Automated problem solving
for the behavioral sciences*

B. JAMES STARRY
Howard University, Washington, D.C. 20001

In view of the obvious advantages of computers for the behavioral sciences,
the question is raised as to how to make more effective use of computing
capabilities. One idea is to require that fledgling behavioral scientists receive
brief training in flowcharting and algorithm generation rather than a full course
in computing skills. Such training would be an important adjunct for those who
would go on for further instruction, especially in view of current deficiencies in
many computer courses. One recurrent deficiency lies in the lack of specific
guidelines for conceptualizing problems for computer implementation. Such
guidelines are developed here, along with other suggestions designed to attenuate

the difficulty in conceptualization.

The advent of behavioral science
applications of computers has offered
the capability for greatly facilitating
the work of the applied researcher.
Electronic data processing allows a
fairly straightforward assessment of a
complex of variables. A morass of data
can be rendered meaningful quickly
and efficiently. Computer simulation
of human processes offers interesting
research possibilities,

Although the behavioral sciences
have witnessed increased training in
computer skills in recent years, the
majority of researchers still see their
activities as divorced from computing.
Data analysis via a few popular
“canned’’ programs accounts for most
computer usage. There are difficulties
in attempted communication with key
data processing personnel. This lack of
understanding engenders confusion
and blocks the development of
mutually beneficial relationships
between researchers and programmers.

Clearly, an intimate knowledge of
computer functioning is desirable for
many researchers. Still, a full
semester’s course on computer
applications may not be practicable
for most researchers. Furthermore, in
the author’s experience, such courses
and the textbooks used in them are
seriously deficient in aiding the
student in the conceptualization stage
of automated problem solving. The
textbooks (e.g., Lehman & Bailey,
1968) generally provide little in the
way of guidelines for such
conceptualization. Brief general
training in formulating computer
problems (via an explicit protocol) and

*This is an expanded version of a paper
presented at the XVIIth International
Congress of Applied Psychology,, Liége,
Belgium, July 25-30, 1971.

$The author is indebted to William H.
Churchill and Wendell Joice for their helpful
suggestions in response to earlier drafts of
this manuscript.

communicating the results, e.g., by
flowcharting (see Chapin, 1970),
should enhance the researcher’s
likelihood of efficiently achieving the
desired computer output. The
suggestion here is that researchers
should learn to develop algorithms
(i.e., modes of problem solution).
Procedural guidelines and flowcharting
principles can be integrated as one
segment of some noncomputer course,
e.g., research methods. The object of
this approach is to develop skill in
communicating with computer center
personnel. Moreover, a tangible benefit
accrues to those seeking further
computer training: They will have
already learned how to resolve some of
the difficulties involved in
conceptualizing problems for
automated solution.

The purpose of this paper is to set
forth some guidelines for use in the
formulation stages of automated
problem solving. It is hoped that these
guidelines will be applied to the wide
variety of problems in behavioral
research which could benefit from the
speed and accuracy of computer
processing. A task recently completed
by the author (Starr, 1969b, 1970)
underscored the value of the suggested
scheme. He was asked to program a
problem about which he knew very
little. The work was vastly simplified
by consulting with someone who
understood the problem and was
skilled in breaking it down.

WRITING ALGORITHMS

An algorithm is an unambiguous set
of instructions on how to go about
solving a problem (Morsund, 1969).
Thus, many types of instructional
media qualify as algorithms: recipes,
game instructions, assembly
instructions for a new barbecue grill,
bookshelf, or other unassembled
object. The key word in the definition
of algorithm is ‘“unambiguous.” If we
were dealing with recipes, for example,

Behav. Res. Meth. & Instru., 1972, Vol. 4 (3)

the instruction, “Bake a cake,” would
not gualify as an algorithm, It leaves
too many questions unanswered. What
ingredients should be used? In what
proportions should they be used?
Obviously, the following instructions
are not much better: “The ingredients
are flour, shortening, sugar, eggs, and
milk; mix them together in a pan; put
the pan in the oven.”

