupker for
providing us with this unpublished data.) Separate DEDI
COM analyses of these two half-data sets were performed,
and they produced highly similar results. For each solu
tion, the same linear pattern of asymmetries was observed.
To quantify the degree of replication, the projections of
the stimuli onto the main axis of this pattern was com
puted for both data sets. The correlations of these two
sets of projections was 0.966, indicating a high degree
of reliability. Finally, and most crucially for the current
discussion, the same anomalous characteristics of the
asymmetries were present in both analyses: for example,
the vertical line was below the other small-envelope
stimuli in the hierarchy, and the left sideways T showed
the same anomalous position. Examination of the raw fre
quencies in the two split halves of data also confirmed
that the anomalies were present in both halves. It appears
that while global-to-local processing provides a general
account of most asymmetries, some other perceptual in
fluences must also be involved.

Two-Bimensional Solution
Although the one-bimensional solution provided a very

good fit to the data, and could also be easily interpreted
(except for the anomalies), there was evidence which sug
gested that another solution might provide additional struc
tural information. In examining the overall pattern illus
trated in Figure la, it was noted that two very obliquely
related linear subpatterns of asymmetry might exist, one
for stimuli consisting of horizontal or vertical feature com
ponents (called "straight" stimuli) and one for stimuli
consisting of diagonal or oblique feature components
(called "oblique" stimuli). These two hypothesized sub
patterns are indicated by the solid lines in Figure lb. It
has been noted previously (e.g., Harshman & Lundy,
1985) that such oblique linear subpatterns might indicate
that two separable bimensions had been combined into
one. The two-bimensional solution for these data was
therefore examined to see if these two hypothesized pat
terns might be represented on separate bimensional planes.

The possibility of there being more than one dominance
pattern in a data matrix poses no problem for a DEDI
COM analysis. The model will simply recover more than
one bimension, one for each existing dominance pattern.
Stimulus objects not involved in a particular pattern will
not load on the bimension representing that pattern (i.e.,
they will fall near its origin). Of course, some aspects
of the analysis do become more complicated when more
than one bimension can be recovered. In particular, one
has to consider alternative descriptions obtainable by tak
ing different linear combinations of a given set of bimen
sions. For convenience, we describe this as rotation of
different bimensions in the solution. DEDICOM can ro
tate bimensions to different positions (alternative linear
combinations) in a manner similar to the rotation of fac
tors in factor analysis, and similar considerations of sim-
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ple structure can be used to choose a preferred rotation.
Much of DEDICOM's ability to summarize patterns of
asymmetry stems from the properties of these rotations.
(In all the solutions reported in this article, we use ana
lytic rotations that are similar to VARIMAX but which
operate on two pairs of axes at a time and allow oblique
bimensions; the method is a planewise modification of
Harris and Kaiser's [1964] "Orthoblique" transforma
tion method. For a more detailed discussion, see Harsh
man, 1981.)

The two bimensions obtained from the second analysis
are presented in Figures lc and ld. Together, these bi
mensions account for 98.6% of the variance of the anti
symmetric part of the data. Although this is not a great
increase from 96%, fit values were already close to the
ceiling and so had little room for improvement. The small
size of the increase does not mean that the second rotated
bimension contributes little variance. After rotation, the
variance is distributed more evenly between the two bi
mensions.

Despite the modest increment in variance-accounted
for, the two-bimensional representation was reasonably
reliable, as indicated by its replication across the split
halves of the data. When we projected each axis of the
even split half into the corresponding bimension of the
odd split half (by using multiple regression), we obtained
multiple R values of 0.95 and 0.96 for the axes of Bi
mension 1 and 0.94 and 0.94 for the axes of Bimension 2.
The corresponding projections from the odd into the even
split half yielded multiple Rs of 0.94, 0.96, 0.94, and
0.94. The split into two bimensions was also highly in
terpretable, reflecting (as predicted) the distinction be
tween oblique and straight stimuli.

