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The statistical analysis of
concurrent detection ratings
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The concurrent detection task is a powerful method for assessing interactions in the process
ing of two sensory signals. On each trial, a stimulus is presented that is composed of one, both,
or neither signal, and the observer makes a detection rating for each stimulus. A classical bivari
ate signal-detection analysis applies to these data, but is limited by its inability to differentiate
certain types of sensory interactions from more cognitive components, and by the lack of an as
sociated testing procedure. The present paper presents an alternative analysis, based on the con
tingency table of sensory ratings. Six classes of effect can be distinguished and teRted: (1) simple
response bias, (2) detection of the two signals, (3) interference of each signal on the response to
the other signal, (4) sensory and response correlation, (5) bivariate response biases, and (6) higher
order association. Complete computational detail is provided.

The interaction among different sensory systems, or
among mechanisms that subserve a single sensory mo
dality, is a critical aspect of perceptual function. How best
to study these interactions is a challenging problem, as
evidenced by the multitude of approaches, analyses, and
interpretive arguments that have flourished over the years.
Classical approaches to the study of interactions, such as
masking, adaptation, and subthreshold summation, rely
on an analysis of how the presence or absence of one sig
nal affects the ability to detect or identify a second, tar
get signal. Such experiments indicate whether an inter
action exists and provide information about its direction
(excitatory or inhibitory). They have been essential in de
veloping multiple-mechanism models of visual, auditory,
and cutaneous sensory processes (for reviews, see Olzak
& Thomas, 1986; Scharf & Buus, 1986; Sherrick &
Cholewiak, 1986). Recent variations of these classical
techniques, such as profIle analysis (Green, 1983; Green,
Mason, & Kidd, 1984) and simultaneous detection and
identification (Olzak, 1985; Thomas, 1985), have been
successful in isolating interactions among widely sepa
rated mechanisms in the auditory and visual systems.
However, these paradigms provide little detailed infor
mation about the source of the interaction. They do not
distinguish among various sensory candidates, or between
the purely sensory and more cognitive components.

In this paper, we focus on the statistical analysis and
interpretation of a more informative psychophysical tech
nique: the concurrent rating task. This paradigm, a natural
extension of the signal-deteetion-theory rating task to mul-
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tiple dimensions, yields information about both the in
tended signal and its competition. Although the utility of
a signal-detection analysis in isolating various types of
interactions has been previously demonstrated (e.g.,
Hirsch, Hylton, & Graham, 1982; Olzak, 1985), it has
serious limitations as usually applied and does not lead
to an unambiguous interpretation of all results (Ashby,
1988; Ashby & Townsend, 1986; Klein, 1985; Olzak &
Wickens, 1983; Olzak, Wickens, & Gouled-Smith, 1985).
Treatment of the data as a frequency table to which log
linear models are fit avoids some of these limitations (01
zak & Wickens, 1983), but does not fully disentangle cer
tain types of sensory interactions from more cognitive
components such as response bias.

In this paper, we approach the analysis of concurrent
rating data through a logical sequence of hypothesis
testing steps designed to resolve many of the ambiguities
associated with earlier approaches. For each hypothesis,
appropriate models and associated statistical tests are
described and illustrated by example. Our example is
drawn from research on the visual system, but our proce
dures apply equally well to any modality. The paper is
organized in four sections: (1) a description of the task
itself and a concrete example, (2) procedures designed to
test hypotheses of independence, (3) procedures designed
to describe the nature of complex associations isolated in
the second step, and (4) a mathematical and statistical ap
pendix that describes the details of our procedures. The
first three sections introduce the problems and provide
a step-by-step protocol for resolving them. A reader who
is unfamiliar with some portions of the statistical anal
ysis, or who wishes to duplicate it exactly, should refer
to the Appendix as needed.

THE CONCURRENT RATING TASK

As noted above, the simplest way to study signal inter
action is to examine how the detection or identification
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of one signal is influenced by the presence or absence of
another signal. Unfortunately, the interpretation of this
simple paradigm is ambiguous. Because there is no way
to assess the magnitude of the response to the competing
stimulus, one cannot separate the effects of the stimulus
from those of the response. In short, the signal is known,
but the way it is perceived is not.

A natural way to start to sort out these effects is to col
lect data about b6th the intended signal and its competi
tion. The logical experiment uses a concurrent rating task.
An experimenter presents a stimulus that is composed of
both a test signal and an interfering signal, and obtains
detection ratings from the subject for both of these sig
nals. Specifically, the two signals form four types of
stimuli, according to whether each is present or absent.
The subject makes a pair of judgments that express his
or her certainty that each of the signals has occurred. This
design has a nice compactness: it is symmetric with respect
to the two signals, so the experimenter can simultaneously
look at the influence of the first signal on the second and
of the second signal on the first.

The terminology we use here bears emphasis. Through
out this paper, the word signal refers to the pure compo
nents that are to be detected, while the word stimulus
refers to whatever combination of signals is formed into
a single presented entity. For example, in the data we will
discuss below, the signals are spatially modulated sinusoi
dal gratings with different frequencies. These two signals
(if present) are superimposed into a single stimulus. In
contrast to the overt decomposition ofa stimulus into sig
nals, it is often useful to think of hypothetical mechanisms
within the observer that respond, with greater or lesser
selectivity, to the separate components of the stimulus and
upon which a response is based. We use the word chan
nel to refer to these hypothetical mechanisms. Very often
these channels are identified with the particular signals,
although it is not necessary to do so.

The response collected from this two-signal concurrent
detection task is composed of two parts, each pertaining
to one of the signals. In the data that we discuss, these
judgments are recorded as a pair of k-level ratings, each
of which categorizes one of the signals on a scale that
ranges from definitely absent to definitely present. This
composite response can be tallied as one cell of a k x k
table. The complete data from such an experiment con
sist offour kxk tables, or of one 2x2xkxk table, cor
responding to the four stimulus conditions.

In the following discussion, we consider data from an
experiment by Olzak and Kramer (1984) on the detec
tion of compound sinusoid spatial gratings. l The stimuli
in this experiment were spatial modulations of a constant
background luminance. The modulations were sinusoidal
gratings of high and low spatial frequency (12 and 3 cy
cles per degree, respectively). The composite stimuli were
presented to the subject for 100 msec. Ratings were ob
tained for both components as a k=6level confidence rat
ing. Each of the four stimulus conditions was rated 350
times. Table 1 shows the data from one subject, which

Table 1
An Example of Concurrent Detection Data

High-Frequency Signal
X

Low-Frequency Absent Present

Signal y I 2 3 4 5 6 I 2 3 4 5 6

I 44 4 9 7 6 7 7 4 5 5 14 69
2 13 30 20 8 14 7 5 7 13 15 38 37

Absent
3 9 23 17 17 3 0 6 7 8 10 10 15
4 16 17 10 20 2 2 4 12 5 13 6 14
5 5 4 9 10 4 0 2 3 I I 3 5
6 3 3 0 I 4 I 0 0 I I I 3

I 8 2 2 I 0 4 4 I 2 0 4 37
2 5 5 5 5 5 3 0 4 0 I 8 25

Present
3 8 10 7 4 I I I 3 3 7 8 15
4 12 17 15 13 2 2 4 4 8 17 12 21
5 12 17 19 18 10 4 3 12 8 II 2020
6 31 29 25 24 12 12 II 8 12 II 12 33

are used as an example throughout this paper. As noted,
this table constitutes a four-dimensional array, the dimen
sions of which are symbolized by the signal dimensions
Hand L (for "high" and "low") and the response dimen
sions X and Y. The X response is appropriate for the H
signal and the Y response for the L signal. Entries in
Table 1 indicate the number of times that each response
combination was made; for example, on 13 of the 350
trials on which a stimulus with no signal components was
presented, the subject responded with a rating of X= I
for the high-frequency signal and Y=2 for the low
frequency signal. These frequencies2 are indexed by four
subscripts and are denoted here bY!hlry, where the sub
scripts hand l take the two values a and p (for "absent"
and "present"), and the subscripts x and y take values
from 1 through 6. Capital letters refer to the factors or
dimensions of the table in general; lowercase letters refer
to particular values.

