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Standardization and decomposition of rates:
Useful analytic techniques for
behavior and health studies

JICHUAN WANG, AHMMED RAHMAN, HARVEY A.SIEGAL, and JAMES H. FISHER
Wright State University School ofMedicine, Dayton, Ohio

Standardization and decomposition are widelyused analytic techniques in population studies for ad­
justing the impact of compositional factors on rates. This study demonstrates the application of these
methods to behavior and health studies. Bootstrapping is used to estimate standard errors of the com­
ponent effects and to conduct significance tests for them. The authors have developed a Windows­
based computer program that is demonstrated in the study for standardization and decomposition
analysis by using empirical data on HIV seropositivity rates in two injection-drug-usingpopulations in
the northeastern United States.

When the rates of some phenomena between two pop­
ulations or within the same population at two different
time points are compared, the difference in the popula­
tion composition should be taken into account. In popu­
lation studies, standardization and decomposition of
rates are commonly used techniques for adjusting the
confounding effect of population composition on rates
(Kitagawa, 1955, 1964; Pullum, 1978; United Nations,
1979). For example, it is possible for one population to
have a crude death rate (the number of deaths occurring
in a given year divided by the total population) that is
lower than another's when the first population has higher
age-specific death rates (i.e., the death rates for specific
age groups). This paradox is a result of the fact that the
first population has a considerably larger proportion of
its population in age groups (e.g., ages 5-44) that are
subject to lower death rates. This is similar to the exam­
ple of Simpson's paradox provided by Bickel, Hammel,
and O'Connell (1975) concerning the gender bias in ac­
ceptance rate to graduate school at Berkeley. Their study
showed that females had a proportionately lower overall
rate of acceptance because they applied disproportion­
ately more often to the departments with the lowest rates
of acceptance.

In the death rate example, the real difference between
the crude death rates ofthe two populations is confounded
by the difference in age structure between the two popu­
lations. Once age structure is standardized across the two
populations, the adjusted death rate of the first popula-
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tion would certainly be higher than that of the second
population.

Standardization and decomposition are useful tech­
niques for studying differences or changes in measures of
behaviors and behavioral outcomes. To return to the death
rate comparison example, on the basis of the results of
standardization, the difference in crude death rates be­
tween the two populations can be decomposed into two
component effects: (1) the component effect attributed to
the difference in age structure, and (2) the rate effect at­
tributed to the difference in the age-specific death rates.
If another compositional factor (e.g., ethnicity) were taken
into account, the difference in the crude death rate would
be decomposed into three component effects: (1) the Fac­
tor 1effect, which is due to the difference in age structure;
(2) the Factor 2 effect, which is due to the difference in eth­
nic composition; and (3) the rate effect, which is due to the
difference in the factor-specific (i.e., age- and ethnicity­
specific) death rates.

Standardization and decomposition can be produc­
tively applied to behavior and health studies. In everyday
life, many social, economic, political, and health behav­
iors, as well as the consequences or outcomes ofthese be­
haviors, are often measured by rate, percentage, or propor­
tion. For example, the percentage ofdirty-needle-sharing
behavior among an injection drug user (IDU) population
in a given time period is a measure of the prevalence rate
of sharing contaminated needles in the population. To
compare different prevalence rates between two IDU
populations, the application of standardization and de­
composition techniques will tell us how much of the ob­
served difference can be attributed to the effects ofcom­
position factors, such as age, gender, and ethnicity, as well
as the "real" difference in prevalence of risky needle be­
havior between the two IDU populations. Studies on dif­
ferences in other behavior measures-such as the inci­
dence rate of suicide or murder, the prevalence ofschool
dropouts or substance abuse among students between
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gender or ethnic groups, the percentage or proportion of
cigarette smoking or recreational physical exercise, and
so on-between different populations can all be con­
ducted in the same way.

Demographers have developed a variety of techniques
for standardization and decomposition of rates. In gen­
eral, the methods of standardization and decomposition
are grouped into two broad categories (Das Gupta, 1991).
In the first category, a crude rate is expressed as a func­
tion ofone or several factors (Bongaarts, 1978; Nathan­
son & Kim, 1989; Pullum, Tedrow, & Herting, 1989;
Wojtkiewicz, McLanahan, & Garfinkel, 1990). In the
second and more common category, standardization and
decomposition are performed on cross-classified or con­
tingency table data (Cho & Retherford, 1973; Das Gupta,
1991, 1993; Kim & Strobino, 1984; Kitagawa, 1955, 1964;
Liao, 1989). In both categories, standardization and de­
composition are usually performed on the basis of alge­
braic equations, rather than of statistical modeling. In a
series ofpapers, Clogg and his colleagues (Clogg, 1978;
Clogg & Eliason, 1988; Clogg & Shockey, 1985; Clogg,
Shockey, & Eliason, 1990) have developed a statistical
model-the Clogg model-to standardize rates. Based
on log-linear models, the Clogg model centers on the idea
of purging the confounding effects of composition fac­
tors. However, the C10gg model is not designed for, and
cannot be applied directly to, decomposition analysis.
Liao (1989) has developed a method that applies the re­
sults ofthe Clogg models in such a way as to decompose
the difference in crude rates into component effects rep­
resenting composition effects, rate effect, and possible
interactions between the two.