Bimension 1, presented in Figure lc, represents the pat
tern of asymmetry among oblique stimuli. Global-to-local
processes are apparent here, since the vertical positions
of these stimuli (their projections on the major axis of the
bimension) closely resemble their vertical positions in the
one-bimensional solution (Figure la); in fact, they have
exactly the same rank order. The straight stimuli, on the
other hand, have almost no vertical dispersion on this bi
mension, and so none of the asymmetric relationships
among these stimuli are represented in this plane. They
are also closer to the origin than any of the oblique stimuli,
and fall to the left of the oblique stimuli in the plane. Thus
they generate only small triangles, and hence small asym
metries, with the oblique stimuli within this plane. (The
bulk of asymmetric confusions between straight and
oblique sets is accounted for by the obliqueness of the two
bimensions. )

Bimension 2, presented in Figure ld, complements Bi
mension 1. It primarily represents the confusions among
the straight stimuli. In this bimension, it is the straight
stimuli that have a wide range of vertical positions which
closely resemble those in the one-bimensional solution
(falling in exactly the same rank order), and it is the
oblique stimuli that have little vertical dispersion. All the
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oblique stimuli fall to the left of the straight stimuli, and,
with the exception of the oblique T and perhaps the upside
down V, are clustered close to the origin.

There are, however, two extra features of Figure ld
that should be noted. First, there is an oblique stimulus,
the oblique T, which does not lie close to the origin. But
because of its position at the far left, the only substantial
triangle that it generates is with respect to the left-leaning
T (and perhaps, to a lesser extent, the L). We speculate
that this anomaly in the pattern is due to the special con
fusion between the oblique T and the left-leaning T. Sec
ond, the L protrudes a bit to the right of the linear
dominance hierarchy. This is probably because of extra
confusion between it and the left-leaning T. These two
extra patterns of confusion are presumably included in
this plane because there is nowhere else for them to go.
If we were working with a larger stimulus set, it might
have been feasible to extract more bimensions, and
perhaps isolate these extra sources of confusion asym
metry into a separate plane or planes, leaving the second
bimension a more "pure" expression of the global-to
local processes involving straight stimuli.

Discussion

The general result of the first study was that the DEDI
COM analysis of the Lupker (1979) confusion matrix re
vealed an overall dominance pattern that strongly sup
ported his global-to-local processing interpretation. This
support was both qualitative and quantitative, and ac
counted for almost all of the asymmetric variance in the
data. Thus, in some ways, this result is even stronger than
Lupker's own evidence supporting a global-to-local in
terpretation of this data.

The linear structure of the pattern of asymmetries in
the one-bimensional solution is quite striking. As noted
earlier, this implies that the asymmetry in stimulus con
fusions followed a simple additive pattern, in which the
asymmetry between stimuli a and b plus the asymmetry
between stimuli b and c gives a good estimate of the asym
metry between stimuli a and c. Since differences in enve
lope size also have this additive property, the simple form
of the one-bimensional solution is consistent with the in
terpretation that envelope size is the main stimulus charac
teristic producing confusion asymmetries.

Although the linear pattern in Figure la indicates that
global-to-local processing is being applied to all stimuli,
the results depicted in Figures lc and ld suggest that enve
lope size is not the only factor influencing asymmetry of
stimulus confusions. The fact that the confusion asym
metries were decomposed into two different (although ad
mittedly nonorthogonal) bimensions indicates that there
were stronger asymmetries within the two groups of
oblique and straight stimuli than between these two groups
of stimuli.

The global-to-local hypothesis does not predict this
clustering of asymmetries, at least when formulated in
terms of a simple focusing metaphor, as in Lupker (1979).
Such clustering seems more compatible with a featural

account. Furthermore, the sort of feature that seems to
distinguish the two subsets of stimuli is quite different
from the local pieces of a stimulus (such as the tail of a
Q or the bar of an F) that we will encounter in Study 2.
Instead, it seems related to the orientation of high
frequency information in the stimulus. This might sug
gest that the global-to-local account should be integrated
with a spatial filter account that incorporates direction
(phase) information, or perhaps the effect is related to evi
dence that the human visual system processes oblique and
straight stimuli differently (e.g., Apelle, 1972).

In addition to the two-bimensional structure, there are
problems posed by the reliable anomalies in the hierar
chical order of the asymmetries (e.g., with respect to the
vertical line and the sideways Ts), It becomes apparent
that there is more to the structure of Lupker's data than
predicted by the simplest form of global-to-local theory.
It is not clear whether an adequate account of these data
will require trivial or substantial alterations of the the
ory. By themselves, the anomalies might merely suggest,
for example, that preprocessing via Luce's choice model
was not quite appropriate. But considered together with
the two-bimensional structure, the results seem to indi
cate that the global-to-local processing model needs to be
refined by the addition of more precise processing the
ory and/or specific decision rules (e.g., ones that would
somehow be sensitive to stimulus obliquity).

The structure newly revealed by DEDICOM should act
both as a stimulus to further research and as a constraint
on process models that might grow out of that research.
In this article, however, our focus is on the DEDICOM
methodology and what it can uncover, and so we leave
the development of revised global-to-local accounts of
these data to others.