Influences on the Responses
Before turning to an analysis of Table 1, it is helpful

to make clear the general view of signal detection that
we are using. Without some model of the detection pro
cess, the reader is apt to become confused as to where
the interactions lie. A plausible (if somewhat naive) view
is shown in Figure 1. The two signals, Hand L, are com
bined to form a joint stimulus. These components need
not, of course, be high- and low-frequency signals, but
we will use these letters to be consistent with our exam
ple. The subject is presented with this stimulus, which
results in a joint percept. The perceptual analysis may take

Observer

Decide H X

Decide L }"

Figure 1. A schematic model of the signal-detection process.
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place through a pair of channels labeled CH and CL ,

roughly tuned to the frequencies of Hand L. It is not
necessary for these channels to be distinct from each other;
they surely would not be distinct if the signals were close
together. In any case, either or both of the signals may
be detected in the joint percept. The conventional
statistical-decision model of signal-detection theory is ade
quate to describe what goes on at this stage. Finally, two
responses, X and Y, are made, one for each signal.

There are many reasons for the frequencies in Table I
to take the values that they do. Before attempting a quan
titative analysis of the concurrent detection data, it is es
sential to define the potential sources of influence. Start
ing with the conceptual framework in Figure I, at least
six sources can be identified:

1. Response bias. The subject may prefer certain nu
merical categories to others. For example, a subject may
use Category 4 frequently and Category 5 rarely.

2. Detection. The responses are almost certainly in
fluenced by their proper signal. The presence of the high
signal (H=p) produces higher X ratings than does its ab
sence (H=a). Likewise, Land Yare associated.

3. Sensory interference. The responses may be in
fluenced by the presence or absence of their opposite sig
nal, so that H affects Yand L affects X. Generally, one
expects these influences to take the form of simple sen
sory excitation or inhibition. These effects act at the sen
sory end of Figure I, for example as some sort of ' 'cross
talk" between the detection channels CH and CL • Ashby
and Townsend (1986) referred to the lack of sensory in
terference as perceptual separability.

4. Correlated sensory noise. An interaction between the
responses may be produced by noise that is introduced
during the formation of the joint percept and that simul
taneously influences both channels. Such noise affects
responses X and Y simultaneously. The result is not the
same as excitation or inhibition by the opposite signal,
since it creates association within a single stimulus con
dition. Ashby and Townsend (1986) referred to the lack
of correlated sensory noise as perceptual independence.

5. Bivariate numerical biases. Just as the subject may
prefer one numeric response to another, certain combi
nations of responses may be preferred or avoided. Like
the correlated sensory noise, these numerical or response
strategies create bivariate association patterns involving
both X and Y. For example, a subject may prefer (or avoid)
using the same number for both responses, or may prefer
(or avoid) making high certainty ratings (Categories lor
6) on both responses. Similarly, a subject who fails al
together to pay attention to the stimulus on occasional
trials will show an excess of I, I responses.

6. Higher order associations. Associations that involve
more than two factors are potentially present, although
they are much more difficult to understand. Such an as
sociation would be created if, for example, the magni
tude of the correlated portion of the noise depended on
the level ofone of the signals. Present perceptual theories
make few predictions about such effects. They should be
considered only if simpler mechanisms are inadequate to

explain the data. However, even if one does not under
stand these effects, a method is needed to recognize them.

These six types of effect are confounded with each other
and cannot be unambiguously sorted without further as
sumptions. The separation of bivariate numerical biases
and their correlated sensory responses illustrates the
problem. If these effects are allowed to take a completely
general form, one can never decide whether a particular
bivariate pattern should be attributed to one factor or the
other. Nevertheless, certain forms of association are more
probable than others. As we argue in this paper, a few
assumptions about the plausible forms of the effects al
Iowa substantial degree of separation to be made.

We have listed the six effects above in approximately
the order that we felt they shoulj be introduced into a
description of the signal-detection process. Two factors
determined this ordering. First, an explanatory conser
vatism dictated that low-order effects (e.g., response bias)
should be introduced before including multifactor effects
in our explanations. Second, certain explanations that in
volve a given number of factors are simpler than others
and should be considered first. For example, a descrip
tion based on correlated response channels (Source 4)
should not be used if the same data can be explained
equally well using only signal-response effects (Sources I,
2, and 3). Thus, we considered correlated response chan
nels only as an addition to a model that already included
response bias, detection, and sensory interference. We
used these principles to direct our choices of tests and ex
planations below.

ANALYSIS OF INDEPENDENCE AND
CONDITIONAL INDEPENDENCE

In previous work (Olzak & Wickens, 1983; Olzak,
Wickens, & Gouled-Smith, 1985; Wickens, 1989), we
have argued for the utility of fitting concurrent rating data
with linear models for the logarithm ofthe frequency (i.e.,
log-linear models). These models enable hypotheses about
specific relationships among the factors to be tested. We
will not reiterate our discussion of model fitting here, but
instead approach the problem with a hypothesis-testing
logic, using null hypotheses of conditional independence.
Although we use models similar to those we have de
scribed before, their interpretation is different.

Tests of Association
In this section, we examine the six categories of effect

described above and describe how they are identified and
expressed in a set of data.

Response bias . We will discuss response-bias effects
the least. They are manifested in the marginal frequen
cies with which the categories are used, that is, in the mar
ginal distributions of the responses X and Y. These distri
butions depend primarily on the attractiveness of the
numerical categories. Thus, the subject may choose to
avoid or to rely on a particular response category, giving
it a lower or higher frequency than might otherwise oc
cur. The distribution is also affected by signal strength,
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Table 2
Marginal Distribution of H and X Based on the Data in Table 1

X

since a strong signal would produce responses that would
fall into the most extreme categories.

The distribution ofcategory usages can be obtained by
collapsing the data to the one-dimensional distributions
ofX or Y responses. However, these distributions are less
informative about category usage than one might expect,
since they are dictated, in part, by the detectability of the
signals. With highly detectable signals, few intermediate
responses appear. Moreover, an evaluation of category
use is not independent of the model that is used to describe
the data. To avoid letting our analysis of association be
come confounded with assumptions about response prefer
ences, we include free parameters in our models that
match their predictions to the observed marginal distri
butions.

Detection. Although the data in Table I form a four
way contingency table, many hypotheses about the rela
tionships among the factors are tested in simpler tables.
One such hypothesis is detection of the signal. This de
tection is the subject's task, and it is the first association
that one should look for in the data. For example, Sig
nal H should be associated with Response X. Because this
association has explanatory primacy over the effects that
relate X to the factors L or Y, the latter two dimensions
can be eliminated from the table. This simplification treats
any detection-like association as actually caused by de
tection, rather than as secondary to some interaction with
the other signal. With this assumption, the association be
tween H and X is examined statistically by collapsing
Table I into a two-factor HX table as shown in Table 2.

In the conventional analysis of Table 2, the frequen
cies are converted to cumulative proportions along the
rows and a receiver-operating-eharacteristic curve is con
structed. The detectability of the H signal is then mea
sured by calculating either d' or the area under this curve.
Another approach, albeit a somewhat weaker one, is to
ask if there is any association between the H and the X
classifications. In elementary statistics, this hypothesis is
tested using a chi-square test of homogeneity. The null
hypothesis for this test is of no association between Hand
X. We denote this lack of relationship by the expression
XAH, which can be read "X is unrelated to H." This
hypothesis is tested in the usual way, using either the Pear
son goodness-of-fit statistic or the likelihood-ratio statis
tic (see Appendix A-I, Equations 2 and 3). For the data
in Table 2, homogeneity is easily rejected with a
likelihood-ratio test statistic of G~ = 381.72. A similar
conclusion holds for L and Y, with GHLAY) = 413.03.
Obviously, the signals are related to their appropriate
responses.

H

a
p

166
47

2

161
65

3

138
66

4

128
92

5

63
136

6

43
294

These tests are relatively weak in that they require no
assumptions about the relationship of the responses to the
subjective stimulation, even that it be monotone. It would
be possible for these tests to identify patterns of respond
ing that are psychologically unreasonable-for example,
a pattern in which Response 5 is used more often in the
absence of the stimulus than Responses 4 and 6 are used
in the presence of the stimulus. In fact, an examination
of association parameters, as described in the more in
teresting case of sensory interference below, shows that
the subject is using the response categori~s in a sensible
manner, with high-numbered responses associated with
the presence of the signal and low-numbered responses
associated with its absence.

Sensory interference. The other types of relationships
postulated above are also tested by null hypotheses of un
relatedness. However, these effects are not bivariate and
must be tested in tables that involve three or more fac
tors. Fortunately, the unrelatedness hypotheses also have
multidimensional forms.

After direct signal association, the next effect that
should be examined is sensory interference. For exam
ple, one can look at the effect of the low-frequency Sig
nal L on Response X that is appropriate to the H signal.
In examining this relationship, the context of the appropri
ate signal needs to be taken into consideration. Because
the X response is heavily influenced by the H signal, it
is inappropriate to test for LX relationships by investigat
ing the hypothesis LA X in a two-dimensional table (see
Appendix A-I). Instead, allowances for the effects of H
are made by working in the three-factor HLX table and
testing the hypothesis L AX IH. When applied to the data
in Table 1, these effects are substantially smaller than
those that involve the HX and the LYeffects. The hypothe
sis LIXIH is retained-compare GMLIXIH) = 4.49
to a 5% critical value of 18.31. The other test shows a
modest effect: GMHAYIL) = 45.26.

