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The method of constant stimuli is inefficient
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Simpson (1988)has argued that the method ofconstant stimuli is as efficient as adaptive methods
ofthreshold estimation, and has supported this claim with simulations. We show that Simpson's
simulations are not a reasonable model of the experimental process, and that more plausible simu­
lations confirm that adaptive methods are much more efficient than the method of constant stimuli.

A common problem in psychophysics is to estimate the
signal strength required by the observer to accomplish
some perceptual task. A general approach is to estimate,
from performance on repeated trials, the probability of
success at each of a number of strength levels. In a two­
alternative forced-choice experiment, the probability of
success typically rises from 50% to 100% as strength in­
creases. From this psychometric function, one can esti­
mate the threshold strength-that is, the strength yielding
a preselected probability of detection.

There are two general approaches to the testing process:
adaptive and nonadaptive. In the former, the distribution
of trials at various strengths is dependent on the outcome
of previous trials. In the latter, the distribution is speci­
fied in advance. The nonadaptive approach is often called
"the method of constant stimuli" (MCS). A major con­
cern for both approaches is efficiency: The fewer the trials
required to reach a particular standard deviation of the
estimate, the better. Trials remote from the threshold pro­
vide little information, and they reduce overall efficiency.
Adaptive procedures have been argued to be more effi­
cient than nonadaptive ones, because they permit the out­
come of previous trials to be used to place future trials
at efficient testing locations (Cornsweet, 1962; Emerson,
1986; Hall, 1981; Levitt, 1971; Lieberman & Pentland,
1982; Taylor, 1971; Taylor & Creelman, 1967; Watson
& Pelli, 1979, 1983; Wetherill & Levitt, 1965).

Arguing against this conventional wisdom, Simpson
(1988) has recently asserted that the method of constant
stimuli is as efficient as adaptive methods of data collec­
tion. To support this claim, he offers simulations of MCS
and an adaptive method (Lieberman & Pentland, 1982).

Simulations of psychometric procedures are meaning­
ful only if they are a reasonable model of the "real life"
testing situation. In particular, the knowledge assigned
to the simulated experimenter must be plausible. The pur­
pose of this paper is to show that, under reasonable as-
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sumptions about the experimenter's knowledge, adaptive
methods are much more efficient than MCS.

The plan of the discussion is as follows: First, we
present new simulations of MCS and three adaptive
methods, in order to illustrate that-at least for the con­
ditions simulated-adaptive methods are much more ef­
ficient thanMCS. Second, we note the flaw in Simpson's
simulations that led him to the mistaken conclusion that
MCS is efficient.

SIMULATIONS

Data Format
In considering the quality of a psychometric procedure,

we are concerned with both accuracy and bias, and with
how they both depend on the number of trials collected.
This information is provided by plots of the standard devi­
ation and mean of the distribution of estimates as a func­
tion of number of trials. In the present study, each com­
plete simulation consisted of a number of runs of a given
procedure under particular conditions. Each run consisted
of a number of blocks, each containing a certain number
of trials. In each run, after each block, a threshold was
estimated. From these data, we obtained the mean and
standard deviation of the threshold estimate as a function
of the number of trials. For MCS, we used 500 runs with
10 blocks, each of 10 trials. For the other methods, we
used 1,000 runs of 16 blocks, each of 4 trials.

Simulated Observer
The observer was simulated with a Weibull psychomet­

ric function,

P(x) = Min{I-0, 1-(I-1')exp[-(~t]}, (1)

where P(x) is the probability ofa correct answer at strength
x. The parameters of this equation, and their default
values, are ex (threshold) = 1 (0 dB), {3 (slope) = 3.5,
l' (guess rate) = 0.5, 0 (finger error rate) = 0.01, E (ideal
test point) = 1.189 (1.5 dB). These parameters are dis-
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cussed elsewhere (Watson & Pelli, 1983). This function
has been shown to be a good representation of human per­
formance in many situations (Nachmias, 1981; Watson,
1979). The Weibull function is very similar to the logis­
tic function used by Simpson.