STUDY 2

The purpose of Study 2 was to apply DEDICOM to al
phabetic confusion matrices that have appeared in the liter
ature. We were particularly interested to see if the
dominance patterns recovered from such data could be
interpreted as supporting either global-to-local or local
to-global perceptual processing. We were also interested
in seeing how DEDICOM would represent the more com
plex patterns of asymmetry that might arise with 26 differ
ent letters as the stimulus and response set.

Method
Data Sets

Three different full alphabetic confusion matrices were examined.
The first was taken from Condition I of Townsend (1971). Town
send obtained this matrix by tachistoscopically presenting upper
case letters printed using an IBM typewriter; each stimulus was
presented 150 times across subjects. The second matrix was taken
from Loomis (1982). He presented uppercase letters to which low
pass spatial filtering had been applied. Each stimulus was presented
1,476 times across subjects. The third confusion matrix was taken
from Gilmore, Hersh, Caramazza, and Griffin (1979). They used
a fast-decay phosphor screen to display dot matrix uppercase let
ters, presenting each stimulus 1,200 times across subjects.
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Figure 2. The five bimensions recovered from the average alpha
betic confusion matrix. See text for explanation.
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predetermined feature set and decision rule. When fitting
a fixed theoretical model, one simply examines the esti
mated parameter values and the fit of the model to the
data. DEDICOM, on the other hand, is more theoreti
cally neutral; it simply displays the patterns in the data.
Therefore, interpretation of the bimensions involves a
search for the most plausible theoretical account of the
statistical regularities revealed by the program. This is
the same process that one would use to interpret factors
in a factor analysis, or dimensions and stimulus configu
rations in an MDS analysis.

Procedure
Averaging. An average confusion matrix was created from the

three data sets described above. All matrices were converted to
proportions of responses, and were equally weighted in the aver
aging process. This averaging was done to improve the reliability
and the generalizability of the patterns in the data. It was thought
that conclusions based on the structure of the average matrix would
be somewhat less subject to idiosyncratic methodological influences
that can affect obtained confusions (e.g., Gilmore & Hersh, 1979;
Mewhort & Dow, 1979). To ensure that the averaging process did
not introduce patterns of structures not observed in any of the in
dividual matrices, DEDICOM was also applied to each of these
data sets individually, and comparisons between these results and
the results of analyzing the average matrix were made. Since we
wanted to allow for confusions between, as well as within, the sub
sets represented by different bimensions, we again used oblique
"planewise" transformations to obtain the final solutions.

Response bias. Unlike the published data analyzed in Study I,
the three published data sets analyzed in Study 2 were not
preprocessed with Luce's (1963) choice model to remove the ef
fects of response bias. We wanted to look at the same data that those
authors considered, to facilitate comparisons between our findings
and theirs, and so did not want to adjust these published data sets
ourselves. It is therefore important to consider what asymmetries
might be introduced by response bias. In letter-recognition experi
ments, subjects are expected to make a letter identification on ev
ery trial. In trials in which a great deal of stimulus information is
not detected, the percept may not resemble any particular letter.
Faced with this situation, subjects would have to guess the identity
of the stimulus according to some strategy. For instance, subjects
might be inclined to guess stimulus identities by using their tacit
knowledge of the frequency of letter occurrences-giving the names
of common letters with greater frequency than the names of un
common letters. This type of strategy would reveal itself in a very
systematic pattern of confusion asymmetries: less common letters
would be mistakenly identified as more common letters more often
than vice versa. Since response bias was not extracted from these
three data sets before analysis, we decided to cope with its poten
tial influence after the analysis, by careful consideration of its pos
sible influence on the observed patterns.

Results
When DEDICOM was applied to the antisymmetric part

of the average confusion matrix, five interpretable bimen
sions were recovered. The squared correlations between
the DEDICOM solutions and the input data for the first
five solutions were 0.45, 0.64, 0.79, 0.86, and 0.87.
Figure 2 presents the geometric representation of the five
bimensions obtained in the analysis. In these figures, an
unfilled circle represents the origin of a bimensional plane,
and solid lines illustrate dominant patterns of asymmetry .
The arrows indicate the direction of the asymmetry in the
same manner as in Figure 1. For these planes, letters that
had a loading less than or equal to ±0.1O on both axes
of the plane were not drawn. This was done to reduce
crowding on the plot, and was appropriate because these
letters had a very small degree of participation in the pat
tern represented in the bimension, and so were not con
sidered when the pattern was interpreted.

