
COMPUTER TECHNOLOGY

ERL--A language for implementing
evoked response and psychophysiological

experiments

JAMES GIPS*, ADOLF PFEFFERBAUM**, and MONTE BUCHSBAUMt
National Institute of Mental Health, Bethesda, Maryland 20014

Evoked Response Language (ERL) is a high-level language for implementing
psychophysiological experiments with emphasis on signal averaging techniques.
It allows the E to specify, in English-like statements, a sequence of auditory and
visual stimuli and to collect or average associated physiological data. The
language can be learned quickly without the need for knowledge of machine
language programming. Programs can be easily composed and promptly tested.
ERL has been running in our laboratory on a classic LINC computer since the
spring of 1970. Expanded versions of ERL are being planned for the PDP-12 and
SEL 810B computers.

Most psychophysiological
experiments require the presentation
of sequences of visual or auditory
stimuli and the simultaneous sampling
of electrophysiological data. When
experiments are implemented with
hard-wired configurations of timers,
relays, oscillators, tape recorders, and
special-purpose electronic devices, it
often takes weeks or months to set up
a new experiment. Switching of
hardware to change experimental
conditions is often awkward and leads
to errors. Further, once an investment
in a large special-purpose system has
been made, investigators often grow
reluctant to change. An alternative to
these cumbersome arrangements is the
process-control computer which can
time intervals, control switches, and
presen t stim uli-in addition to
recording physiological data and
analyzing results (Uttal, 1968). As new
experiments can be specified simply
by writing new programs, the time for
implementing new experiments is
reduced to hours or days. The E,
however, often must become
proficient in the arcane art of machine
I a nguage programming. These
programs are generally lengthy and not
self-explanatory; moreover, debugging
process control programs is difficult.
To counteract such problems, the use of

*Unit on Psychophysiology. Laboratory
of Psychology. National Institute of Mental
Health. Public Health Service. U.S.
Department of Health. Education and
Welfare. Bethesda. Maryland 20014.

**Adult Psychiatry Branch. National
Institute of Mental Health. Public Health
Service. U.S. Department of Health.
Education and Welfare. Bethesda. Maryland
20014.

tNational Institute of Mental Health.
Building 10. Room 2N-315, Bethesda,
Maryland 20014.

high-level languages is the obvious next
step. With a suitable language,
experimental procedures can be
implemented in minutes in an easy
straightforward manner. Furthermore,
the high-level language serves as a
detailed documentation of the
experimental procedure. A few such
languages for specifying experiments
now exist, e.g., PSYCHOL (McLean,
1969), a language for psychological
experimentation, and SCAT (Stadler,
1969), a commercially available
language often used for conditioning
experiments.

Evoked Response Language (ERL),
the language to be described here, is
designed specifically for implementing
average evoked response (AER)
experiments but could be equally
useful for other psychophysiological
variables such as heart rate, GSR, etc.
The novel features of ERL include
direct specification of stimuli in a way
natural to the E, high-level commands
for signal averaging, and ease of
acquisition of consecutive analogue
data. Evoked responses are obtained
by EEG averaging which is time-locked
to the onset or cessation of a stimulus.
ERL allows the E to specify the nature
of the sequence of stimuli and
associated AER. A feature of the ERL
compiler system is that it allows the
program to be immediately tested and
the results displayed (see Fig. 1).

ENVIRONMENT
ERL currently is running on a

"classic" LINC computer (Clark &
Molner, 1965) with 2,048 12·bit
words of memory, of which half can
be used for programs. The LINC is the
forerunner of the Spear Microlinc and
the PDP-12 (Clayton, 1970). All
programming was done in LINC

assembly language, using the LAP6
assembler (Wilkes, 1970). The ERL
compiler is written as an addition to
the LAP6 system. LAP6 is used for all
text editing and file handling; the ERL
compiler is called from LAP6, using
the "free" meta command. The
compiler converts the current
manuscript directly into executable
binary code and stores this binary
program in the LAP6 "current binary
program area" of the tape. The binary
program produced by the compiler can
be run either on a stand-alone basis or
through a special monitor system
written for the LINC (Gips,
Pfefferbaum, & Buchsbaum, in press).