Simulations of MCS were performed in Mathematica
(Wolfram, 1988). All other methods were simulated by
programs written in C on a UNIX workstation.

RESULTS

Figure 1. Standard deviation of the threshold estimate as a func­
tion of trial number for the method of constant stimuli at six values
of the grain parameter. The initial standard deviation was 6 dB.
A line is drawn at 1 dB as a visual guide.

Method of Constant Stimuli with Various Grains
The method of constant stimuli has only two important

parameters that the experimenter can set. The first is the
number of sample points, which Simpson set at a typical
value of five, and which we shall not investigate further.
The second is the step in strength between sample points,
which we call the grain. Figure 1 shows the effect of grain
upon the performance ofMCS. For a small grain (1 dB),
the standard deviation declines slowly, indicating poor
performance. The best performance is obtained with a
grain of about 4 dB.

The poor performance of MCS with a small grain is
a consequence of threshold's often lying outside the test­
ing interval. Reasonable performance can only be obtained
by setting the grain large enough to insure against this
possibility. But this large grain also ensures that some of
the testing points provide no useful data, so that a large
percentage of the trials are wasted. For example, with a
slope ((3) of 3.5, the psychometric function goes from 51%
to 99% in the space of about 14 dB. With a grain of
4, then, and a resulting testing range of 16 dB, we are
guaranteed that at least one testing point will be entirely
outside the useful testing range. This is the best case; or­
dinarily, more than one point will fall outside this range.
This is the essential problem with MCS.

Figure 2 shows the bias for MCS as a function of trial
number for 6 values of grain. Note that the scale on
this figure is enlarged relative to that of Figure 1. Small
grains appear to lead to a positive bias, and large grain
values lead to a negative bias; but for a reasonable num-
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Procedures Simulated
QUEST: Each trial is placed at the mode of the current

posterior density for threshold (Watson & Pelli, 1979,
1983). The procedure is initialized with a Gaussian prior
density whose mean is the initial guess. The representa­
tive adaptive method used by Simpson (Lieberman &
Pentland, 1982) is essentially identical to QUEST.

UDTR-ML: the "transformed up-down" method
(Levitt, 1971; Wetherill & Levitt, 1965).This widely used
method increases strength by one step after one error, and
decreases it by one step after two correct responses. We
used a step size of 1 dB. The first trial was placed at the
initial guess. The ML indicates that thresholds are esti­
mated by the maximum-likelihood method.

UDTR-AVG: the same as UDTR-ML, except that
thresholds are estimated by taking the average of the last
four reversals. This estimation method is also in wide use.

MCS: The method of constant stimuli as described by
Simpson (1988). An equal number of trials is placed at
each of five levels, equally spaced on a logarithmic
strength axis. The step between levels (grain) was varied
in different simulations, between 1 and 6 dB. Before each
experiment, the center level was set to the initial guess
of threshold.

Experimenter Knowledge
We assume that before data collection begins, the ex­

perimenter knows the location of threshold to within some
error. We assume that this error is normally distributed
(on a logarithmic strength axis), with a mean of zero and
a standard deviation of 6 dB. The mean of zero says that,
on the average, the experimenter has no bias for guess­
ing threshold to be above or below the true value. Start­
ing points (guesses) for each experiment are selected from
this normal distribution.