Before considering the DEDICOM plots in detail, we
should point out that the interpretations will not be as
directly determined by the output as would be the case
if we were fitting a specific process model, with a
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Consequently, we do not start with a preconceived fea
ture set and interpret the asymmetries in terms of loss or
gain of these features. We examine the plots to determine
what features and what decision rule(s) might give a plau
sible account of thepatterns in the data. Furthermore, the
same DEDICOM results could subsequently be used by
other investigators as the basis for a different theory,
provided theirs could give a better account of the features
in the plot. DEDICOM plots, like the data themselves,
represent evidence rather than conclusions.

Examination of the plots (Figures 2a to 2e) suggests to
us that the most convincing account of these regularities
would probably be in terms oflocal features, correspond
ing to stimulus parts (e.g., the tail of the Q). Along with
such features, we need to postulate a decision rule more
or less like the following: When the subject detects a set
of features, he/she guesses the letter that contains the en
tire set of perceived features and as few other features
as possible. 1 With such features and decision rules, the
patterns on most of the plots seem to make a great deal
of sense.

In the following discussion, however, we do not assume
or claim to know exactly what the feature set was, nor
do we work out nuances of our presumed decision rule
(if any are needed), both because it is unnecessary for
our present purposes and because we think that this is best
left to others who we hope will use these results to for
mulate new process models. Even with the somewhat
loosely stated feature types and decision rules that we as
sume, it seems clear that data in Study 2 give a sharply
different impression of perceptual processing from that
suggested by the data in Study 1. We doubt that there are
any plausible variations in the hypothesized stimulus fea
tures or decision rule that could account for these patterns
yet markedly change the overall conclusion.

Figure 2a illustrates the first bimension taken from the
data. This bimension appeared to capture confusion asym
metries among letters that were predominantly round. The
direction of asymmetry in the pattern was from many
featured stimuli to few-featured stimuli, and was there
fore consistent with local-to-global processing assump
tions. The largest asymmetries involved Q, which was
mistakenly reported as 0 or G or C more often than the
reverse. Since Q can easily be transformed into 0 by the
failure to detect its tail, and can also be easily transformed
into G or C by the failure to detect parts of its curve, these
patterns are consistent with the local-to-global hypothe
sis that letter confusions are due to the failure to accumu
late or detect all of the relevant local letter features.
However, these results are also consistent with a guess
ing strategy interpretation. The single-letter frequency
norms of Mayzner and Tresselt (1965) show that the let
ter Q is many times less frequent than the letters 0, G,
and C; this pattern may therefore represent an asymmetry
among round letters that indicates a tendency to gener
ate more familiar letter names. This alternative interpre
tation is also supported by noting the small asymmetry
from C to 0 in this pattern, which is contrary to local-to-

global predictions but consistent with a guessing interpre
tation since C is approximately three times less common
than O.

Bimension 2 is represented in Figure 2b. This pattern
ofasymmetries appears to be among "boxy" letters that
consist of two lateral vertical line segments joined by some
other features. The observed pattern is again consistent
with local-to-global predictions, as the direction of asym
metry is from the many-featured stimuli M and W to the
few-featured stimuli H, N, and U. The largest asymmetry
is from M or W to H. This type of confusion can be
viewed as an approximate transformation that is quite
likely to occur when the central features of M and Ware
not detected. The confusions of M and W with Nand U
can also be explained in this fashion. Again, these results
are roughly consistent with the guessing strategy interpre
tation. The Mayzner and Tresselt (1965) norms indicate
that M, W, and U are all approximately equally frequent
in written English, and all three are about half as frequent
as H.

Bimension 3 is depicted in Figure 2c. This bimension
generally appears to capture asymmetric confusion rela
tionships between letters that consist of a vertical and a
curved feature. The largest pattern represented are the
confusions from B to R to P, which is easily accounted
for in terms of feature-detection failure. The positioning
of other stimuli in this bimension is also consistent with
a local-to-global perspective. For example, Land D (and
to some extent G, A, and T) could be considered to be
feature subsets of B, and so are likely misidentifications
when some of the features ofB are not detected. But, once
again, there is also some "noise" in this interpretation,
as the positioning of N and S is not easily explained. This
pattern is not, in general, consistent with a guessing bias
interpretation, since R is approximately four times more
frequent than P or F.

