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The step method: A new adaptive
psychophysical procedure

WILLIAM A. SIMPSON
York University, North York, Ontario, Canada

A new adaptive psychophysical method, the step method, is introduced. Simulations show the
method to be less biased and more efficient than constant stimuli or Pentland’s adaptive method
for fewer than 40 trials. An experiment using discrimination of dot number, however, failed to
find any differences among the three methods in either bias or efficiency.

In the last 20 years there has been considerable interest
in improving the efficiency of psychophysical measure-
ment (Emerson, 1986; Levitt, 1970; Licberman & Pent-
land, 1982; Taylor & Creelman, 1967; Watson & Pelli,
1983). The main idea behind the new methods is that trials
should be placed at the experimenter’s current estimate
of the threshold. Such methods are termed adaptive
methods because the range of stimuli presented adapts to
the subject’s responses. In contrast, the classical method
of constant stimuli presents the same set of stimuli no mat-
- ter how the subject responds.

This paper has two aims. First, I will present a new
adaptive method which has advantages over some others
currently in use. Second, I will give both simulation and
experimental data on the performance of this method as
compared with constant stimuli (a nonadaptive method)
and Pentland’s maximum-likelihood adaptive method
(Lieberman & Pentland, 1982; Pentland, 1980).

THE STEP METHOD

The step method is similar to Pentland’s maximum-
likelihood estimation (MLE) technique. However, there
are two main differences. First, the assumed psychometric
function is a step function instead of a logistic (Equa-
tion 1). Second, the step method uses least squares in-
stead of maximum likelihood as the criterion for fitting
a function to the response data. The rationale for using
the step function is that Pentland’s method fits only one
of the two parameters of the logistic function; his method
assumes a fixed value for the slope. If we are fitting only
one parameter, we might as well use a psychometric func-
tion with just one parameter—a step has a value of 0 be-
low threshold and 1 above, with the threshold being the
only parameter. The advantage here is that there can be
no errors in the assumed value of the slope. Such errors
have been shown (Emerson, 1984; Simpson, 1988) to in-
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crease both the bias and the variability of the resulting
threshold estimates. Because the step is a discontinuous
function, maximum likelihood cannot be used; thus least
squares, which is asymptotically equivalent to maximum
likelihood, is used instead.

After each trial, which will resultinaQora 1 y value
(in forced-choice methods, incorrect or correct responses,
respectively), a step is fit by least squares to the data points
gathered thus far. The location of the step is the threshold;
this x value is presented on the next trial.

A BASIC program that implements the step method for
two-alternative forced-choice (2AFC, the case considered
in this paper) is given in Figure 1. The number of trials
and the upper and lower limits of the estimated threshold
region are input. In the program, 21 stiraulus levels are
used. First the x values for the 21 levels are calculated
and stored in the X array; simultaneously the sum of the
squared error (SSE) array is set to 0. The current threshold
estimate is X(M%). Initially, M% is set to the midpoint
of the range. The program presents X(M %), collects the
response, then calculates M% for the next trial.

The main work is in the calculation of M%. The pro-
gram uses an update method similar to that of Lieberman
and Pentland (1982). Each stimulus level is successively
taken as a possible threshold location. If the just-tested
x level is greater than this threshold location and the
response is incorrect, then the SSE array at that level is
incremented by W1. Conversely, if the just-tested x level
is less than this threshold location and the response is cor-
rect, then the SSE array at that level is incremented by
W2. Because the responses are 0 or 1, the squared devi-
ation will be 1 in either case. The squared deviations are
multiplied by weights. The weights will be W1 = target
percentage and W2 = 1 — target percentage. As long as
the weights are in the proper proportion, any values can
be used (although integers will be faster). Here the target
percentage is 75%; therefore W1 = .75 and W2 = .25
(or 3 and 1, respectively). The level with the lowest SSE
is indicated by P1. If the SSE function has a flat mini-

- mum, the other endpoint of the valley is indicated by P2.