A significance test demonstrates the existence of an as
sociation, but does not indicate its form. When HAYI L
is rejected, as it is for Table 1, the HY relationship should
be examined. Two procedures are helpful here, the ex
amination of residuals and the estimation of the parameters
of the log-linear model (see Appendixes A-2 and A-3).
Looking at the residuals is the most direct procedure.
Table 3 shows the standardized residuals from the model
HAYI L. Cells in which there is a failure of conditional
independence have deviations with relatively large abso
lute values. The pattern of values in Table 3 is quite clear.
When the H signal is present, low-numbered responses
are overrepresented (the standardized deviates are posi
tive); when it is absent, they are less frequent. The ef
fects are similar for both levels of L, and indicate an in
hibitory effect of H on Y.

The second approach to interpreting the effect is to fit
a model that expresses dependence. In log-linear form,
this model includes both the terms of H Ayl L and an ad
ditional association term AHY(IIY)' This model is denoted
[HL][HY][LY] and has the log-linear form
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Table 3
Association of H and Y for the Data in Table 1

Deviations from the hypothesis HI Y! L

L=a
H=a -1.40 -1.12 0.83 0.85 1.76 1.00
H =p 1.40 1.12 -0.83 -0.85 -1.76 -1.00

L=p
H=a -2.72 -0.87 -0.51 -0.31 0.34 2.19
H =p 2.72 0.87 0.51 0.31 -0.34 -2.19

Parameters AHY(h,) in the model [HL][HY][LY]

H = a -0.30 -0.18 -0.00 0.03 0.16
H = p 0.30 0.18 0.00 -0.03 -0.16

2 3

Y

4 5 6

0.30
-0.30

With 100 degrees of freedom, there are many ways that
XJ1 YI HL can be violated. On the basis of this test of in
dependence, the possible sources of the effect cannot be
separated. Numerical bias, correlated noise in the chan
nels, the direct influence ofone sensory event on the other
response, and other effects may be involved. Separating
these effects requires further assumptions about their na
ture and is discussed in a later section. However, it is pos
sible to rule out the higher order associations at this stage.
When a bivariate association term, Axy(%J')' is added to the
conditional independence model XJ1 YI HL, giving the log
linear model [HLX][HLY][XY], the fit is fairly good,
G~5 = 92.62. It appears that this two-dimensional term
can explain most of the XY effect, and that higher order
associations involving X, Y, and one or more of the sig
nal levels are unnecessary.

log Ithly

= A+AH(h) +AL(I) +AHL(hl) +An ,) +ALY(I,) +AHY(h,).

This model fits very well, having G~ = 3.25. The bot
tom portion ofTable 3 shows estimates of the parameters
AHY(h,) under this model. Their values substantiate the
analysis of the residuals; the association is such that it cre
ates more high-valued Y responses when H is absent than
when H is present. For example, 5.HY(al) = -0.30, mean
ing that P-all is smaller and there are fewer Y= I responses
when the high-frequency signal is absent than would other
wise be expected. Again, inhibition of Y by H is impli
cated. In interpreting Table~3, one should recognize that
the antisymmetric form of AHY(h,) is an artifact resulting
from the standardization that makes this parameter sum
to 0 over either of its subscripts. One cannot conclude,
for example, that the absence of H actually stimulates a
Y response.

Response association. The final set of independence
hypotheses concern the relationship between the two
responses, X and Y. These associative effects are the most
difficult to untangle, as they subsume both correlated noise
and numerical bias, as well as more complicated effects.
Once again, these relationships are studied in conditional
form. It is quite obvious in Table I that the form of the
XY relationship is influenced by the signals. For exam
ple, when H=L=a, the bulk of the responses have low
numbers, whereas when H=L=p, most responses are
high-numbered. Pooling these disparate forms into an XY
table may attenuate existing effects or induce spurious
ones. Our analysis of the detection process gives some
theoretical justification for conditionalization as well. In
the list of effects, the associations between the signals and
the responses precede those that imply pure XY associa
tion. To express this ordering, tests for the independence
of X and Y should be constructed so that any association
of these factors to the Hand L classifications is excluded.
The appropriate null hypothesis is XJ1 YI HL. This
hypothesis is readily rejected, with the statistic Gioo =
306.45. Some form of response-response association is
present.

An Additive Decomposition of the Effects
A useful characteristic of the conditional-independence

tests is that, if appropriately chosen, they form an addi
tive decomposition of the failure of simple models to fit
the data. The hypotheses tested in the last section are part
of an orthogonal decomposition of the relationships among
the four factors in the data (i.e., among H, L, X, and Y).
To see this representation, it is necessary to introduce two
further models for Table 1. Neither of these models
represents a conditional-independence hypothesis, al
though both represent the intersection of several such
hypotheses. Both can be written in log-linear form.

The simplest of the two models represents the complete
independence of the responses from each other and from
the stimulus, [HL][X][Y]. This model describes the per
formance of a blind observer who generates two random,
unrelated responses. Rejection of this model implies that
there is some association between the stimulus and the
response, or between the two responses. The second
model, [HL][HX][LY], adds associations between the sig
nals and their proper responses to the blind-observer
model. An observer whose responses are influenced only
by the signals that are called for by the task would fit this
model. Rejection of this model implies the presence of
associations other than those explicitly demanded by the
task.

The relationship between tests of these models and tests
of the conditional-independence hypotheses are shown in
Table 4. Essentially, this table shows the decomposition
of the total effect into a series of separate tests. The
random-response model [HL][X][Y] represents a com
posite hypothesis that combines five types of independence
or conditional independence. The value of (? by which
this model is rejected is partitioned in the next three lines
into components associated with the two proper responses
(indicated by the hypotheses H J1 X and L J1 Y) and a test
of the hypothesis that these are the only relationships ob
served. In the final three lines, the latter statistic is fur
ther divided into parts associated with the three extra
instructional associations. Throughout, both G2 and the
degrees of freedom are additive.
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ANALYZING RESPONSE-RESPONSE
ASSOCIATIONS

Table 4
Tests of Independence and Conditional-Independence Hypotheses,
and Information-Transmission Statistics for the Data in Table 1

Hypothesis or Model G2 df T

At this point we have gone as far as we can with an
analysis based on conditional-independence concepts. The
statistic G2(XJI. YI HL) = 306.45 clearly indicates the
presence of response-response associations in the data of
Table 1. The information-transmission statistic indicates
mutual influence of the responses that is almost as large
as the transmission between the appropriate signal and the
response. A satisfactory analysis of the performance must
address this effect. However, at this point there are no

An index of the size of the effects in Table 4 is also
useful. The value of (? is unsatisfactory here, as it is in
fluenced by the size of the sample. For the tests of inde
pendence, a natural choice for this measure is the infor
mation transmission between factors (see Appendix A4).
This quantity is essentially a rescaling of G2/N, but can
be interpreted as the number of bits of information in one
classification that is carried over to the other. This metric
allows for comparison of the sizes of the effects. In this
rather difficult detection task, each signal transmitted only
about 0.2 bits of information to the response (out of a
potential maximum of 1 bit). The residual interresponse
effect is substantial; the XY transmission of 0.158 bits is
about 80% of the transmission from either stimulus to its
proper response.

The decomposition of Table 4 is not unique but is de
termined by the ordering of the effects. For example, it
places the direct association ofH and X before the condi
tional association ofL and X given H, or ofX and Y given
Hand L. One could order the factors differently and obtain
a different decomposition. As in most hierarchical series
of tests in statistics, the structure that is revealed is par
tially driven by theory. We believe that our organization
of the effects is sensible, but we recognize that a re
searcher who approaches the data with a different view
of the perceptual process might choose to order the as
sociations differently and to create a different partition.

To summarize the results of these tests, Table 4 shows
that (1) the signals are substantially detected, (2) detection
is not all that is going on, (3) there is no tendency for
L to influence the X response, but there is some influence
of H on Y, and (4) there is substantial association between
the responses. In the next section of this paper we ex
plore this XY association.

further factors in the design that can be used as the basis
of a test of unrelatedness. To gain further understanding,
we must move from hypotheses that express the discon
nection of two classifications to models that describe the
nature of their connection.