Figure 2c demonstrates two additional interesting fea
tures. First, the asymmetry pattern is not linear. In gen
eral, curved asymmetry patterns generated by DEDICOM
arise because the process that produces the asymmetry
between two similar stimuli (which are near each other
in the pattern) cannot be applied as efficiently to two
stimuli that are dissimilar and far apart in the pattern
(Harshman & Lundy, 1985). In Figure 2c, this would
mean that confusion asymmetries between letters that dif
fer by one or two features (e.g., Band R) are more likely
to occur than confusion asymmetries between letters that
differ by many features (e.g., Band L, or R and F). The
second interesting property of this pattern is its circular
nature. Although the asymmetry "flows" from B to P,
it turns full circle and the asymmetry "flows" back to
B from the letters Z and F. This characteristic of the pat
tern is not consistent with the local-to-global interpreta
tion of the data, but might be the result of some' 'noise"
introduced by a guessing strategy. The Mayzner and Tres
selt (1965) letter-frequency norms indicate that Z is the
least frequent letter in English; it is perhaps no coinci
dence that it marks the point at which the pattern turns



back on its origin. There is one final puzzle: the asym
metry between F and B is consistent neither with a local
to-global nor with a guessing strategy interpretation. F
has fewer features than B and is slightly more frequent.

Bimension 4 (Figure 2d) appears to predominantly rep
resent confusion asymmetries among letters consisting of
horizontal and vertical components. The pattern of these
asymmetries is quite consistent with the local-to-global
interpretation, since it demonstrates the progressive trans
formation ofE to F, T, L, and I, which can be accounted
for in terms of the failure to detect the presence and/or
location of horizontal features. Once again, this pattern
is curved, indicating that transformations due to the failure
to detect one feature are more likely than transformations
due to the simultaneous failure to detect several features.
This pattern is completely inconsistent with a guessing
strategy interpretation; E is by far the most common let
ter in written English, yet in this pattern it is confused
with several other letters much more often than they are
confused with it.

Bimension 5 (Figure 2e) was actually the third bimen
sion to emerge from the analysis, but was left to last be
cause it is so hard to interpret. Although there is some
visual similarity between X and K, since a loss of infor
mation about the left-side diagonals of X could result in
a mistaken report of K, the basis for confusions between
K and J is not apparent. Nonetheless, this pattern is not
an artifact of the DEDICOM analysis, since it is actually
present in the raw data (in our combined data matrix, K
was reported as J 13.2% of the time, while J was reported
as K only 6% of the time). This asymmetry cannot be
attributed to guessing biases based on letter frequency,
since K is almost nine times more frequent than J. In short,
we do not know how to explain this feature of the data.
However, an examination of the three component data sets
individually shows that this peculiar asymmetry appears
only in the Gilmore et al. (1979) data. Thus it may be
due to some idiosyncratic aspect of that particular study.

Average versus Individual Solutions
An additional concern of ours was the effect of the aver

aging process on the asymmetric patterns revealed in the
analyses. It was possible that the averaging process
produced spurious patterns or destroyed systematic asym
metries present in the individual data sets. To examine
this possibility, each of the three original matrices was
individually analyzed with DEDICOM. In general, the
results were similar to those obtained with the averaged
matrix. Versions of the patterns represented in Figures
2a and 2b were found in all three individual confusion
matrices. The pattern represented in Figure 2c was found
in the Gilmore data, and the pattern in Figure 2d was evi
dent in the Townsend data. The asymmetries represented
in Figure 2e, which are difficult to interpret, were present
in the Gilmore data.

Discussion
The results of Study 2 provide relatively strong sup

port for the local-to-global approach. In all of the bimen-
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sions, many-featured stimuli were more likely mistakenly
identified as few-featured stimuli than vice versa. Also,
very specific confusion patterns were found to exist. Con
fusions within each bimension appeared to be best
described in terms of the failure to detect specific local
features of stimuli, such as the tail of the Q, the obliques
of M and W, and the horizontal bars of E. Different bi
mensions accounted for different stimulus types; for ex
ample, Bimension 1 represented confusions among round
stimuli, while Bimension 2 represented confusions among
boxy stimuli. A stimulus with a high loading on one bi
mension did not, in general, have a very high loading on
any other bimension. This pattern is consistent with the
local-to-global perspective, because it is difficult to con
fuse one letter type (e.g., a round letter) with another letter
type (e.g., a boxy letter) by failing to detect a stimulus
feature. Hence letters of different types should not have
high loadings on the same bimension. (Of course, there
will still be some confusions across different stimulus
types. In our DEDICOM solutions, this is taken care of
by the obliqueness of the bimensions.)