The value of M% is calculated as the point 90% of the
way between P1 and P2. Simulations have shown that
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step.method

other target %s:
e.g. .5,.5 =1,1

DIM x(20), sse(20)
set.windows:
WINDOW 1, "step.method",

nles = 20 : wl=3 : w2=1
CLS

INPUT "# of trials";n%
INPUT "lower limit";11
INPUT "upper limit";ul
J=(ul-11)/nl%

FOR 1 = 0 TO nl%
x{1) = 11 : 11 = 11+3

sse(l) =0
NEXT |
md = nls/2
FOR tr = 1 TO n%
PRINT x{m%)
INPUT "response (1/0)";y
GOSUB calc
NEXT tr
END
calc:
mn = 10000

FOR 1 = 0 TO nl%
IF x(m%) >= x(1) AND ys%
IF x(m%) <= x(i) AND ys%
IF sse(l) < mn THEN mn =
IF 8se(l) = mn THEN p2
NEXT 1
m = pl + (p2-pl)*.9
m% = INT(m+.5)
RETURN

-0

0 THEN sse(i)
1 THEN sse(1i)
se(l)
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psychophysical procedure based on least squares

fit of step function to 1/0 data

currently set up for 2AFC--change weights wl and w2 for

2 welghts add up to 1.0 (or use integer ratio)
.75,.25 = 3,1

.8,.2 = 4,1

(0,0)-(617,185),31

s%

sse(l) + wl
sse({i) + w2

: pl=1

Figure 1. An Amiga BASIC program that implements the step-adaptive method for two-

alternative forced-choice (2AFC).

for 2AFC this value results in minimal bias. For a target
percentage of 50%, use the value .5 (the value will al-
ways be between O and 1).

The algorithm is very fast (BASIC is more than ade-
quate) and is not prey to rounding or out-of-range errors.
Pentland’s method can blow up due to either the exponen-
tial or the log functions. Emerson’s (1986) Bayesian
method is too slow to be implemented in BASIC. It is hard
to evaluate Emerson’s method, however, since he has not
published the algorithm.

SIMULATIONS

The conditions of the simulations were as follows. The
simulation data for constant stimuli and Pentland’s MLE
method were determined as previously described (Simp-
son, 1988). It was assumed that the psychometric func-
tion was the 2AFC scaled logistic: ‘

y = .5 + .5/{1+expla*(b—x)]}, o))

where a (the slope) was 1 logit and b (the threshold) was
0logits (p = .75). The subject’s responses were modeled

as conforming to this function and having Bernoulli vari-
ance. For constant stimuli and Pentland’s method, a slope
estimate is required to calculate likelihoods; the data here
were obtained using the true slope (a value of 1).

In using any of the methods, an experimenter has to
specify an upper and a lower bound for the threshold
region. This was simulated by randomly choosing an up-
per bound between 0 and R logits and a lower bound be-
tween 0 and —R logits (R was 2.5, 5, or 10). The stimu-
lus levels had an average range of R, with a minimum
approaching 0 and a maximum range of 2R (the values
of the range given in the figures). On average, the trials
were placed symmetrically about the threshold; at their
most asymmetrical they could all be on one side of
threshold.

Results

The simulation results for the bias of the threshold es-
timates are given in Figure 2. For constant stimuli and
Pentland’s method, bias declines with the number of trials
and increases with the range of stimuli. The step method
is unbiased, showing only small, random fluctuations
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Figure 2. Bias of the threshold estimate (in logits) as a function
of the number of trials and the stimulus range for constant stimuli,
the step method, and Pentland’s maximum-likelihood estimation
(MLE) method. Each point is based on 500 simulation runs.

around the true threshold value; constant stimuli and Pent-
land’s method show progressively more bias as the range
increases. Pentland’s method seems especially prone to
negative bias with large stimulus ranges.

As can be seen in Figure 3, the standard deviation of
the threshold estimate declines as the range decreases and
as the number of trials increases. The variability of all
three methods is quite similar. The step method has an
advantage for runs of less than 40 trials. For runs of more
than 40 trials, Pentland’s method is most efficient,
although it is not much better than constant stimuli.