To start the analysis we return to the list of interactions
in the detection process that we introduced above. One
can account for the XY association in several ways-as
correlated sensory noise, as a bivariate-response interac
tion, or as some interaction ofcauses. A clean separation
of these effects would be ideal. However, without a
method to record the interior steps of Figure 1, an un
ambiguous separation is impossible. If either correlated
noise or bivariate-response interaction are allowed to take
fully general forms, then either could explain any ob
served result. To make a separation, it is necessary to re
strict the forms taken by these effects.

A partial separation of the causes of the response
response association can be made if some additional as
sumptions about response interaction are introduced.
Three assumptions are plausible and drive our analysis
below.

I. Sensory noise has a simple relationship to the
categories. Following the standard assumptions ofbivari
ate signal-detection theory (e.g., a Gaussian noise distri
bution) this portion of the association looks like linear
correlation when related to a scaling of the categories that
preserves their order.

2. Effects that involve numerical bias, being more cog
nitive in nature, are related by some simple rule to the
actual numbers used by the observer. They do not have
the bilinear form of sensory noise.

3. Strange-looking associative effects are most likely
to be the result of an inadequate separation of sensory and
numerical effects. There should be no distributions with
isodensity contours that look like beans, waffles, or other
improbable objects (cf. Klein, 1985).

These three assumptions suggest how the association
effects might be separated. First, fit a model to the data
that allows for direct stimulus effects and that represents
the XYassociation in bilinear form. Several forms for this
model are discussed below. Second, examine the residuals
from this model and attempt to identify patterns that are
closely related to the use of numbers. Third, exclude these
numerical patterns from the data or describe them with
a model, then refit the bilinear association models to ob
tain more accurate estimates of its parameters.

In good part, this program of analysis is based on am
biguous criteria. It is exploratory, not confirmatory, and
often needs to be modified. For example, in data that show
strong numerical regularities, it may be preferable to look
for the patterns of numerical use before fitting the associ
ation model. Eventually, any conclusions should be
replicable with other data. In particular, we would ex
pect that effects related to the use of numbers should be
present in other data from the same observer and that ef
fects related to correlated noise should show consistency
over observers.

0.197
0.213

0.023
0.002
0.158

Random responses, [HL][X][Y] 1150.95 130
HAX 381.72 5
LAr 413.03 5
Proper responses, [HL][HX][HY] 356.20 120
HArlL 45.26 10
UXIH 4.49 10
XlrlHL 306.45 100
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To examine the response relationships, the data are fit
with a series of models that describe specific forms of
association. Thus, we will next describe a class of models
appropriate to the association patterns of bivariate rating
data. We will then return to the analysis of Table 1.

The Multiplicative-Association Model
There are many ways to represent an ordinal pattern

of XY association. Researchers familiar with signal
detection models in psychophysics will find the bivariate
Gaussian distribution to be the most familiar example of
such a model. This model imposes a bivariate distribu
tion on an underlying continuum in which the joint per
cept is represented. The general bivariate normal distri
bution has five parameters: two means (P,x and p,y), two
variances «(1; and (1~), and a correlation (e). The correla
tion measures the association between the responses. Us
ing this model, one can approach Table 1 by fitting the
bivariate normal distributions to each of the HL combi
nations, estimating the parameters, then comparing the
values of e across the various stimulus conditions.

This description is natural and has the advantage that
it is relatively easy to interpret. However, it suffers from
three important defects relating to its computational
aspects. First, the parameters of a categorized bivariate
normal distribution are not easy to estimate. The estima
tion problem has been solved-the correlation here is con
ventionally known as the polychoric correlation-but the
associated algorithms are not simple (Beardwood, 1977;
Martinson & Hamdan, 1975). A correlation coefficient
based on the numerical category ratings-the integers 1
through 6 here-cannot be calculated simply since there
is no assurance that the responses are equally spaced with
respect to the Gaussian distribution. 3 Second, it is difficult
to extend this model, particularly its parametric-estimation
scheme, to multiple stimuli. This difficulty makes it hard
to fit models and examine hypotheses that describe several
stimulus conditions at once. Finally, it is hard to accom
modate exceptional cells into the analysis or to conjoin
a Gaussian-association model with a model for numeri
cal bias. For these reasons, and to maintain continuity with
the association-based analysis, we tum to a different class
of description for these data.

An effective choice for the present problem is a model
known as the multiplicative-association model (Goodman,
1979). An introduction to this model is provided in Ap
pendix A-5. To summarize that explanation, for a two
way contingency table the multiplicative-association model
depends on six types of parameters: (1) a parameter x
that depends most directly on the overall sample size, (2) a
set of parameters ax associated with the relative frequency
of observations in the rows of the table, (3) a comparable
set of parameters (3y associated with the column frequency,
(4) a set of parameters ~x that express the scaling of the
rows with respect to the association, (5) a comparable set
of parameters 7Jy for the columns, and (6) a single param
eter cf> that indicates the magnitude of the bilinear associ
ation of the ~ to the 7Jr As a description of the expected
frequencies in the table, the model takes the form of a

log-frequency equation in which a product term is ap
pended to the usual additive relationship under in
dependence,

log p,xy = x + ax + (3y + cf>~x7Jy.

The association component of this model is product term
cf>~x7Jr This form, which is linear in both ~ and 7JY' closely
approximates the association in the Gaussian distribu
tions postulated by signal-detection theory (see Appen
dix A-5b). The relationship between the correlation e in
the bivariate Gaussian model and the association param
eter cf> of the multiplicative-association model is

e v'1+4cf>2 -I
cf> == -- or e ==

l-e 2 2cf>

(see Equations 24 and 25). Unlike the direct Gaussian
model, the multiplicative-association model is readilyap
plied to frequency-table data.

The parallel to the Gaussian model allows the
multiplicative-association model to be used to represent
the detection data. When so applied, the scale values ~x

and 7Jy roughly indicate the centers between the cutpoints
that define the categories. The multiplicative-association
model is more general than a categorized bivariate Gaus
sian distribution, since it does not impose a relationship
between the marginal-frequency parameters, ax and (3y,
and the association-scale parameters, ~ and 7Jy. In the true
Gaussian model, a single set of cutpoints determines both
marginal distributions and the association parameters (see
Equations 21-23). We have found that free estimations
of ~x and 7Jy often lead to instability of the parameter esti
mates. Accordingly, in our analysis we assign values to
these parameters a priori (see Appendix A-5a). We con
sider two versions of the model. In the uniform-spacing
model the parameters are chosen to reflect equal associa
tion between adjacent categories. In the logistic-spacing
model they are chosen to reflect the width of the
categories, by extracting them from a Gaussian distribu
tion fit to the marginal distributions.

As described, the multiplicative-association model ap
plies to the two-dimensional table from a single stimulus
condition. However, the concurrent detection ratings in
Table 1 also depend on the four stimulus conditions. For
our analysis of this task, we wish to fit the model simul
taneously to the full table. In doing so, we are free to let
the parameters of the model vary across the stimuli or
to hold them to a single value. The parameters of the mar
ginal distributions, x, ax, and (3y, are not of central con
cern, so we allow them to vary with the stimulus condi
tion as needed to fit the data best. The values of the scales,
~x and 7JY' are fixed by the spacing model mentioned above
and do not vary. Appending the subscripts h and l to in
dicate signal variation, our model is

log P,hlxy = Xh/ + ahb + (3hly + cf>hl~x7Jr

Variation of the parameter cf>, which measures the mag
nitude of bilinear association is of substantial interest. To
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Figure 2. Hierarchy diagram showing the fits of association models
to the data from Table 1.

examine it, we consider two versions of the multipli
cative-association model. In the heterogeneous association
version we allow cJ> to take different values in each stimu
lus condition, and in the homogeneous association ver
sion we constrain it to a single value. Thus, in all we
investigate four association models, depending on
(1) whether cJ> is fixed or free, and (2) whether ~x and 'T/y
have a uniform or a logistic spacing.

does not require the form of the association to be mul
tiplicative. This model would be rejected if the form of
the XY association changed appreciably with the differ
ent stimuli. At the bottom of the figure is a model labeled
"Saturated." This model contains as many parameters
as there are data cells. It fits perfectly and tests nothing;
it is the endpoint that ties the hierarchy of models together.

Several conclusions follow from the results in Figure 2.
First, none of the multiplicative-association models fits
very well. This finding suggests that models based on a
single latent noise distribution are unsatisfactory. Second,
there is still some evidence for correlation effects, as in
dicated by a change ofG: = 13.8 between XIYI HL and
the uniform-spacing model, and a comparable change of
G: = 12.0 for the logistic-spacing model. Third, there
remains a substantial association effect, since the differ
ence in G2 between either the uniform-spacing model or
the logistic-spacing model and [HLX][HLY][XY] is sub
stantial.