Several of the confusion patterns observed in these data
were backward C-shaped. This tells us something about
the relative asymmetry of confusions involving one, two,
and more features. The curvature indicates that asym
metries in these probabilities are not additive. That is, the
asymmetry in probability of a two-feature confusion is
not the sum of the single-feature asymmetries. This pat
tern further demonstrates the fundamental differences in
asymmetric structure between Study 2 and Study 1. The
structure of confusion asymmetries in Study 2 is more
consistent with an account in terms of discrete units,
whereas the pattern in Study 1 is more consistent with
variations in an analog property (such as size).

Although the Study 2 results were in general consis
tent with local-to-global processing, some specific incon
sistencies were noted. In some cases, relatively large con
fusion asymmetries were found to exist between stimuli
that were at best only approximately similar (e.g., Q and
A). It was suggested that these were possibly due to non
perceptual factors, such as decision processes used by sub
jects, or to the averaging together of data sets obtained
from slightly different experimental procedures. Overall,
however, the DEDICOM solutions were quite interpret
able, which is gratifying, given the nature of the raw data.
With alphabetic confusion matrices, the large stimulus set
and the attempt to maintain a 50% error rate leads to fairly
small entries in the many off-diagonal cells of the matrix.

One of the difficulties with local-to-global theories of
letter perception is that it has been very difficult to em
pirically establish the feature set used by the visual sys
tem (e.g., Townsend, 1971). Although traditional scal
ing analyses of the symmetric component of alphabetic
confusion matrices have revealed global letter features
(e.g., roundness, straightness, and so on), these analyses
have not revealed more specific local features (e.g., the
tail of a Q). At the level of distinct bimensions, this was
also true of the DEDICOM analyses of Study 2. The five
different bimensions appeared to represent asymmetric
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patterns among letters that had similar global structure
(e.g., asymmetries among round letters, asymmetries
among straight letters, and so on). However, the specific
patterns within each bimension provided detailed infor
mation about factors affecting asymmetry which appeared
to reflect the processing of specific local letter features.
In particular, the best account of most of the bimensions
was in terms of the failure to detect specific local letter
features. Thus, the DEDICOM analysis provided more
evidence for local-to-global processing than had been ob
tained in previous studies using more traditional scaling
techniques.

In spite of this, one still might question how much ad
ditional information the DEDICOM analysis revealed. It
has long been known that there is a tendency for compli
cated stimuli to be mistakenly reported as simpler stimuli
more often than vice versa (e.g., Gamer & Haun, 1978;
Geyer & Dewald, 1973; Wandmacher, 1976). It could
be argued that the bimensions described in Study 2 sim
ply reiterate this point. We would argue, however, that
this is not the case. First, if the patterns of asymmetry
were due only to differences in stimulus complexity, then
one would expect to recover a single bimension. Presum
ably, this bimension would be a linear dominance hierar
chy, and the position of each stimulus within this hierar
chy would be a function of the complexity of the stimulus.
The fact that we recovered more than one bimension, and
that different bimensions could be distinguished by not
ing characteristics of the stimuli that they represented, sug
gests that stimulus complexity is not the only factor af
fecting confusion asymmetries. Second, many of the
confusion patterns recovered were curvilinear. This is
much more consistent with an account of confusions based
on the failure to detect distinct local properties (i.e., fea
tures) than with an account based on differences in the
level of a single property (i.e., complexity). And third,
by examination of the patterns of asymmetry within bi
mensions, evidence for specific local features can be un
covered. In short, while the DEDIC OM analysis is con
sistent with the previous claims about confusion
asymmetries and stimulus complexity, it provides addi
tional information suggesting that an undifferentiated
stimulus complexity account is not sufficient to explain
all of the patterns of asymmetry.

GENERAL DISCUSSION

Alphabetic confusion matrices have traditionally been
analyzed using techniques such as cluster analysis, fac
tor analysis, or multidimensional scaling. The goal of such
analyses, which are generally insensitive to asymmetry,
has been to discover the dimensions along which letters
are treated as similar by the visual system (e.g., Geyer
& Dewald, 1973). In certain respects, this goal has proven
difficult to achieve. In many cases, dimensions obtained
from the analysis of empirically obtained confusion ma
trices reveal patterns of similarity related to general
characteristics of letters, such as their roundness or

straightness, but do not often reveal patterns related to
specific local featural properties (e.g., Gilmore et al.,
1979; Kilnnapas, 1966; Loomis, 1982; Townsend, 1971).
This is not to say that these traditional types of analysis
have not been productive (cf. Keren & Baggen, 1981).
Our point is that these traditional types of analyses have
not provided strong enough evidence to make a convinc
ing case for feature-based models of letter perception.