The above example suggesis certain
general ideas which could prove
helpful to an individual developing an
algorithm.

(1) Algorithms are language-bound
in the sense that we must take account
of the limitations of the language to be
used in implementing them. An
algorithm could be written in any
language set—English, Greek, ALGOL,
or idiosyncratic symbolese. The
important thing here is that the person
who develops the algorithm should
have an accurate perception of the
implementer and his language set. In
preparing a recipe, it is important to
know how cooks generally work and
how they communicate regarding their
work (i.e., how recipes are generally
written). Therefore, those who would
write algorithms for computer
implementation should have some
knowledge of how computers worlf
and how programmers communicate
(e.g., flowcharting practices). Thus,
one must realize that the computer
truncates (destroys) all but a set
number of significant digits. When
obtaining means on survey data, for
example, small numbers at the end of
the lengthy summation will likely be
lost.

(2) All instructions should be so
clearly stated that the implementer
need know nothing beyond the
implementation language. A common -
failure in algorithms developed by
novices centers on their assumption of
the implementer’s boundless
knowledge. For example, the fledgling
programmer may write ‘‘calculate the
mean’’ when he means “sum N scores”
and ‘‘divide the sum by N.”
Computers (and some humans!) do
not know what the more global
instruction means until it has been
defined in terms of computer
‘“do-able’” processes. The final
instructions should be sufficiently
elemental to be compatible with the
step-by-step nature of computer
functioning.

(8) The individual who develops the
algorithm should know how to solve
the problem at hand. This is obvious.
Few people would develop a recipe if
they had not cooked the dish
themselves (or at least seen it done).

(4) The problem solver should
attempt to work out a general solution
for the exercise. While it is not
necessary to adhere to this guideline, it

161

TERMINAL

[]

INPUT/OUTPUT

1L <>

PROCESSING

DECISION

Fig. 1. Some of the major outlines suggested for use by the American National
Standards Institute for creating flow diagrams.

is helpful to do so. Because algorithms
require time and effort for their
development, an efficient algorithm
would provide the solution to a class
of problems (as opposed to a single
problem). Thus, a program which
computes autonomic lability scores
from physiological data (see Starr,
1969a) could be structured to handle
any type of physiological data for
experimental groups of virtually any
size. Moreover, when a problem is
conceived in its full generality
abstracted from the details of a
particular case, its solution sometimes
turns out to be surprisingly simple.

SPECIFIC GUIDELINES

FOR ALGORITHM GENERATION

With the preliminary notions
outlined above in mind, the
development of a specific protocol for
evolving an unambiguous instruction
set is now possible. Because the most
common mode of instruction in
algorithms involves simulation of the
instructor, an explicit formulation has
the advantage of being less dependent
on both his communication skills and
on the perceptivity of the students.

(1) A good beginning for problem
solution may be made by working out
a concrete example and carefully
noting all steps involved in arriving at
the correct outcome. Essentially, this
is a self-simulation technique whose
success depends on an orderly and
elemental set of procedures. (In order
to be appropriately elemental in his
thinking, the individual should have
some knowledge of computer
operation, e.g., how comparisons are
made, etc.) Here the important
information (see Lehman & Bailey,
1968) regarding what items must be
present for processing (i.e., input), the
form in which these items must be
entered (i.e., how they are to be read
in), and the nature of the outcome
(i.e., desired output) are obtained.

162

Clearly, this type of thought process is
applicable to the generation of many
varieties of algorithms.

(2) All input, processing, and
output variables and constants should
be tabled; any changes in the values of
the variables from the start of the
problem to its finish should be noted.
The tabling procedure would provide
information on
starting values for processing), loop
parameters (values indicating the
length and stepwise nature of the
processing), and, generally, the logic of
the step-by-step process. A fairly clear
picture of actual changes in variables
inside the computer should be
reflected in the table.