The situation with respect to associational homogeneity
over the stimuli is less clear. As noted earlier, the model
[HLX][HLY][XY] fits reasonably well, the G2 statistic
not being sufficient to reject it. This indicates that one
need not look for heterogeneity of association. However,
the differences between the homogeneous and the heter
ogeneous versions of either the uniform-spacing model
or the logistic-spacing model are significant (Gi = 37.0
and 43.4, respectively). The sample estimates confirm this
heterogeneity. Estimates of 121" for the uniform-spacing
model, are 0.12, 0.04, -0.24, and -0.28, for conditions
00, ap, pa, and pp, respectively, including a correction
for categorization (Equation 26). Together, these results
suggest that homogeneous association is tenable only if
one abandons the assumption that the association involves
only Gaussian noise.

Deviations from the
Multiplicative-Association Model

The failure of the simple multiplicative-association
models to fit the data in Table 1 must be attributed to
causes of association other than bivariate noise. Accord
ing to our assumptions, one source of these effects may
be response patterns. One way to look for these patterns
is to examine the residuals from a fit of one of the bi
linear association models. The homogeneous version of
the uniform-spacing model is a good starting point. It is
fitted, expected frequencies are found, and the stan
dardized residuals are calculated (see Appendix A-3,
Equation 9). These are examined for sensible numerically
related patterns.

Table 5 shows these deviations. In such a table, it is
useful to flag the most deviant cells. As in Table 3, sig
nificance tests per se are not useful here, but marking
roughly 10% of the most deviant cells is valuable. In
Table 5, boxes have been drawn around cells with
Id"IXY I> 3. The most prominent deviations are in the cells
where X = 1 and Y= 1. This excess is most striking in the
a-a condition, but positive effects are also evident in the
other tables. The remaining cells do not show such an ob-

Heterogeneous logit

Gio = 251.08

Homogeneous logit

G~9 = 294.47

Saturated

GJ = 0.00

XjlYIHL
G;oo = 306.45

Homogeneous uniform

G~9 = 292.62

Heterogeneous uniform

G~6 = 25.5.65

The Multiplicative-Association Model
for Concurrent Detection

In the concurrent detection data of Table 1, a substan
tial XY association was deemed to be present. We noted
in our analysis of the task that an important portion of
this association (the portion due to correlated noise in the
channels) should reside in a bilinear component. Thus,
we expect that some form of the multiplicative-association
model may be a good approximation of the data.

Fits of the multiplicative-association models to the data
in Table 1, as expressed by values of G2

, are shown in
Figure 2.4 This figure is constructed in the form of a hi
erarchy diagram, with models at the bottom containing
those connected to them from above as special cases.
When two models are connected by a line or a series of
descending lines, the lower model contains all the
parameters 'of the upper model, along with some extra
parameters. The statistical significance of these added
parameters is measured by the difference in the G2 statis
tics of the two models. As noted in Appendix A-2, these
tests are more reliable than tests of overall fit, and are
less affected by small cell frequencies.

Three models other than the multiplicative-association
model are shown in Figure 2. At the top is the model
Xli. YI HL, the deviations from which are to be explained.
In the middle is the model [HLX][HLY][XY], which im
plies that the pattern of association is the same in each
stimulus condition. Unlike the homogeneous-cJ> model, it



Figure 3. Hierarchical diagram of the fits of association models
to the data from Table 1 with ceU (1,1) treated as a structural zero.

Heterogeneous logit
G~, = 184.15

Homogeneous logit

G~s = 201.57

Saturated
Gg = 0.00

XjLYIHL
GJ,; = 254.48

[H LX][HLY][XY]
Gi, = 88.61

Heterogeneous uniform
G~, = 192.95

fitted, the statistics in Figure 3 are obtained. These in
crease the quality of the analysis in several respects. First,
there is a general improvement in the fit, with G'- dropping
substantially for all models except [HLX][HLY][XY].
Thus, the four cells are, indeed, a significant anomaly with
respect to the single-eomponent association models. Sec
ond, the greatest beneficiaries of this improvement are
the homogeneous-association models. For example, G2
for the homogeneous logistic-spacing model drops by 92.2
on 4 degrees of freedom. As measured by the differences
in their G2 statistics, these models are now much further
from conditional independence (CPt = 46.9 for the logistic
spacing model) and much closer to the heterogeneous
association models (~ = 17.4). Although the latter statis
tic is still significant, it indicates much less variation in
cP. When converted to estimates of the bivariate correla
tion e, the four association values are -0.10, -0.02,
-0.28, and -0.34. Under the homogeneous-association
model, these are replaced by the common estimate -0.25.
This value is evidence for a modest source of negatively
correlated noise. This constant association is not appar
ent in an analysis of the data at a more superficial leveL
The negative association can be given a psychophysical
interpretation and appears to be of substantive importance
(Hirsch, Hylton, & Graham, 1982; Olzak, 1986).

At this point one might begin another cycle of residual
examination to try to develop a more elaborate model for
response tendencies. Unfortunately, no particularly ob
vious patterns are present. It appears that whatever as
sociation remains in Table 1 is distributed over the com
plete table. Although models for this pattern of association
can be constructed, we do not follow them here.

A more productive approach is to tum to other data to
see whether a similar result is obtained. The experiment
from which the data in Table 1 were recorded included
other conditions that involved different spatial frequency
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Table 5
Standardized Deviations from the Homogeneous-Association

Uniform-Spacing Model Applied to the Data in Table 1

X

Stimulus Y 1 2 3 4 5 6

1 16.4611-3.121 -1.46 -2.10 -0.87 1.06

2 -1.97 2.00 0.65 -2.24 1.54 0.94

H=a 3 -2.13 1.70 1.15 1.33 -1.33 -1.79

L=a 4 -0.66 0.20 -0.66 2.58 -1.52 -0.43

5 -1.50 -1.40 1.33 2.18 1.03 -1.06

6 -0.44 -0.03 -1.46 -0.59 13.54 1 1.07

1 13.28 1 -0.71 -0.81 -1.38 -1.40 1.47

2 0.08 -0.30 -0.35 -0.33 1.17 0.09

H=a 3 0.89 1.31 0.20 -0.88 -1.17 -1.07

L = P 4 -0.16 0.91 0.61 0.39 -1.49 -1.29

5 -1.39 -0.38 0.55 0.89 1.33 -0.66

6 -0.21 -0.55 -0.50 0.19 0.65 1.40

1 0.56 -1.51 -1.31 -2.21 -1.70 13.361

2 -0.86 -1.04 0.74 0.08 2.88 -1.60

H =p 3 0.90 0.58 1.06 0.99 -0.42 -1.49

L=a 4 -0.30 2.44 -0.27 2.17 -1.44 -1.30

5 0.42 0.85 -0.51 -0.72 0.07 -0.05

6 -0.83 -0.90 0.36 0.21 -0.11 0.81

1 1.52 -1.18 -0.85 -2.43 -1.70 2.55

2 -1.33 0.77 -1.76 -1.75 0.30 1.55

H =p 3 -0.72 0.00 -0.14 0.97 0.41 -0.47

L=p 4 -0.11 -0.81 0.71 2.70 -0.04 -1.40

5 -1.08 1.65 0.20 0.24 1.82 -1.82

6 1.26 -0.56 0.88 -0.35 -0.84 0.02

Note-Boxed cells indicate deviations greater than ±3.

vious pattern. Negative deviations elsewhere in the X= I
column and Y= 1 row are likely to be a consequence of
the fact that the fitting algorithm forces the observed and
expected row marginals to agree, so that an excess of ob-
servations in one cell is coupled with deficiencies else-
where. These observations suggest a response pattern in
which denials of both signals occur too often.

Having identified a potential source of association, we
next check to see how its removal affects the model. An
easy way to do this is to exclude the suspect cells from
the test. One of the advantages of working with the
multiplicative-association model is that cells can be treated
as "structural zeros" that are removed from the analysis.
The specified cells make no contribution to either the es-
timation of the parameters or to the test of the models.
When the same model is fitted to complete and incom-
plete tables, the results are hierarchically related, so that
differences in (? indicate the extent to which the deleted
cells are a substantial anomaly. S

When the cells with responses X= Y= 1 are deleted from
the analysis and the models for bilinear association are
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signals and different exposure times. An examination of
these conditions shows a remarkably similar pattern of
results. Response-response dependence is clearly present,
this pattern appears relatively homogeneous over the
stimulus conditions (although not completely so), and the
(1,1) response cells are a significant anomaly in the data,
the removal of which makes the remaining analysis more
consistent.