The results of Study 1 and Study 2, reported above, in
dicate that the multidimensional analysis of asymmetries
in an alphabetic confusion matrix may provide a rich new
source of information about letter confusion, as well as
about the dynamic processes involved in letter perception.
Within each study, DEDICOM revealed highly systematic
and interpretable regularities in the asymmetries. The de
tails of these patterns both strengthened and qualified the
conclusions that had been drawn by previous investigators.

The greatest puzzle was the profound conflict between
the patterns of asymmetries in the two studies. In both
cases, the DEDICOM analysis brought out novel charac
teristics of the data that actually strengthened the prior
interpretations. In the Lupker data, DEDICOM quanti
fied the percentage of the antisymmetric variance that
could be explained by a stimulus confusion hierarchy go
ing from smaller to larger stimuli, and it turned out to
be quite high (96 %). Furthermore, it showed that the
strength of the asymmetry was systematically related to
the difference in envelope size (anomalies aside). Thus,
DEDICOM's ability to represent quantitative relationships
among many simultaneous asymmetries turned out to be
important. The linear additive pattern ofasymmetry sizes,
as indicated by the linear DEDICOM plot, was a new
piece of evidence for Lupker's general conclusion. It in
dicated that in Lupker's data the asymmetries obeyed a
quantitative rule that would not generally be expected from
feature-based accounts, but which is consistent with an
account in terms of an analog property-difference in
envelope size.

In Study 2, DEDICOM strengthened the contrary con
clusion by revealing new characteristics of the asym
metries which were consistent with a local-to-global in
terpretation. Subsets of apparently similar stimuli
participated in asymmetric subpatterns of confusion.
Stimuli loading on any single bimension seemed to have
similar feature compositions, and their ordering on the
bimension was easily interpreted in terms of the number
of features possessed, thus suggesting that failure to de
tect specific local features was the predominant source
of confusion asymmetries. Even the "curvature" of the
patterns in each bimension was consistent with what one
would expect on the basis of accumulation or loss of par
tially independent features. Thus, the quantitative rela
tionships among different asymmetries turned out to be
consistent with the simple qualitative picture obtained by
prior researchers.

Instead of resolving the apparent contradiction between
the two data sets, DEDIC OM analysis has made the con
tradiction even more acute. The DEDICOM results fur-



ther persuade us, if such persuasion were needed, that
neither set of evidence can be easily explained away. In
stead, both must be embraced in some larger explanatory
framework.

Weare not sure of how best to explain the inconsistency
between Study I and Study 2. There are several differ
ences between them that might turn out to be relevant.
Lupker (1979) used letter-like stimuli instead of letters,
fewer stimuli, quite short stimulus durations, and stimu
lus masks. However, since we are unable to dismiss the
patterns in either data set as resulting from some artifact,
we are left with the tentative conclusion that both global
to-local and local-to-global processing can occur.

One possible explanation, for example, is that simpler
stimuli such as Lupker's are more likely to elicit an ini
tially global perceptual strategy, particularly if some of
them are unfamiliar. On the other hand, more complex
stimuli which are less easily differentiated on the basis
of global shape might stimulatea local-to-global approach,
particularly if the features are highly familiar or even over
learned (see also Ward, 1982).

Alternatively, global-to-local and local-to-global
processing might be two stages of a common perceptual
process. Very early processing in letter perception might
consist of the focusing of stimulus letters to the point at
which local letter features become available. Then fea
ture sampling or accumulation mechanisms might begin
operating in order to analyze the focused percept in an
attempt to identify the stimulus. Since most of the stimu
lus durations in the Lupker (1979) experiment are much
shorter than the stimulus durations used to obtain the other
three data sets analyzed, it is possible that Lupker's data
provides information about early, global-to-local visual
processing, whereas the other experiments captured con
fusions in the later local-to-global stage. (However, our
attempts to confirm this by separately analyzing shorter
versus longer duration conditions of the Lupker data were
unsuccessful. No reversal of asymmetries was apparent.)

The notion that perception might first be global-to-local
and then be local-to-global is not new. For example,
Townsend, Hu, and Evans (1984) use this two-stage
processing account to explain why some feature
processing models can provide good fits to empirical data
even when important assumptions underlying these models
have been violated. This dual processing notion also
emerges in Marr and Hildreth's (1980) theory of early
visual processing. In this theory, several filters of differ
ent spatial frequencies are first used to detect sudden in
tensity changes in the gray level image. The operation of
these filters can be described in terms of the focusing
metaphor, because the results of low-frequency filters are
used to determine whether higher frequency filters are de
tecting scene information or are, instead, just detecting
noise. The results of this processing is then organized into
a symbolic map (the primal sketch) that represents the lo
cations of features like thin bars and small blobs of differ
ent orientations. Later figure-oriented processes (e.g.,
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processes that find contours through feature aggregation)
can use this representation as input.