Threshold Estimation
All thresholds (except UDTR-AVG) were estimated by

fitting Equation 1 to data, using a maximum-likelihood
method (Watson, 1979). All parameters except a were
fixed at their default values. MCS not infrequently gener­
ates data that are insufficient to bound the threshold esti­
mate. This may occur, for example, when all the trials
are correct. In these unbound cases, maximum likelihood
may occur at plus or minus infinity. Our procedure to deal
with these cases is as follows: We note that the psycho­
metric function equals 99% at about 12/{3 dB above
threshold, and 51% at about 36/{3 dB below. Thus, if
threshold is outside the range guess - 2 grain - 12/{3,
guess + 2 grain + 36/{3, the data are essentially useless.
Accordingly, we evaluate the likelihood over this inter­
val, and if the maximum is at either bound, that bound
is taken as the estimate of threshold.
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Efficiency
The relative performances of psychometric procedures

are best measured in terms of efficiency. The most natural
definition of relative efficiency is the ratio of numbers
of trials required by each procedure to achieve a given
standard deviation. For example, we may ask: For a given
number of MCS trials, how many QUEST trials are
needed to yield an equivalent standard deviation? The ratio
of these two numbers of trials is easily visualized as the
horizontal distance between the two curves in Figure 5,
which plots standard deviation versus log trials for the
two procedures. One particular distance, corresponding
to an efficiency of 28% at 60 MCS trials, is shown by
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FIgure 3. Standard deviation of the threshold estimate .. a function
of trial number for three adaptive methods and the method of con­
stant stlmuUwith (VaIn - 4. The initial standarddevladon _ 6 dB.

Figure 2. Bias (mean) of the threshold estimate as a function of
trial number for the method of constant stimull at six values of the
grain parameter. The initial standard deviation was 6 dB.
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Figure 4. Bias (mean) of the threshold estimate lIlI a function of
trial number for three adaptive methods and the method of con­
stant stlmuUwith (VaIn - 4. The initial standarddeviation _ 6 dB.

Figure 5. Standard deviation versus log trials for QUEST and
MCS. Relative emciency Isgiven by the horizontal distance between
the curves. The arrows Indicate that at 60 trials, MCS Is 28fJ'> lIlI

emdent lIlI QUEST.
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ber of trials, all biases are modest. A grain of 4, shown
above to yield the lowest standard deviation, also gives
the least bias,

Method of Constant Stimuli versus
Adaptive Methods

Figure 3 compares the standard deviation of the most
efficient version of MCS (grain = 4) with those of vari­
ous adaptive methods. The results for MCS are compara­
ble to those for UDTR-Ava, but considerably poorer than
those obtained with the other adaptive methods tested.

Figure 4 shows the biases of the best MCS and the adap­
tive procedures. All procedures lead to modest bias,
so that bias is clearly not a basis upon which to select
a procedure,
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DISCUSSION
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simulated a few, widely used procedures, and have set
the parameters at what we believe are reasonable values.
With these caveats, adaptive methods, particularly effi­
cient adaptive methods such as QUEST, prove to be much
more efficient than the method of constant stimuli. In par­
ticular, QUEST is about 2.5 to 5 times as efficient as the
method of constant stimuli, depending on the number of
trials. We also find that QUEST is about twice as effi­
cient as UDTR-ML.

Simpson's Simulations
Why do Simpson's (1988) simulations show MCS to

be at least reasonably efficient?-in short, because his
method of simulating the variability of threshold ensures
that threshold always lies within the testing interval. Upper
and lower bounds are selected from uniform distributions
between 0 and R, and 0 and - R, respectively, where R
is a fixed value. Thus the testing interval always includes
true threshold (0). As we have noted, in real life, MCS
is inefficient largely because threshold may lie outside the
testing interval, unless that interval is made extravagantly
large. Thus Simpson's simulations were arranged in such
a way as to avoid the conditions under which MCS suffers.
This would be reasonable if these conditions could also
be avoided in real life, but they cannot.

The upper and lower bounds of the testing interval
selected in this way may be converted into an interval mid­
point and width: width = upper - lower; midpoint =
(lower + upper)l2. The midpoint is equivalent to the ini­
tial guess in our simulations, while the width is equal to
five times our grain. Note that we fixed the grain within
a simulation, whereas Simpson varied it randomly from
experiment to experiment. The joint distribution of mid­
point and width in Simpson's simulations is shown in
Figure 7. This illustrates that the two quantities are not
independent, and, in particular, that narrow widths can
only occur when the midpoint is close to threshold. This
contrasts with our simulations, in which width was fixed
and midpoints were selected from a normal distribution
of fixed standard deviation.