AN ERL EXAMPLE
A program for the study of the

effect of a preceding visual stimulus on
an auditory evoked response illustrates
the use of ERL. The experimental
paradigm might be: flash a dim light;
sound a tone, and take an evoked
response; flash a bright light; sound
the same tone, and take another
evoked response. An ERL program for
this experiment is given in Table 1.
Lines 3-5 are declaration statements;
the variables in ERL are AERs and
stimuli. Lines 6·20 form the
executable part of the program. The
experiment will last 10 min (120 loops
x 5 sec/loop), and its output will be
two AERs of 250 points each. Each
AER will be the sum of 120 trials. The

Table 1
Sample ERL Program With LAP6

Line Numbers

1. Experiment contrast
2. [This experiment tests the effect of the

intensity of a preceding light on a tone
AER

3. AER A. B 250 steps of 2 msec
4. Light L 500 msec
5. Tone T 500 msec at 65 dB
6. DO 120 times
7. Present L at 10 fc

10. Delay 500 msec
11. Present T with A
12. Delay 1 sec
13. Present L at 250 fc
14. Delay 500 msec
15. Present T with B
16. Delay 1 sec
17. End DO
20. Write
21. End experiment

Behav, Res. Meth. & Instru., 1971, Vol. 3 (4) 199

Fig. 1. Flowchart for ERL compiler
system.

first AER will be auditory, preceded
by a dim flash; the second will be the
auditory AER with a preceding bright
flash.

ERL SPECIFICATIONS
Every ERL program must begin

with the statement: "EXPERIMENT
name," where "name" is the name of
the experiment, and end with the
statement: "END EXPERIMENT."
Comments are specified by beginning
the line with a left bracket, as noted,
for example, in Line 2 of Table 1.
Each program has two parts: first, the
declaration section; second, the
execution section.

Declaration Statements
All AERs and stimuli must be

declared at the beginning of the
program. Each is given a one-letter
name.

In an AER declaration statement,
the number of steps (i.e., data points)
in each AER and the time between
each step must be specified (see
Line 3, Table 1). Up to 16 different
AERs are allowed, but the total
storage space required may not exceed
1,024 data points. Each AER can be
assigned a different duration and
sampling rate by using multiple AER
declaration statements. A technique in

which the responses to a given
stimulus type are divided randomly
and averaged into two AERs, each
with half of the trials, has been
employed in our laboratory and
elsewhere (Buchsbaum & Fedio,
1969). This has been made a feature of
the language; by specifying "WITH
RANDOM REPLICATES" at the end
of the AER declaration statement,
responses to individual stimuli are
averaged into two separate AERs on a
pseudorandom basis.

Three kinds of stimuli are allowed:
tones, lights, and clicks (see Lines 4
and 5, Table 1). At the time of
execution, each stimulus must have an
intensity associated with it, and tones
and lights must have a duration.
Intensity is expressed in decibels (DB)
or footcandles (FC); duration is
expressed in MSEC or SEC. The
duration and intensity of a stimulus
may be assigned in either the
declaration or execution section of the
program.
Execution Statements

Repeating cycles of stimulus
presentation and data collection are
specified by DO loops, as noted in
Lines 6 and 17 of Table 1. DO loops
begin with the statement: "DO N
TIMES," where N is an integer less
than 1,024, and end with the
statement: "END DO." The section of
instructions between a DO and the
corresponding END DO is executed N
times. DO loops may be nested to a
depth of eight.

Stimuli are administered by using
the PRESENT statement, shown in
Lines 7, 11, 13, and 15 of Table L
The stimulus must have been
previously declared; intensity and
duration may be specified in this
statement. An AER is taken
time-locked to stimulus onset if the
expression "WITH A," where A is an
AER name, is included, as shown in
Lines 11 and 15, Table 1.

Periods of time of no stimulus
presentation are specified by using the
DELAY statement shown in Lines 10,
12,14, and 16 of Table 1. The amount
of time of delay may be expressed in
either MSEC or SEC. An AER is taken
time-locked to the beginning of the
delay if the expression "WITH A,"
where A is an AER name, is included.
Prestimulus AERs and AERs to
stimulus cessation are specified in this
way.

The WRITE statement (Line 20,
Table 1) causes the AERs to be saved
in the next available file on the data
tape. If WRITE AND CLEAR is
specified, the AER data area is cleared;
this is useful for single trial
experiments or for the collection of
physiological data such as GSR or
heart rate where averaging is not
required.

Error Checking
Extensive error checking is done by

the compiler. If an error is found, the
compiler skips to the next line of the
ERL program and continues the
compilation process, thus allowing
multiple errors to be discovered. At
the end of the compilation, the line
number of each error and the
associated error type is displayed, as
shown in Fig. 1.

IMPLEMENTATION
The implementation of a real-time

language on a small computer imposes
severe restrictions of time and space.
Stimulus generation and
electrophysiological sampling in ERL
programs are done on a millisecond
basis. All averaging and internal
bookkeeping must be done in time
periods of less than a millisecond; the
program must be ready for the next
stroke of the millisecond clock. As
there is no time to swap segments of
program into core from DECtape, the
entire process control program and all
current data must be resident in the
2K of core.

Note that these restrictions apply to
the compiled (object) program, not
the compiler. There are no serious
restrictions for the time of
compilation of a program. The
compiler can be made arbitrarily long
by dividing it into 256 word segments
and swapping in and out of core from
the DECtape. The ERL compiler is
about 3,000 words long and, because
of tape shuffling, can take 30 sec or
more to compile an ERL program.