(3) The procedures, variables, and
constants from the initial steps should
be translated into the language of the
recipient. This step would involve the
production of an accurate flow
diagram (or relatively language-free
graphic representation) or written
computer code. Such a program
segment should adhere to the
strictures imposed by both the
communication media (e.g.,
FORTRAN) and the nature of
computer functioning.

(4) An independent example should
be worked out using only the
procedures embodied in the results of
Step 3. This is primarily intended as a
preliminary ‘‘debugging” (i.e., error
eliminating) aid. Obviously, an
example sufficiently different from
the original one will also provide a test
of the generality of the algorithm for

the particular class of problem
involved.
(5) The above step should be

repeated until an error-free execution
of the problem is obtained. This
guideline involves modifying the
procedures in Step 3 as needed to
obtain a relatively ‘‘bug-free”
(errorless) general solution. It also
gives explicit recognition to the fact

initialization (the -

that a completed algorithm represents
the culmination of a series of
successive approximations to problem
solution. In addition, special cases
likely to cause trouble might
appropriately be considered at this
point. Thus, if one were generating an
algorithm to compute correlation
coefficients, for example, one might
consider the difficulties created by a
variable with a standard deviation of
zero. Clearly, some contingency must
be built into the program to
circumvent attempts to divide by zero.

Of course, any instruction set
designed for computer use is not a
completed algorithm until it has
actually been successfully
implemented on the computer. The
above guidelines are suggested to
increase the probability of successful
implementation.

Classically, algorithm development
(programming) has been taught via
simulation of a skilled individual
(instructor or author). This technique
is of dubious efficiency in the absence
of explicit procedures such as those
outlined here. In the subsequent two
sections, some general principles of
flowcharting are presented, along with
an example comprising the guidelines
stated above.

FLOWCHARTING

Some of the major outlines used in
creating flow diagrams are presented in
Fig. 1. These outlines are taken from
the standard flowchart symbols of the
American National Standards Institute
(1970).1 The purpose of the flow
diagram is to portray graphically the
procedures involved in processing
information in a specific way. Thus, it
can be an efficient mode for the
researcher (qua problem solver) to
communicate with the programmer.

The symbols shown in Fig. 1 are
only a small subset of the standard
symbols, but they will suffice for the
understanding of many basic flow
diagrams. The elliptical terminal
outline is used at the start and the
termination of program segments (i.e.,
algorithms). The flowlines indicate the
direction of the logical flow from one
outline to another. Usually the flow
diagram is read from top to bottom
and left to right. When this typical
pattern is violated, open arrowheads
(as shown in Fig. 1) must be employed
to show the change appropriately. The
parallelogrammic input/output (1/0)
outline is used to depict any read or
write operation (regardless of the
medium, i.e., cards, tape, paper). The
diamond-shaped decision outline is
used for branching, the direction being
determined by the value of the
expression (or variable) enclosed.
Finally, the rectangle defines a general
processing (e.g., arithmetic) operation.

Behav. Res. Meth. & Instru., 1972, Vol. 4 (3)

It is one of the most common outlines
in flow diagrams.

A SPECIFIC EXAMPLE
OF ALGORITHM GENERATION:
THE ARITHMETIC MODE

There exists a large class of
problems which are easily unraveled
without the use of computers. Often
the programming involved is quite
complex, and there is some question
about whether efforts toward
computerizing the exercise are
worthwhile. Plainly stated, such an
effort could amount to inefficient use
of the programmer’s time. This is a
happy confluence of facts for the type
of tutorial paper presented here.
Problems of the class indicated above
have the advantage of being easily
understood, while at the same time
being sufficiently complex (in terms of
programming) to enable the novice to
work with some fairly sophisticated
concepts.