Discussion

Overall, the methods are quite similar in performance.
In a previous study (Simpson, 1988), I found that the con-
stant stimuli method was about as efficient as Pentland’s
method. This finding is confirmed here using a different
adaptive method. The step method has an edge in effi-
ciency for small numbers of trials, and it is unbiased. In

the latter respect it is similar to Emerson’s (1986) Baye-
sian method. However, both Pentland’s and Emerson’s
methods require an estimate of the psychometric func-
tion’s slope. In the case of Pentland’s method, it is known
that errors in slope estimates will adversely affect the bias
and variability of the threshold estimates (Emerson, 1984;
Madigan & Williams, 1987; Simpson, 1988). The step
method avoids these problems.

The step method’s superior efficiency for small num-
bers of trials is probably due to the fact that the step func-
tion will fit the data perfectly for small numbers of trials,
but the logistic will not. As the number of trials increases,
however, the fit of the step becomes increasingly worse
than the logistic. It is not clear whether this would be a
problem in experimental situations, since a typical use of
adaptive methods is to take the mean and standard devia-
tion of several blocks of 40 or so trials. It is not a good
idea to use larger blocks; if the stimulus range is inap-
propriate, the threshold will simply hit a ceiling or a floor.
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Figure 3. Standard deviation of the threshold estimate (in logits)
as a function of the number of trials and the stimulus range for con-
stant stimuli, the step method, and Pentland’s MLE method. Each
point is based on 500 simulation runs.



This same observation holds for constant stimuli; several
blocks of about 40 trials should be used.

In order to test the performance of the different psycho-
physical methods in a real situation, the following experi-
ment was performed.

EXPERIMENT

The step method, Pentland’s MLE adaptive method, and
constant stimuli were compared in an experiment on dis-
crimination of the number of randomly placed dots. In
other studies that compared different psychophysical
methods (Hesse, 1986; Madigan & Williams, 1987; Shel-
ton, Picardi, & Green, 1982), the threshold for only one
experimental condition was obtained. Typically, however,
we are interested in determining a threshold charac-
teristic—the threshold as a function of some parameter.
It is important to test psychophysical methods in their de-
termination of a threshold characteristic because bias in
a method can distort the shape of the characteristic (Lam-
ing, 1986). In this experiment, therefore, I determined
the difference threshold for dot number at five points for
each of the three methods.

In the present case of dot-number discrimination, it has
been established by Burgess and Barlow (cited in Lam-
ing, 1986) that the threshold characteristic (here, the dis-
crimination function) is a power function:

difference threshold = k * dot number®. 2)

The effects of bias will be reflected in the obtained values
of k or e, or in departures of the data from a straight line
on log-log coordinates. The efficiencies of the methods
will be reflected in the standard deviations of their
threshold estimates for a given number of trials.

Method

Subjects. The author and a naive observer, both with normal or
corrected-to-normal vision, served as subjects.

Stimuli. On any given trial, the display consisted of two fields
(left and right) of randomly placed dots on a CRT screen. Each
field’s area was 131 X 180 pixels. The subject viewed the display
from a chinrest 57 cm from the screen; at this distance, the dots
were .05° square and the fields were 7° (horizontal) X 9° (verti-
cal). The subject fixated a .3°-square mark in the center of the
screen. The inner edge of each dot field was 1° away from the fix-
ation mark.

Five different numbers of dots (10, 20, 40, 80, and 160) were
used as the standard. The comparison field in each trial contained
more dots. The locations of the comparison and the standard were
randomly varied between trials. The subject’s task was to press a
button corresponding to the field that contained the greater num-
ber of dots (the comparison).

Procedure. Each block consisted of 40 trials. On each trial, two
dot fields were presented for 540 msec. The subject pressed a but-
ton corresponding to the field that contained the greater number
of dots. There was a 1-sec pause between trials. :

The three methods were given in random order. All values of
the standard were given using one method before using the next.
The level of the standard was determined randomly. In all, four
measures were made for each level of the standard using each
method. Each datum point is thus based on 160 trials.
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Three psychophysical methods were used to determine the differ-
ence thresholds: constant stimuli, the step method, and Pentland’s
MLE method. Since Pentland’s method requires an estimate of the
slope of the psychometric function, two different slope estimates
were used (1 and .2). Each method required an upper and a lower
limit for the threshold estimate. The adaptive methods were as
described above. The constant-stimuli method placed each trial ran-
domly within the specified limits. The threshold estimate for the
two adaptive methods was the value after the last trial. The threshold
estimate for constant-stimuli method was calculated using a least-
squares fit of a 2AFC logistic function to the data. The standard
deviations of the thresholds were based on the variability of the
values given by the four 40-trial blocks.