The emphasis in the ERL
implementation is in generating an
extremely short, relatively efficient
object code. The 2,048 words of core
are allocated by the compiled program
in the following way: 256 words for
the experiment's main program, 256
wo rds for stimulus and AER
parameter tables, 256 words for
standard stimulus generation
subroutines, 256 words for a resident
monitor system and alphanumeric
identification, and 1,024 words for the
AER data to be collected.

Ge neral-purpose subroutines for
simultaneously presenting stimuli and
sampling electrophysiological data are
the heart of the compiled program.
These subroutines are standard for all
ERL programs. The main program is
built around calls to these subroutines.
The compiler uses the declaration
statements to construct tables
containing stimulus and AER
parameter information used during
execution of the compiled program.
Each PRESENT or DELAY statement
is compiled in the main object
program as a separate call to one of
the stimulus subroutines. ADELAY is
considered a stimulus of zero

200 Behav. Res. Meth. & Instru., 1971, Vol. 3 (4)

intensity. Included in these subroutine
calls are the appropriate stimulus and
sampling parameters, e.g., the duration
and intensity of the stimulus and the
duration and rate of sampling (if any).

Stimulus Generation
The stimuli are generated entirely

by the subroutines and the
digital-to-analogue (DI A) converter; no
external oscillators or pulse generators
are used. For lights, a voltage
corresponding to the intensity of the
light is generated through the DI A
converter, de amplified, and supplied
directly to the constant-current driver
of an Iconix photostimulator. For
tones, a 500-Hz square wave of the
desired intensity is generated through
the D/A converter, smoothed by a RC
circuit, and fed directly to an audio
amplifier. Each tone is begun and
terminated with a program-generated
10-msec ramp to prevent speaker
distortion.

Resident Monitor System
The compiled program can be run

either on a stand-alone basis or
through a monitor system (Gips et ai,
in press). The monitor system
automates many of the tasks of the E.
For example, upon normal
termination of an ERL program, the
program jumps to a location in the
block reserved for the monitor system.
When run on a stand-alone basis, the

block will be empty and the machine
halts. If the monitor system is present,
a display program will be
automatically read in from tape and
the results displayed. The compiled
program is dependent on the monitor
system for information on data
storage. When a WRITE command is
reached, the compiled program
expects to find the number of the first
available data tape block in a certain
location in storage. If there is no
monitor system, and the E uses the
ERL WRITE statement, the data will
be written beginning in Tape Block O.

Abort
Because it is often necessary to

abort a given run, especially when
testing hospital patients, an abort
feature has been built into the
language. The E is given a special
button which is monitored each time a
stimulus subroutine is entered. If the
abort button has been pushed, the
program jumps to a location in the
resident monitor. If there is no
monitor, the program halts with all
collected data intact.

PLANNED IMPROVEMENTS
Because of the severe restrictions

imposed by the LINC's small memory
(2K core) and relatively slow cycle
time (16 usee for an ADD), desirable
features had to be excluded from the
language. For example, one would like

to be able to easily specify
pseudorandom time intervals and
pseudorandom intensity levels.
Features such as these are just not
feasible on the LINC. Expanded
versions of ERL are planned for the
PDP-12 and BEL 810B computers.

REFERENCES
BUCHSBAUM, M., & FEOla, P. Visual

information and evoked responses from
the left and right hemispheres.
Electroencephalography & Clinical
Neurophysiology, 1969, 26, 26&272.

CLARK, w. A., & MOLNAR, C. A
description of the LINC. In R. W. Stacy
and B. Waxman (Eds.), Computers in
biomedical research. Vol. 2. New York:
Academic Press, 1965. PP. 35-66.

CLAYTON, R. J. Comparison of the LINC,
LINC-8, and PDP-12 computers. Behavior
Research Methods & Instrumentation,
1970, 2,76.

GIPS. J., PFEFFERBAUM, D., &
BUCHSBAUM, M. Use of a small process
control computer in a
psychophysiological laboratory.
Psychophysiology, in press.

McLEAN, R. S. PSYCHOL: A computer
language for experimentation. Behavior
Research Methods & Instrumentation,
1969, 1, 323-328.

STADLER, S. On the varieties of computer
experience. Behavior Research Methods &
Instrumentation, 1969, 1. 267-269.

UTTAL, W. R. Real-time
computers-Technique and applications
in the psychological sciences. New York:
Harper & Row, 1968.

WILKES, M. A. Conversational access to a
2,048-word machine. Communications of
the ACM, 1970, 7. 407-414.

Behav. Res. Meth. & Instru., 1971, Vol. 3 (4) 201