One example of this type of
problem might involve finding the
modal value in a set of scores. The
author has had his students attempt
this as part of a first project designed
to derive measures of central tendency
from a set of data. The mode is
defined as the score value which
appears with the greatest frequency in
a distribution of scores. In order to
simplify the program segment and
because programming the median
(computed in the central tendency
program) involves rank-ordered data,
the numbers used here will already
have been ranked. Algorithm
generation is, of course, an art. The
solution offered below is only one
among a number of possible solutions
of varying efficiency. The ranking
procedure will not be discussed.
Instead, the procedures offered by
McCracken (1965, p. 70) and Lehman
& Bailey (1968, p. 134) are
recommended.

A knowledge of computer
functioning involves the realization
that comparisons can be made only in
a pairwise fashion (i.e., the first
number is compared to the second,
ete.). Self-simulation (the first specific
guideline) might comprise the
following activity. In comparing the
first number to the second, a tally
mark may be made if there are equal
scores. The second number is then
compared to the third one and again a
tally mark is made if equality is found.
As tallies appear in the working of the
problem, they may be recorded
elsewhere as a number. For example,
two tally marks indicate three equal
numbers (say, the first, second, and
third ranked numbers). The score and
its frequency are recorded. Whenever
the stepwise comparison process
reveals an inequality, previous tallies

Table 1
Analysis of Hypothetical Data for Use in the Calculation of the Mode

Verbal Labels
Temporary Perma- Size of Value
Parameters for Fre- nent Fre- Mode Mode to Stop
Scores Comparing Loop quency gquency Vector Vector C Loop
FORTRAN Labels
X L K ITALLY NHI AMD Length N-L
2.2 1 2 2 2 2.2 1 10
2.2 2 3 3 3 2.2 1 9
2.2 3 4 1 3 2.2 1 8
3.1 4 5 1 3 2.2 1 7
4.6 5 6 2 3 2.2 1 6
4.6 6 7 3 3 4.6 2 5
4.6 7 8 1 3 4.6 2 4
5.0 8 9 2 3 4.6 2 3
5.0 9 10 3 3 5.0 3 2
5.0 10 11 4 4 5.0 1 1
50

are erased and started anew. The
modal score and its frequency are not
erased until a score with a higher (or
equal) frequency of occurrence is
found. If an equally frequent scozre is
found, it is placed in a subsequent slot
in the modal score column and the
length of this column is recorded.
When a score with greater frequency
than the current modal score is found,
everything may be erased and the new
mode and its frequency are recorded.
This basic procedure may be repeated
until there are insufficient scores
remaining to create a new mode—-even
if all the remaining scores are equal.
This last requirement must be met
because a computer would have to
process the remaining data completely,
where a man could determine quickly
that there were no further equalities.

An example of the type of tabling
suggested in Guideline 2 is shown in
Table 1. It depicts both verbal labels
and possible FORTRAN language
labels. The first column contains the
actual example distribution of scores.
Columns 2 and 3 contain the values
needed to compare two scores at a
time in an orderly fashion. The
ITALLY column records the
frequency of appearance of the score
currently under scrutiny. The
subsequent two columns contain the
highest frequency found thus far and
the score with which this frequency is
associated (i.e., the current mode).
The LENGTH column gives the length
of the mode column. The last column
supplies information used to stop
comparisons when further search
would be fruitless. The numbers
appearing in the body of the table are
the values the variables would take on
if the problem were solved in the
manner suggested.

The third guideline suggests
generation of a flow diagram in
keeping with the procedures developed
in the earlier steps and observing good