The choice of a decomposition method depends first
on the type of data available for analysis; second, the
choice ofa method is a matter ofpersonal preference. The
often used standardization and decomposition methods
in population studies are the ones that are based on alge­
braic presentation and cross-classified data format.

Unfortunately, for the analysis of sample data, none of
the current decomposition methods take sampling vari­
ability into account. Although Liao's (1989) method is
based on the results of statistical modeling, the actual cal­
culation of the component effects is still based on alge­
braic equations. Therefore, like the other methods, it does
not provide statistics for testing the significance of the
component effects. In addition, with different purging
methods, Liao's method provides slightly different com­
ponent effects.

In this study, we introduce Das Gupta's (1991, 1993)
standardization and decomposition method, which is
performed on cross-classified data, to demonstrate the
utilization of standardization and decomposition in the
field ofbehavioral health studies. Like other conventional
methods, Das Gupta's method has no constraints on the
specification of relationship (e.g., linearity), the nature
of the variables (e.g., random), or the form of variable
distributions (e.g., normality). Unlike other conventional

methods, Das Gupta's method integrates interactions be­
tween component effects into the additive main effects.
This procedure makes interpretation of the results much
easier, particularly when multiple factors are involved in
the analysis.

After a brief description ofDas Gupta's (1991, 1993)
method, we will illustrate how standardization and de­
composition can aid in comparative analysis of the HIV
seropositivity rate-a measure ofoutcome that can result
from health risk behaviors such as sharing dirty needles
and unprotected sexual intercourse-between female
and male IDU populations in the northeastern United
States. In addition, we will briefly introduce a nonpara­
metric method, known as bootstrapping, that can be ap­
plied to estimate the standard errors of the component
effects. Therefore, we are able to conduct significance tests
for the component effects.

METHOD

A total of7,378 IDUs (1,745 females and 5,633 males)
who took the voluntary and confidential HIV antibody
tests in the National Institute on Drug Abuse's National
AIDS Demonstration Research (NADR) projects between
1988 and 1991 (Brown & Beschner, 1993) constitutes
the sample for the study. We treat the female and male
samples as two subpopu1ations: Female IDUs constitute
Population 1, and male IDUs Population 2. For simplic­
ity, only two compositional factors-Factor I (age struc­
ture) and Factor 2 (ethnic composition)-are taken into
account for the analysis. The difference in the HIV sero­
positive rates between the male and the female IDU pop­
ulations was decomposed into additive component ef­
fects: (1) the Factor 1 effect, attributed to different age
structures; (2) the Factor 2 effect, attributed to different
ethnic compositions; and (3) the rate effect, attributed to
different factor-specific HIV seropositive rates.

Notation and Algebraic Expression

Population 1 (Female IDUs):

N 1. • Total number of female IDUs;

Nli. Number of female IDUs in the ith category of
Factor 1 (e.g., age, with four categories: 1: <20,
2: 20-29, 3: 30-39, and 4: 40+);

Nl.j Number of female IDUs in the jth category of
Factor 2 (e.g., ethnicity, with three categories:
1: Black, 2: Hispanic, and 3: White);

N 1ij Number of female IDUs in the ith category of
Factor 1 andjth category of Factor 2;

T1ij Age- and ethnicity-specific HIV seropositivity
rate among the female IDUs in the ith category
of Factor 1 and the jth category of Factor 2.

Population 2 (Male IDUs):

N2. . Total number of male IDUs;
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and

where

I I
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where the ratios A Ii} and B II} represent the female IOU pop­
ulation distribution, whereas AZij and BZij represent the
male IOU population distribution, by Factor I and Fac­
tor 2, respectively. The difference in the HIV seroposi­
tivity rates between the male and the female IOU popu­
lations can be expressed as

Tz., - T1 . = (Factor 1 effect)

+ (Factor 2 effect) + (rate effect)

= [F,cAz) - F,cA I ) ] + [Fz(Ez) - Fz(B,)]
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In Equation 6, the rates (i.e., age- and ethnicity-specific
rates) and Factor 2 (i.e., ethnic composition) are standard­
ized, whereas the rates and Factor I (i.e., age structure)
are standardized in Equation 7, for the male IOU popu­
lation. Both age structure and ethnic composition are
standardized in Equation 8, which leads to an HIV
seropositivity rate for the male rou population, adjusted
for confounding factor effects. The corresponding stan­
dardized rates, F,cAl)' Fz(E,), and R(TI ) , for the female
IOU population can be calculated in the same way.