Results

The dot-number discrimination functions are plotted in
Figure 4. For both subjects, the data are well fit by
straight lines (least-squares fits) on the log-log plots.
Hence, the data are described by the power function as
given in Equation 2. The values of the parameters as de-
termined by least squares were .2576 (A.H.) and .8444
(W.S.) for k, and .8878 (A.H.) and .5815 (W.S.) for e.
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Figure 4. Difference thresholds for dot number obtained using con-
stant stimuli, the step method, and Pentland’s method. Each point
is the mean of four 40-trial blocks. The straight lines are the least-
squares fits of a power function to the data. ‘
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Table 1
Standard Deviation of Threshold Estimate as a

Function of Psychophysical Method
Psychophysical Method
Constant _ Pentand

Subject Stimuli Step 1.0 0.2 Mean

A H. 3.66 2.70 3.15 3.48 3.25

Ww.S. 1.76 3.30 3.25 3.28 2.90

Note that the parameters are not identical for the 2 sub-
jects (unlike Burgess & Barlow’s [cited in Laming, 1986]
result). As Burgess and Barlow found, the exponent of
the discrimination function is just under 1 (an exponent
of 1 would be predicted by Weber’s law).

Only a single curve is plotted for each subject’s data
in Figure 4 because an ANOVA indicated no difference
between the discrimination functions as measured by the
different psychophysical methods. That is, method was
neither a significant main effect [A.H., F(3,36) = 1.482,
n.s.; W.S., F(3,36) = 2.466, n.s.] nor did it interact with
number of dots [A.H., F(12,36) = .344, n.s.; W.S.,
F(12,36) = .557, n.s.]. Thus, there was no significant
bias of the psychophysical methods relative to one another.
An ANOVA comparing the standard deviations of the
threshold estimates for the methods also found no signifi-
cant differences [A.H., F(3,12) = 1.585, n.s.; W.S.,
F(3,12) = 2.115, n.s.]. As can be seen in Table 1, the
standard deviations for the different methods are very
similar.

Discussion

The three psychophysical methods all seem to give
threshold estimates that are about the same in both bias
and variability. No evidence was seen for any method be-
ing more biased or less efficient than any other. If this
experiment can be regarded as typical, the differences in
bias and variability between the methods as found in the
simulations are hard to detect when using real subjects.
Other experiments that have compared psychophysical
methods also found the methods to be more-or-less equiva-
lent (Hesse, 1986; Madigan & Williams, 1987; Shelton
et al., 1982). In this experiment, the range of presented
stimuli was probably small (as it likely is in all experi-
ments). The simulation results for bias (Figure 2) and for
standard deviation (Figure 3) with a range of 5 logits show
only small differences between the methods at 40 trials.

The message from the experiment, then, as it was from
the simulations, is that there is little, if any, difference
in efficiency between constant stimuli and adaptive
methods. Moreover, the differences in bias are probably
too small to detect under normal (small-range) circum-
stances.

GENERAL DISCUSSION

The conclusion to be drawn both from the simulations
and from the experiment is that there is little difference

in efficiency between the classical method of constant
stimuli and the newer, adaptive methods. According to
the simulations, the step method is slightly more efficient
than constant stimuli for small numbers of trials, and Pent-
Jand’s method is more efficient than constant stimuli for
large numbers of trials (the crossover point is about 40
trials). The experimental data, however, show no differ-
ence in efficiency for the methods. Although the step
method was shown in the simulations to be less biased
than constant stimuli or Pentland’s method, the experi-
ment revealed no differences in relative biasing. Both the
simulations and the experiment show the step method to
work quite well, despite its use of an unrealistic psycho-
metric function.

It is heartening that one need not be overly concerned
about which psychophysical method one chooses. The
threshold estimate will take on the same value and have
the same variability no matter which method is used.
However, we should bear in mind that in an experiment
we do not know the values of important variables, whereas
these variables can be manipulated in simulations. In the
simulations, the step method is shown to be less biased
and to be slightly more efficient than constant stimuli or
Pentland’s method. Even in the simulations, though, these
differences are small.
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