Behav. Res. Meth. & Instru., 1972, Vol. 4 (3)

flowcharting practices. Such a flow
diagram appears in Fig. 2. At the start,
L is set to “1” and K to “2)”
indicating that the first two scores in
memory should be compared. Since
each score will have a frequency of at
least 1, both the current tally variable
(ITALLY) and the highest frequency
variable (i.e., the frequency of the
current modal value or NHI) are set to
“1.” The length of the modal vector is
set to “0,” and “‘1,” which will be used
in writing the results, is set to “1.”
The first two numbers are compared,
and ITALLY is incremented by “1” if
there is an equality. If there is no
equality, ITALLY must be reset to
“1,” because it is possible that it is
already greater than 1 (from an earlier
comparison). An inequality, then,
leads to resetting of the comparison
loop counters, L and K, a check as to
whether further comparisons are
necessary, and, if necessary, a new
comparison. Further comparisons will
be unnecessary if the number of
comparisons remaining is less than or
equal to NHI and the current
comparison involved an inequality.
Following the discovery of an
equality and the increment of
ITALLY, the value of the highest
frequency thus far is subtracted from
ITALLY. A negative result leads to an
increment in the comparison loop
counters and the subsequent
procedures outlined above. A zero
result indicates a current multimodal
situation. Here the length of the mode
vector would be incremented by one
and the appropriate score stored
before L and K were incremented.
Finally, if the subtraction of NHI from
ITALLY yields a positive number, a
new single mode has been discovered.
Therefore, the length of the modal
vector would be set to “1,” NHI
would be made equal to ITALLY, and
a new mode would be stored in the
first position on the mode vector

163

before L and K were incremented.
Upon completion of the requisite
number of comparisons, the mode(s)
would be written out.

L-1 K 2 Only one step (or series of steps)
ITALLY=1 NHI-1 would now remain. The procedures
LENGTH=0 embodied in the flow diagram would

be tested on an independent example.
This will not be done here.

Y CONCLUSIONS
ITALLY = ITALLY +1 An algorithmic approach to many
behavioral science research problems
should prove fruitful. It is hoped that
the specific guidelines and general
notions offered in this paper can
provide the structure necessary for a
fairly rapid introduction to this
approach. The example employed
here, while trivial, should have the
* LENGTH -1 advantage of being easily followed by
NHI = ITALLY novices, Their simulation of the
principles outlined in this paper may
lead to the more efficient use of an
important resource.

Hopefully, the method advocated

ITALLY =1

ITALLY -NHI

LENGTH = LENGTH +1 here will not only provide an
important “entrance” skill for those

] who would go on to become
programmers, but it would also

enhance (with relatively brief training)

AMD (LENGTH)=X (L) basic communications skills for those

researchers who might make use of

1 computing facilities. The researcher

who is able to conceptualize and

l depict the steps toward the solution of

the problem will have valuable tools

L=L+1 for interacting with computer
K=K+l programmers.

REFERENCES

CHAPIN, N. Flowcharting with the ANSI
standard: A tutorial. Computing Surveys,
1970, 2, 119-146.

LEHMAN, R. S., & BAILEY, D. E. Digital
computing: Fortran IV and its
applications in behavioral science. New
York: Wiley, 1968.

McCRACKEN, D. D. A guide to Fortran IV

I=|+} programming. New York: Wiley, 1965.

MORSUND, D. G. How computers do it.
Belmont, Calif: Wadsworth, 1969.

STARR, B. J. A program for the
computation of autonomic lability scores.
Behavioral Science, 1969a, 14, 169 (CPA

323).

N STARR, B. J. S-POOL: A program for
keeping track of participation in
psychological experiments. Behavioral
Science, 1969b, 14, 252-253 (CPA 328).
Y STARR, B. J. Computerizing the activities

of subjects for psychological research at a
large university. Behavior Research

END Methods & Instrumentation, 1970, 2,

29-31.

Fig. 2. Flow diagram for program segment selecting the mode or modes from
a set of data. Legend: L, K = parameters involved in comparison; ITALLY =
frequency of the score currently under scrutiny; NHI = highest frequency found . NOTE
thus far; LENGTH = parameter indicating length of the mode vector (for 1:Se¢ Chapin (1970) for a more

) NG) complete exposition on flowcharting
multimodal distributions); AMD = score value of the mode(s). standards.

164 Behav. Res. Meth. & Instru., 1972, Vol. 4 (3)