The difference in the crude HIV seropositivity rates
between the male and the female IOU populations can,
therefore, be decomposed into three component effects:
(I) the Factor 1 effect [FlcAz) - FIcA,)], which is attrib­
uted to the different age structures in the two populations;
(2) the Factor 2 effect [Fz(Ez) - Fz(E I)], which is at­
tributed to the different ethnic compositions; and (3) the
rate effect [R(Tz) - R(l,\)], which is attributed to the dif­
ferent factor-specific rates.

More than two factors also can be simultaneously han­
dled in standardization and decomposition to take other
compositional factors into account. The general formulas
for the standardization and decomposition for P factors
and multiple populations are given by Das Gupta (1991,
1993).

At the time of this study, none ofthe existing decompo­
sition methods provides the standard error estimates of
the component effects that would enable significance
tests when sample data are analyzed. Mathematic deri­
vations of the standard errors of the component effects
may be possible on the basis of linearization (delta
method), but this is not easy. Thanks to the development
of computer hardware and software, the nonparametric
bootstrapping method (Efron, 1979, 1981; Efron & Tib­
shirani, 1986; Miller, 1974; Mooney & Duval, 1993) can
be applied in such a way as to estimate standard errors of
the component effects empirically. Bootstrapping uses a
computer to draw resamples from the original sample
randomly and repetitively with replacement and with the
same size ofthe original sample. Once the pool ofthe boot­
strap resamples has been established, the sampling dis­
tribution of the component effect estimates can be cre­
ated, and the standard errors and confidence intervals of
the component effects can be estimated for significance

(2)T = ~ TZij NZij
Z .. ~ N .

ij Z..

and

NZi Number of male roUs in the ith category of
Factor 1 (e.g., age, with four categories: I: <20,
2: 20-29, 3: 30-39, and 4: 40+);

Nz.j Number of male roUs in the jth category of
Factor 2 (e.g., ethnicity, with three categories:
I: Black, 2: Hispanic, and 3: White);

NZij Number of male roUs in the ith category of
Factor 1 and the jth category of Factor 2;

TZij Age- and ethnicity-specific HIV seropositivity
rate among the male IOUs in the ith category of
Factor I and the jth category of Factor 2.

The crude HIV seropositivity rate for each of the two
IOU populations is equal to the total number ofHIV sero­
positives divided by the total number ofIDUs in that pop­
ulation. The crude rates can be expressed as

__ ~ TlijNlij
~.. ~ (I)

ij N\.,

That is, the observed HIV seropositivity rate is a weighted
summation of age- and ethnicity-specific HfV seroposi­
tivity rates in each population. The weights are the relative
age-ethnicity frequencies or cell proportions in the con­
tingency table-the ratios ofNli)NI., and NZij INz.., for
the female and male populations, respectively.

According to Das Gupta (1991, 1993), the cell propor­
tions, N'ijIN, .. and NZijINz.. , in Equations I and 2 can
be written as

I I

N'ij =( N'ijNli. ]2( N,ij
Nl.j]2 =A,B .. (3)

N N ,N N N II) II)
I.. \.) r.. Ii, I..
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testing. Various bootstrapping methods can be applied
for the purpose, and most ofthem do not require any sam­
pling distribution assumption (Mooney & Duval, 1993).
However, when it is plausible to assume that the sam­
pling distribution of a population parameter estimate is
normally distributed but there is no analytic standard er­
ror formula available for it, the bootstrapping normal ap­
proximation method, which typically requires much
fewer bootstrapping resamples than other bootstrapping
methods, can be used to estimate the standard error
(Mooney & Duval, 1993).

Let us denote 8b as the component effect estimated
from one of the bootstrapping resamples; thus, the distri­
bution of 8b is an estimate of the sampling distribution of
the component effect. The standard deviation of the sam­
pling distribution associated with the mean value of 8b is

effect. With the bootstrapping normal approximate
method, it has been shown that little improvement in the
approximation occurs as B exceeds 50-200 (Efron & Tib­
shirani, 1986). In other words, a limited number ofboot­
strapping resamples (i.e., 50-200) would be enough for
standard error estimation if the sampling distribution of
the component effects is approximately normal. Fortu­
nately, because each component effect estimate is, in fact,
the estimated difference between two adjusted rates, the
sampling distribution ofthe component effects should be
approximately normal in theory. Nevertheless, the normal­
ity of the component effects was tested in this study by
applying the Q-Q normal probability plots before the
bootstrapping normal approximation method was em­
ployed to estimate the standard errors of the component
effects.