SUMMARY

Our analysis of Table 1 has identified five influences
on the responses:

1. The detection ofH, indicated by its association with
X.

2. The detection of L, indicated by the comparable LY
association.

3. A negative effect of the high-frequency signal on the
low-frequency response, indicated by the rejection of the
hypothesis H j YI L. In terms of our picture in Figure 1,
this association is viewed as an inhibitory influence on
the input channel. There is no comparable influence of
the low-frequency signal on the high-frequency responses.

4. A tendency for the subject to indicate a complete ab
sence of both responses more often than is consistent with
the remainder of the responses. We believe this was a
response strategy and expect it to appear in other data for
this subject.

5. A modest negative interaction of the responses. In
the representation of Figure 1, this results from the
presence of negatively correlated noise in the combined
percept. This noise source does not depend on the
stimulus.

This analysis provides a relatively fine-scale partition
ing of the interactions in the signal-detection task. We em
phasize that it would not have been possible without the
use of the concurrent detection task and without the
detailed fitting of statistical models. Although we recog
nize that some aspects of our interpretation may be sub
ject to argument (particularly those related to the anal
ysis in Figure 1), we believe that the picture we have
obtained is both more simple and more clear than a less
elaborate analysis could have provided.
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Heref. and f" are the marginal frequencies for categories U= u
and V=v, N is the total number of observations, and p..v is the
expected frequency in the uvth cell. 6 These expected frequen
cies are compared to their observed counterparts using statis
tics such as the Pearson goodness of fit statistic,

ular about this distinction here and will use the term indepen
dence to refer to both situations. For a table with rows indi
cated by the factor U and columns indicated by the factor V,
we denote this lack of association by U.B. V.

Under the null hypothesis U.I. V, the expected cell frequen
cies conditional on the observed marginal distributions of U and
V are calculated by the usual formula for a chi-square test

The generic index i in these formulas runs over all cells in the
table. As test statistics, either Xl or G' are satisfactory, although
because of its relationship to information theory (see Appen
dix A-4) some interpretative advantage attaches to G2

• To sim
plify our exposition, we sometimes attach a hypothesis to its
test statistic, for example, by writing G2 (U1 V).

To complete these tests as conventionally run, the statistics
are compared to a chi-square distribution with degrees of free
dom equal to the product of the number of rows minus I multi
plied by the number of columns minus I. We denote the degrees
of freedom by subscripts, for example by writing X~ and G~.

The use of the chi-square reference distribution requires cer
tain assumptions to be made about the data. First, the observa
tions must be independent and identically distributed. For
psychophysical data of this sort, these assumptions are not auto
matically satisfied. The data we considered were collected from
a single subject during several sessions, thus raising questions
about the independence of observations and their homogeneity
from day to day. Although it is difficult to assess the magnitude
and effect of these violations, we believe that the assumptions
were moderately well satisfied. Trial-to-trial independence is
a standard assumption for psychophysical data, and the in
homogeneities, while potentially more serious, are probably
minor.7 If independence is approximately satisfied, the total fre
quency in the table must also be large before a chi-square ap
proximation can be used. In general, it is desirable for most of
the cells to have expected frequencies appreciably larger than
1. Our data did not always satisfy this requirement. Accord
ingly, in this paper we calculate the test statistics, but approach
their interpretation with caution, particularly as tests of the over
all fit of a model. We use the statistical values primarily as in
dications of relative fit and do not consider effects to be real
simply because they are statistically significant, but require in
addition that they be of appreciable size.

When one moves to a multiway table, hypotheses of unrelated
ness assume a more complex form. One important hypothesis
asserts that two factors, say U and V, are unrelated at each level
of another factor, W. The hypothesis U1V is simultaneously
tested at each level w of W. To indicate the conditional status

(3)

(2)
X

2
= ~ u;- p-,)2

i.J - ,
cells iLl

G2 = 2 E.t:log~ .
cells iLl

or the slightly less familiar likelihood ratio statistic,

APPENDIX

Statistical Theory

NOTES

I. These are not the same data that were previously analyzed by 01zak
and Wickens (1983).

2. The reader should not confuse the numerical frequency with which
a particular response was made with the spatial frequency of a stimulus
component.

3. Even if appropriate, this estimate is biased downward due to the
effects of categorization (Ashby, 1988). Some recovery from this bias
is obtained from Sheppard's correction, which is discussed with respect
to other estimates below (Equation 26).

4. The calculations in this paper were done on an mM PC. Source
and executable versions of the programs, written in TurboPascal (Borland
International, Inc.), can be obtained by forwarding a diskette to the first
author.

5. An excess of frequency in a selected set of cells can also be ac
commodated by incrementing all the cells by the same amount. This
is a simpler model than that created by excluding the cells, since it differs
from the unadjusted model by only a single degree of freedom. However,
the psychological interpretation of the multiplicative increment is un
clear, and we will not pursue it.

6. A more precise notation for the marginal sums replaces the
summed subscripts by dots or pluses, writing the marginal distribution
for U=u asI... and the marginal distribution for V=v as Av. The infor
mal notation of Equation I, which drops the summed subscripts, is less
formidable and suffices for this paper. Another convenience of the present
notation is that the formulas do not depend on the number of extrane
ous factors; thus, Equation I gives expected frequencies for the hypothe
sis U1 V in a k-way table for any k.

7. Some evidence for this contention has been collected by Emily
Howard at UCLA, who examined a sequence of identification observa
tions for sequential correlations. She found that the distributional as
sumptions were satisfied for practiced subjects but failed for naive sub
jects (Howard, MacKinnon, Woodward, & Thomas, 1984).

8. See Agristi & Yang (1987) for an illustration of this effect fOT
the multiplicative-association model.

9. In these papers, Goodman refers to the multiplicative-association
model as the row-and-column effect Model II.

10. Of course, not all pairs are necessary to determine the associa
tion; for example, the (I-1)(J-I) tables formed from adjacent pairs
of rows and adjacent pairs of columns are sufficient.

II. Goodman refers to this model as the uniform-association model,
since the association between adjacent categories is always the same.
Our designation emphasizes the scaling of the association.

12. Adjustment equations for the multiplicative-association model when
both ~. and '/. are free are given by Goodman (1979). The resulting
model is not log-linear, and must be analyzed somewhat differently.
Specifically, the reference of differences in X" or 0 2 to a chi-square
distribution under the hypothesis of no association is no longer correct;
a Wishart root distribution is required (Haberman, 1981).

In this section we describe the statistical basis of our anal
ysis, both for readers for whom some of our analysis is un
familiar and for those who wish to duplicate the analysis. For
a more extensive discussion of the statistical models, see Agresti
(1984) or Wickens (1989).

A-I. Independence and Conditional Independence
A fundamental hypothesis in a two-way contingency table is

the unrelatedness of the row and column categorizations. Ifboth
attributes have been sampled, this lack ofassociation corresponds
to probabilistic independence, whereas if the row classification
is determined as part of an experimental design, unrelatedness
represents homogeneity of the columns. We will not be partic-
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Table 6
Expected Frequency Formulas and Degrees of Freedom for the Tests of the

Independence and Conditional-Independence Hypotheses in Table 4

Hypothesis Estimated Degrees of
or Model Table Expected Frequencies Freedom

[HL][X][Y] HLXY {thl%}' = fhlj.f,/N' (HL-I)(X-I)(Y-l)
HIX HX {t"" = fhj./N (H-l)(X-l)
Ll Y LY {t,y = fif,/N (L-l)(Y-l)

. [HL][HX][LY] HLXY {thl%}' = fhlf""fiy/fhfi (HX-l)(LY-I) - (H-I)(L-I)
I HIYIL HLY {thly = fhlfiy/fi L(H-l)(Y-l)

LJLXIH HLX {thly = fhd",,/fh H(L-I)(X-l)
XIYIHL HLXY {thl%}' = fhlxfhly/fhl HL(X-I)(Y-l)

When tested; this hypothesis has W(U-l)(V-l) degrees of
freedom.

For reference, Table 6 shows the expected frequencies and
degrees of freedom needed for the tests of the conditional
independence models we use in our analysis of association.

A-2. Log-Linear Models
The independence model U1V is equivalent to a log-linear

model for the expected frequencies. As the product fonn of
Equation I implies, this model expresses the expected cell fre
quencies (p.,..) as the sum of tenns associated with the levels of
U and V,

(9)

These deviations are closely related to the contributions of each
cell to the test statistics; the Pearson statistic XI in Equation 2
is the sum of the df.