Figure 7. Joint distribution of the midpoint and width of the test­
ing interval in Simpson's simulations. The width is dependent on
the midpoint, and small widths are used only when the midpoint
is near zero.
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Information Gain
Another measure of the performance of a psychomet­

ric procedure is the information gain after a certain num­
ber of trials (Pelli, 1987). This is equal to the difference
in the entropy of the estimate distribution before and after
the trials. For a normal distribution with standard devia­
tion (J, the entropy is (Shannon & Weaver, 1949)

H = log2«(J~ he ). (2)

Assuming that each distribution is approximately normal,
we may use this to compute entropy after a number of
trials.' If the initial standard deviation is 6 dB, then the
starting entropy is 4.632 bits, and the difference between
this number and the entropy after a given number of trials
is the information gain. This quantity is pictured for MCS
and QUEST in Figure 6. It is evident that the adaptive
procedure acquires information much more rapidly than
does the method of constant stimuli. After 64 trials,
QUEST is ahead of MCS by almost 1.5 bits.

Efficiency of Adaptive and
Nonadaptive Procedures

We have not attempted an exhaustive survey of adaptive
and nonadaptive methods, nor have we extensively varied
the parameters of the procedures we have used, or the
parameters of the simulated observer. Instead, we have

4-r-------------...,

arrows in the figure. The efficiency of MCS, relative to
QUEST, ranges between 20% and 40%. In short, MCS
wastes about 60%-80% of the trials. This agrees with our
earlier observation that several of the five MCS testing
points collect no data of any value. The same analysis ap­
plied to UDTR-ML shows that it is about half as efficient
as QUEST.

Figure 6. Information gain for QUEST and the method of con­
stant stimuli. MCS used a grain of 4 dB. Initial standard deviation
was 6 dB.



In Simpson's simulations, the distribution of the mid­
point is a triangle function with a width of R and a height
of2/R. The standard deviation is therefore R/(2.,J6) (e.g.,
R = 5, SD = 1.02 logit unitsj.? So far, this is not too
different from our normal distribution with a fixed stan­
dard deviation. We then use a fixed width in the presence
of this fixed variability. Simpson, in contrast, selects a
width based on the distance of the guess from the true
threshold. But in real life, the experimenter does not have
this information.

The issue is: What prior information do we assume on
the part of the experimenter? In our simulations, we as­
sume that the shape of the psychometric function is known
and that threshold is known to within some standard devi­
ation. Simpson assumes, in addition, that we know the
distance between guess and threshold. But, of course, if
we had this information, there would be no need to run
the experiment.

Simpson quotes the statement from McKee, Klein, and
Teller (1985) that variabilities of estimates from adaptive
methods "can never be less than those from the method
of constant stimuli selected for the optimal deployment
of trials. ' , We must presume that "optimal deployment"
means' 'optimal based on the true location of threshold. "
Of course, if this location is known, there is no need to
run the experiment. In the real world, threshold is never
known exactly, even after the experiment has been com­
pleted. Thus a more accurate statement would be that the
method ofconstant stimuli can never be as efficient as a
properly designed adaptive method.
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NOTES

I. Since for a given a, the normal is the distribution with the largest
entropy, the normality assumption will always overestimate entropy
(Shannon & Weaver, 1949). This error, for the distributions encoun­
tered here, is small, and it is largest for the least efficient procedures
and conditions (e.g., small numbers of trials).

2. For a WeibuIl function with {3 = 3.5, and a logistic with slope = I,
one "Iogit unit" (the strength unit of the logistic) equals about 1.74 dB.
Thus Simpson's midpoints had standard deviations of 1.8, 3.6, and
7.1 dB.
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