As B ~ 00, the standard deviation of the sampling distri­
bution approaches the standard error of the component

where B is the total number of bootstrapping resamples,
and the mean value of 0b is

, {[ , , 2] }112(JiJ = I.(Ob -0(.)) I(B-l) , (9)

(10)

COMPUTER PROGRAM

The authors have developed a Windows-based computer
program, DECaMP, to conduct standardization and de­
composition, as well as to estimate the standard errors of
the component effects by applying the bootstrapping
normal approximation method (a free copy of the pro­
gram can be downloaded from http://www.wright.edu/
-jwang/), Although DECaMP currently provides Das

If.:; Outcome Measure Difference Standardization and Decomposition

file }jelp

Standardization and Decomposition of Rates

(DECOMP V.1.0 July 1998)

II XDdividual Data .~

i,rouped Data

I.xit

Figure 1. Starting the DECOMP program.
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Gupta's (1991, 1993) and Kitagawa's (1955) methods plus
bootstrapping, a future version will include other stan­
dardization and decomposition methods.

DECOMP is a user friendly program. Here we briefly
explain how to use DECOMP to run standardization and
decomposition analysis with the help ofFigures 1-4. Fig­
ure 1 is the starting window ofDECOMP. In this window,
the type ofdata is specified. DECOMP can use either in­
dividual data or grouped data (i.e., a contingency table).
Individual data must be used if bootstrapping is desired.
However, DECOMP allows the user to convert a grouped
data file into an individual data file if the outcome mea­
sure in the data is a rate, percentage, or proportion.

After the type ofdata is selected in the starting window,
the window of "Program Settings," shown in Figure 2,
will appear on screen. The user can select either a DBF
or an ASCII file format for data input. If an ASCII file
is input, it can be saved as a DBF file for later use. The
user can view and alter the data structure at this time. Se­
lecting "Import Selected File" loads the data into the pro­
gram. The next step is then to specify the number offac­
tors for analysis (two, in our example) and to specify the
variables that define population, outcome, and factors
appropriately. In our example, the population variable is
"Pop," the outcome measure is "Rate," and Factors I and

Program Settings ( lndividual Data)

2 are "Agegroup" and "Race," respectively. Note that the
values of the population variable "Pop" used to define
Populations I and 2 are arbitrary. One can click on the "Re­
verse" icon to switch population definition (see Figure 3).

If an estimation of the standard errors of the compo­
nent effects is desired, the "Run Bootstrapping" option
can be selected. The program allows the user to specify
the number of bootstrapping resamples. When the sam­
ple size is too large, the program allows the user to draw
a smaller sample randomly from the original large sam­
ple for analysis.

Figure 4 shows the results of bootstrapping, standard­
ization, and decomposition with 200 resamples.

RESULTS

The HIV seropositivity rates for the male and female
IDU populations in the northeastern United States are
shown by ethnicity and age groups in Table I. The HIV
seropositive rate among IDUs was high (overall, 36.73%)
in this sample. Corresponding rates for the male and fe­
male IDUs were 37.39% and 34.60%, respectively. The
difference (about 2.79%) is statistically significant (t =
2.1O,df= 7,376,p = .0358). Table I shows that the age­
and ethnicity-specific HIV seropositivity rates differ be-

Select number offactors for analysis: ~

r Import selected file
r Cancel

Input data file
II QBFInputFile

~cillnput File...

Select variables (fields) for population,
factor(s), and outcome measures:

Run Bootstraping?

1021161199911:12:38 AM

r. NO

rYES

ecttl

Figure 2. Importing a data file.
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Program Settinqs ( Individual Data)

Selectnumberoffactors for analysis: I 2::1

6scli InputFile...
Input data file

Selectvariables (fields) for population,
factor(s), and outcome measures:
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(I of records)

Population1
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Outcome

Facton

Factor2
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II....----
pop

rate

race

a~1egroup

G
o
o
o
W
N

Run Bootstrapping?
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c NO

r. YES

Number of cases per
Resample: (MaxI is 65000)

Number of Resamples for
Bootstrapping:

£xit

7378 :::B
200 :8

G
o
u
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Figure 3. Standardization, decomposition, and bootstrapping.

tween the male and the female IDU populations and that
the distributions of IDUs among these two populations
also vary by age and ethnic groups. Therefore, to com-

Table I
Number of Injection Drug Users (IDUs) and DIV

Seropositive Rate (%) by Age and Ethnicity,
Northeastern Region of the United States, 1988-1991

Note-Data source: The national database of the National Institute on
Drug Abuse's National AIDS Demonstration Research (NADR) pro­
jects. "Onlyblack, Hispanic, and white lOUs were selected for the
analysis.