In order to interpret the standardized deviates, it is helpful
to know their sampling distribution. Unless N is small or jl is
near either 0 or N, this distribution is close to the unit nonnal,

The number of degrees of freedom for this test is the difference
in the degrees of freedom of the tests of the two models. In ef
fect, Equation 8 provides a test of the hypothesis that the
parameters ofM2 take the particular values that reduce the model
toM,.

The difference statistic of Equation 8 obeys different rules for
convergence to a chi-square distribution than do the simple G2
statistics that assess overall fit (Habennan, 1977). The quality
of the chi-square approximation depends on the total sample size
per degree of freedom of the difference statistic, not on the ex
pected frequencies in the individual cells. Thus, when the sam
ple is large, the test is relatively unaffected by small expected
frequencies. 8 In the present analysis, greater trust can be placed
in these tests than on the tests of overall goodness of fit.

A-3. Standardized Residuals
When a model (such as the one implied by a test of unrelated

ness) is rejected, one has evidence for the existence of an as
sociation but no information about its fonn. One good way to
explore the association's fonn is to examine the way the ob
served frequencies differ from those expected under the model.
This comparison can be made by examining the standardized
residuals. These quantities measure the error of the prediction
relative to the square root of the expected values,

so a shorthand method to express them is helpful. The most use
ful such models are hierarchical, in that the presence of a multi
factor tenn implies the inclusion of all the simpler tenns in the
same factors. Such models are denoted by listing only their high
order tenns. Therefore, the model of Equation 5 is denoted
[U][V], while that of Equation 7 is denoted [UW][VW]. Not
all hierarchical log-linear models have simple fonnulas for the
expected frequencies. However, those used in this paper are sim
ple and are shown in Table 6.

A comparison of the fit of two related models is often valu
able. Two models, M, and M

"
are hierarchically related when

the parameters of M, are a proper subset of the parameters of
M2 • A likelihood-ratio test comparing two such models is ob
tained by taking the difference in the G2 statistics that test the
quality of their fits,

G2(M2 1M,) = G2(M,) - G'(M,) (8)

(5)

(6)

(4)

log p.,.. = A + AU(K) + AV(.).

EAU(K) = 0 and EAv(.) = O.
u

of this hypothesis, it is denoted U1 V Iw. It is often referred
to as a hypothesis of conditional independence. A conditional
independence hypothesis is not the same as pure independence:
not infrequently data is found for which U1 vi w, but for which
U1 V fails when the table is collapsed over W.

Like the independence hypotheses, the hypotheses of condi
tional independence determine sets of expected frequencies and,
subject to the same concerns about the assumptions, are tested
by X2 or G2 statistics. The expected-frequency fonnula is the
same as Equation I, except for a conditioning of all parts on
the level of W:

In this equation, all parameters on the right side are denoted
by A, with uppercase subscripts to identify the tenns that refer
to the U and the V dimensions. The lowercase subscripts, u and
v, identify the particular level.

More parameters are present in Equation 5 than are neces
sary. Without additional constraints, the value of Ais confounded
with the average values of AU(K) and AV(.). To separate the param
eters, the subscripted parameters are chosen to sum to 0 over
each index:

Similar constraints apply to other log-linear models.
The conditional independence hypothesis U1 V IW is equiva

lent to the log-linear model

logp.,.... = A +AU(K) +AV(.) +AW(w) +AUW(KW) +AVW(';")' (7)

The parameters AUW(KW) and AVW( ... ) in this model allow associ
ation between these factors; the lack of a tenn that depends simul
taneously on U and V implies their conditional independence.

There are many log-linear models that do not describe sim
ple hypotheses of independence or conditional independence,
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somewhat less variable if many parameters have been estimated
in fitting the model. On this basis, there is a temptation to refer
them to standard criteria for significance. Indeed, large devia
tions, say greater than ±3, are likely to be real, but it is unwise
to assign too much importance to individual effects. Beyond the
usual problems of sample size and the independence and
homogeneity of the observations, there are several more difficul
ties. One problem is simultaneous testing; there is one residual
for each cell of the table, so the chance of an accidental Type I
error somewhere in the table is much greater than the nominal
significance level. Moreover, the residuals are linked together
by the model that has been fit, so they are not independent of
each other. A substantial deviation in one cell influences the fit
in the remaining cells. It is usually more revealing to look at
the pattern of deviations over the table than to examine single
cells.

A-4. Information Theory and Association
The hypotheses of unrelatedness are closely related to the anal

ysis of the association in terms of information theory (Garner,
1962; McGill, 1954). In this analysis, the information or en
tropy associated with a distribution V is estimated by

Equation 10 using only the data at level v of V, then the condi
tional entropy of U given V is

Hv(U) = EH(UI v)P(V=v).

The conditio1Ul1 info171Ultion transmission, between classifica
tions U and W given a third factor V is defined by conditioning
the terms of Equation lion V, to give

Tv(U,W) = Hv(UW) - Hv(U) - Hv(W). (13)

The conditional information transmission is related to the
hypothesis of conditional independence as in Equation 12,
Tv(U, W) = (log,e/2N)G'(UI wi V).

A-5. The Muitiplicative-ASsociatioll Model
To go beyond the tests of unrelatedness, the specific form of

an association must be described. The multiplicative-association
model is one such description. This model is one of several as
sociation models that were proposed by Goodman (1979; see
also Goodman, 1981, 1984, 1985).9 In these models, a numer
ical score ~. is assigned to each row category and a score 7/.
to each column category of a two-way table, and the model is
formed by adding a multiplicative term to the log-linear model
for independence (Equation 5),

u

u

log p... = x + a. + f3. + cf>~.7/.. (14)

(16)

(15)

(17)E....~~ = E....7/~ = 1,
u v

I 8 1
"'u"'u I /Lu/Luog = og-- = og---.
"'u"'" /Lu/L"

These constraints suffice to identify the parameters uniquely.
To understand the multiplicative-association model, it is help

ful to see its implication for the pattern of association as meas
ured by the logarithm of the odds ratio or cross-product ratio.
For a 2 X 2 table, the odds ratio 8 is the ratio of the cells on
one diagonal of the table to those on the other. We denote the
population cell probabilities by ....., so that p... = N.....; then

(cf. Equation 6). The parameters ~. and 7/. are not determined
as to center or scale (as is evident from the form of Equation 18,
below). To identify them (and cf», two constraints are neces
sary. For our data, the most practical standardization fixes their
mean and variance with respect to their marginal distributions.
We denote the marginal probability distributions in the rows and
columns by .... and ...., respectively. Then fix the means of ~.

and 7/. to 0,

The multiplicative-association model in Equation 14 is over
parameterized. As with the independence models, the parameters
a. and f3. are identified by restricting their sums,

and their variances to 1,

If there is no association in the table, then the corresponding
probabilities in the two rows (or columns) are proportional, so
that 8= 1 and log 8=0. The statistic is positive when the major

where P( .) is the estimated probability of an event. The unit
of information is the binary digit, or bit. For a classification
into C categories, the maximum entropy is obtained when!. =
NIC for all v, in which case H(V) = logIC. For the six-level
response measures in this study, the maximum is 2.585 bits.

The entropy of the joint distribution of two variables, H(UV),
is defined by a formula similar to Equation 10 using the joint
proportions, I..IN, and summing over both variables. For any
distribution, H(UV) :5 H(U) + H(V), with equality holding
only when U and V are unassociated. The information trans
mitted from U to V is the difference between the maximum pos
sible joint entropy and the actual value,

T(U,V) = H(U) + H(V) - H(UV). (11)

If there is little relationship between the two classifications in
the U-Vtable, then T(U, V) "" 0, whereas if the classifications
are strongly associated, then T(U,V) nears its maximum value.
No more information can be transmitted than is available in the
smaller classification, so T(U,V) :5 min{H(U), H(V)}. In the
present study, transmission between the dichotomous signals and
the response is limited to 1 bit.

Some algebraic manipulation of Equations 10 and 11 shows
that they are closely related to the likelihood-ratio test statistic
under independence, G'(UI V) (Equations 1 and 3), with

log,e G'(UJV)
nU,V) = 2N G'(UIV) = 0.72135 N (12)

Thus, T(U,V) = 0 if and only if UIV, and tests of both
hypotheses are provided by the G' statistic. Unrelatedness and
information transmission are complementary ideas, with unre
latedness indicating a lack of transmission and the information
transmitted measuring the magnitude of an association.