Other researchers have attempted to account for con
fusion asymmetries at a higher, or more cognitive, level,
on the basis of hypothesized properties of letter represen
tations (Appelman & Mayzner, 1982; Keren & Baggen,
1981; Krumhansl, 1982). In these accounts, letter confu
sion asymmetries are due either to differences in the
salience of features in the letter representations (cf.
Tversky, 1977) or to differences in the distinctiveness of
one letter compared with another defined in terms of den
sity of surrounding stimuli in a representational space
(Krumhansl, 1978). Our results show that a nonrepresen
tational account of observed asymmetries may also be pos
sible; explanations in terms of the direction of visual
processing may provide an account of many details of the
asymmetric patterns revealed by the DEDICOM analysis.

DEDICOM and Alternative Approaches
A common practice in the literature has been to fit ob

served alphabetic confusion matrices with mathematical
models that vary in terms of assumed processing details
(e.g., Townsend, 1971). The fit of the model to the em
pirical data is a measure of its validity. In more recent
experiments, specific processing assumptions of these
mathematical models have been explicitly tested (e.g.,
Townsend & Ashby, 1982; Townsend, Hu, & Ashby,
1980; Wandmacher, 1976). In this type of experiment,
subjects are usually asked to identify perceived features
as well as to identify the presented stimulus. This has al
lowed researchers to test assumptions about whether
different features are detected independently, whether a
single feature is equally detectable in all stimuli in which
it appears, and so on.

DEDICOM is not a mathematical model of perception
in the sense described above. It does not require detailed
assumptions about the perceptual processes involved in
creating a particular data set. Instead, it is concerned with
revealing any patterns in the data. In other words, it is
concerned with making explicit certain structural aspects
of a data set that might later be useful for developing more
specific perceptual models. Thus it is best viewed as a
statistical analysis technique.

Response Bias
Our objective in this article has been to demonstrate

the value of the multidimensional analysis of the asym
metries in stimulus confusion matrices. To this end, we
have taken the same data used in several published studies,
and reanalyzed it to show how additional information can
be revealed. This led us in Study 1 to use Lupker's (1979)
idealized confusion matrices-which have been
preprocessed by the choice model to remove column
biases-and in Study 2, a combination of Townsend's
(1971), Loomis's (1982), and Gilmore et al.'s (1979)
alphabetic confusion matrices-which were not pre
processed to remove response biases. In both cases,
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DEDICOM revealed additional meaningful structure in
the data. However, we are not ourselves endorsing either
approach to response bias.

The question of column biases becomes a particularly
problematic one when one is interested in the asymmetries
in a matrix. The popular method of applying the Luce
(1963) choice model in essence assumes that the percep
tual process generates symmetric confusions, and so tries
to find bias terms that will remove as much of the ob
served asymmetry as possible. As a result, the estimated
bias terms absorb too muchof the asymmetry, incorporat
ing some of the asymmetry arising from perceptual
processes (such as the failure to detect local features) along
with whatever asymmetry might arise from response
processes such as guessing biases (Keren & Baggen,
1981). An interesting discussion ofproblems with the in
terpretation of the bias terms (and a very useful survey
of models for stimulus confusion data) can be found in
Takane and Shibavama (1985).

However, it is not optimal just to ignore the potential
effects of guessing or other response biases. One might
analyze the uncorrected data and simply try to take pos
sible response biases into account, as we did in Study 2,
or one might try to estimate response biases in a more
sophisticated fashion, one that does not assume that bias
free data would be symmetric. Indeed, a version of DEDI
COM has been formulated which would estimate column
bias terms as well as the bimensional structure of the data
(Harshman, 1980). This might ultimately be the best ap
proach, but it has not yet been programmed.

Conclusion
We have shown that a multivariate analysis of the asym

metry in alphabetic confusion matrices is a potentially use
ful new source of information about letter-perception
processes. It has revealed patterns in the asymmetries of
published data sets that would seem to call for further
refinements of process models developed to explain these
data. Some aspects of the newly uncovered structure might
serve to constrain potential models of letter perception.
Our hope is that this procedure will be used to comple
ment other approaches, both statistical and theoretical, that
have been applied in this domain.
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