In a two-way classification, the conditio1Ul1 entropy of one
classification given another is the weighted average of the sim
ple entropies at each level of the conditioning factor. For ex
ample, if H(UI v) is the entropy of U calculated according to



ASSOCIATION IN CONCURRENT DETECTION 527

Substitution of these expressions into Equation 19 and taking
the logarithm gives

ex.y.
log p... "" K + A. + B. + , (20)

uxuy(l-e2)

I [( y-p.y )2 2e p.xy] + _--=e=--xy,--_
2(1- e 2) Uy UxUy uxuy(l- e 2)

The argument of the exponential is quadratic in x and yand can
be rewritten to separate the term involving the product xy. The
exponent becomes

(19)

I [( x - p'x )2 2ep.yx ]
2(I-e2

) Ux UxUy

p.•• = N(ilx.)(l1y.)!(x•• ,y••),

UxUy(l-e2)

where

- 2e( x::x )( y::y ) + ( y::y nl.

where ilx. and l1y. are the dimensions of the rectangle and
(x•• ,Y••) is the interior point. To a reasonable approximation,
x•• and y•• may be replaced by points that depend only on u and
v, respectively.

Now insert a bivariate Gaussian distribution into Equation 19.
The Gaussian density function is

!(x,y) = 21rUXUy~2 exp( 2(1~le2) [( x::x r

to the axes. By the mean-value theorem, the probability of an
observation in one of these rectangular regions is equal to the
area of the rectangle multiplied by the value of the density func
tion at an interior point. For a sample of size N, the expected
frequency falling into the u, vth rectangle is

diagonal is disproportionately frequent and negative when the
minor diagonal is more heavily weighted.

A table with more than two rows or columns cannot be sum
marized by a single odds ratio. However, the pattern of associ
ation over an Ix] table is completely embodied in the set of
2 x 2 tables created by choosing all possible pairs of rows and
pairs of columns. 10 Under the multiplicative-association model,
the log-odds-ratio that involves rows u, and U2 and columns v,
and V2 is proportional to the differences between the scale values,

\

10gIJ = cP(~., -~.,)('I/., -'1/",). (18)

Thus, a table that involves very similar rows has ~., "" ~., and
log IJ "" O. A similar argument applies to the columns. One can
think of the ~. and '1/. as scalings of the rows and columns based
on the association and of cP as an indicator of the overall magni
tude of association.

A-5a. Scale spacing. The quantities ~. and '1/. in the
multiplicative-association model determine the spacing of the
categories. Several versions of the model can be constructed,
depending on how these quantities are chosen. One can leave
them as free parameters, to be estimated from the data, but this
is not a very satisfactory solution for the present models. We
wanted the order of the states to agree with the order of the
categories, which is not assured when the estimates are free.
A more sensible approach assigns ~. and '1/. on a priori grounds.
The simplest model spaces the categories evenly by assigning
~. and '1/., subject to Equations 16 and 17, so that ~.+, - ~. are
the same for all u, as are '1/.+1 - '1/. for all v. We refer to this
unifonnly spaced multiplicative-association model as the
uniform-spacing model. 11

If the categories are used unequally, then one might expect
this characteristic to be reflected in the scale spacing. Accord
ingly, we consider a second version of the model in which ~.

and '1/. depend on the marginal distributions. The cumulative
proportion to the midpoints of the categories, sometimes known
as the ridits, are

1 u-1 p.
r. = N Ep. + 2

k=1

N
K = log---~-=

27fuxuy../1-e2

ep.xp.y
+ c'. + CB , (21)

UXUy(1-e2)

(22)

- c'.,1 [( x. - p.X)2 _ 2e P.YX.]logilx. -
2(1- e 2) Ux UxUy

B. = 10gl1y. -

and

A.

1 [( y. - p.y)2 _ 2e IJ.xY.] _ C
B

2(1-e2) Uy UxUy

(23)

The arbitrary constants CA and CB can be chosen so that A. and
B. sum to zero, as in Equation 15.

The parallel between the Gaussian model of Equation 20 and
the multiplicative-association model of Equation 14 is now ap
parent. Specifically, ~. and '1/. are identified with x. and y., and
to complete the match of the association term, cP is identified
with e/[UXUy(1-e2)]. By selecting ~. and '1/. so that Ux=Uy= 1
(the constraints imposed by Equations 16 and 17), then cP and
e completely determine each other, with

cP "" _e_ (24)
I - e2

(the sum vanishes when u = 1). Category scale values are de
rived from the ridits by converting them to abscissas of a cu
mulative distribution. For a distribution with cumulative distri
bution function F(x), the scale value ~. associated with r. is
chosen so that F(~.) = r•. A Gaussian distribution is a logical
choice for F(x) here, but such a distribution is computationally
difficult. Reference to a logistic distribution, which has a nearly
identical cumulative distribution function, is simpler. For this
distribution, ~. = r.l(l-r.). The center and scale of these values
are adjusted to agree with the normalization of Equations 16 and
17. A comparable development defines the '1/•. We call this model
the logistic-spacing model. Like the uniform-spacing model, it
has one free association parameter, cPo

A-Sb. The multiplicative-association model and the Gaus
sian distribution. The multiplicative-association model closely
approximates the Gaussian distribution of bivariate signal
detection theory. In both models the association is expressed
as a bilinear component on a logarithmic scale, as the.follow
ing argument demonstrates (see also Goodman, 1981, for a nu
merical example).

Consider a bivariate distribution whose domain has been
divided into rectangular regions by a series of cuts orthogonal
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and

(26)

(30)

(29)

(31)

and

The estimation algorithm alternates between calculating new
values of JL,.. using Equation 28 and updating the parameters
using Equations 29-31. Each cycle consists of three updates of
p. interleaved with adjustments of A, B, and 4>. Once the esti
mates have stabilized, the parameters are converted to those of
Equation 27 by setting 4>, = log 4>" and using the normaliza
tion constraints in Equation 15 to convert log A.. and log Bw

to x" as., and (3w' For the homogeneous-association model,
which has constant 4>, Equations 29 and 30 apply unchanged,
and Equation 31 is replaced by

+ Et.1/.(f••- E[J.s..)
~- = cl>0Ld UV S (32)

Et~1/~EP....
uv s

Fits of the multiplicative-association model are tested with the
usual X' and G' statistics. Both the uniform-spacing and the
logistic-spacing models differ from the conditional unrelated
ness model U1 vi Sby the addition of the parameters 4>,. Thus,
their degrees of freedom are reduced from those of U1 VIS by
the number of free 4>,. The multiplicative-association model
reduces to conditional unrelatedness when the 4>, vanish. This
hierarchy lets one test the hypothesis that 4>,=0. When the as
sumptions discussed in Appendix A-2 are satisfied, the differ
ence between G'(U1 vi S) and G' for the multiplicative
association model has a chi-square distribution with degrees of
freedom equal to the number of added parameters.

The same estimation algorithm applies to models from which
certain cells have been excluded, as we did in our treatment of
the cells withx=y= I in Figure 3. The only change in the proce
dure is that the deleted cells are excluded from all sums (both
explicit and implied) in Equations 29-32.

(25)

(28)

e ""

12(U-l)(V-l)e
eshep =

.J [12(U-l)'-(~u-h)'][12(V-l)'-(1/v-1/1)']

The relationship of K, A., and B. to x, a., and (3. is more com
plicated. We do not ,attempt to incorporate it into our models.
As mentioned in Section A-Sa, we use the logistic-spacing model
to adapt the spacing of t. and 1/. to the marginal distribution.

A-x. Parameter estimates and hypothesis tests. There are
no closed estimates for the parameters of the multiplicative
association model. However, they can be found by a number
of iterative schemes. Specifically, we use maximum-likelihood
estimates, where the maximization is accomplished by the
unidimensional Newton-Raphson iteration (Goodman, 1979; see
also Agresti, 1984, Appendix B). Although this procedure does
not have the most rapid rate of convergence, it has the substan
tial advantage of being simple and easy to program.

Consider the general version of the multiplicative-association
model in which the marginal frequencies and the association are
allowed to vary over stimulus types (index s):

log /L.... = x, + a.. + (3w + 4>,~.1/.. (27)

To estimate these parameters, it helps to absorb x, into a .. and
(3"., and to rewrite the model in multiplicative form,

.Jl + #' - 1

24>

Goodman (1981) pointed out that because of the categorization
of data, the value of e calculated from this equation is an un
derestimate. To correct this bias, he suggested adjusting e using
Sheppard's correction (see Kendall & Stuart, 1977). For a
categorization with U levels of U, V levels of V, and ordered
scale values, this correction is

where A.. = ea
"., and so forth. The quantities ~. and 1/. are

not free parameters, 12 but can be assigned values based on either
the uniform-spacing or the logistic-spacing model, consistent
with the constraints of Equations 16 and 17, The free parameters
are given neutral initial values, typically A. = B. = 4>, = 1.
The Newton-Raphson adjustment of the individual parameters
are
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