Ethnicity*
(j)

I (black)

2 (Hispanic)

3 (white)

Total

Age Group
(i)

I «25)
2 (25-34)
3 (35-44)
4 (45+)
1«25)
2 (25-34)
3 (35-44)
4(45+)
1«25)
2 (25-34)
3 (35-44)
4 (45+)

Population

Male IDUs Female IDUs

Size Rate Size Rate
(n j) (Tjj ) (nu) (Tj j )

130 12.31 70 17.14
1,305 34.90 604 35.55
1,539 52.91 428 48.71

316 44.44 43 55.81
211 16.67 55 14.55
697 36.40 127 39.37
3M 51.W M 32.~

48 41.67 9 55.56
105 12.38 72 22.22
475 19.20 178 20.34
424 21.23 103 13.59

49 12.50 12 8.33

5,633 37.39 1,745 34.60

pare the HIV seropositivity rates between the two popu­
lations, age structure and ethnic composition were stan­
dardized across the two populations. Furthermore, the
difference in the HIV seropositivity rates between the two
IDU populations was decomposed into three components:
(1) the Factor 1 effect, attributed to different age struc­
tures; (2) the Factor 2 effect, attributed to different ethnic
compositions; and (3) the rate effect, attributed to dif­
ferent factor-specific rates in the two populations.

The results of standardization and decomposition are
shown in Table 2. Under the "Standardization" column,
the figures in the first row ("Factor 1 Effect") are the ad­
justed Hl'Vseropositivity rates for male and female IDUs,
respectively, after Factor 2 (i.e., ethnic composition) and
age- and ethnicity-specific rates are standardized. The
second row ("Factor 2 Effect") shows the adjusted HlV
seropositivity rates after Factor 1 (i.e., age structure) and
age- and ethnicity-specific rates are standardized. The
third row ("Rate Effect") shows the adjusted rates by
standardizing both Factors 1 and 2.

The "Decomposition" column in Table 2 presents the
differences in figures between columns 2 and 3. They are
Factor 1 effect = 1.93, Factor 2 effect = -0.04, and rate
effect = 0.90, respectively. The difference in the last row
(2.79) under the same column is the difference in the
crude HIV seropositivity rates between the male and the
female IDUs. Figures in the last column of Table 2 are
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RATB DBCOMPOSITION PROGRAM STATISTICS
Tvo Factor

Date: 11/17/199

Name of the input DBI' File:
Name of Output ~cii File:
Total number of Cases in the input DBI' file:
Total number of cases included per sample:
Number of samples used for bootstrapping:
No.of Factors Analysed:
Time proqra. started:
Time proqra. ended:
Total Time proqra. eHecuted:

D:\DBCQMP DATA\DBCQM98MIC.DBF
.F.

7318

1318
200

2.0

09:33:03
09:36:39

4 min 35.5 sec

Re~ult~ of Standardi~ation and Dacompo~ition

( Two Factor~)

(STANDARDIZATION) (D~OSITION)

( E'opUlatiao 2) (E'opUlatiao 1) (~~~~=~e Cdi.!otdbILt1
of .. ff=

Factor 1 Effact: 0.366001 0.346619 0.019381 69.05%
(Standard Error) 1(0.002909)

Factor 2 Effect:
0.356210 0.356410 -.000200 -0.71%(Standard Error) 1(0.003003)

Rate Effect:
0.352354 0.008884

(Standard Error) 0.361238 (0.012645) 31.65%

Crude Rate:
0.372784 0.028065 100.00%(Standard Error) 0.344719 (0.012631)

Figure 4. Program output.

Table 2
Results of Standardization and Decomposition

the percentage distribution of the component effects,
which shows the relative contribution ofeach component
effect to the difference in the crude rates. The percentages
sum to 100%. A positive percentage indicates the propor­
tion that the corresponding component effect contributes
to the rate difference. A negative percentage indicates the
extent to which the corresponding component effect tends
to narrow the rate difference. In the example, the Fac­
tor I effect accounts for about 68.97% of the difference
in the crude HIV seropositive rate. The Factor 2 effect
tends to narrow the difference in the crude rate (percent-

Decomposition

Component
Effect

Factor I effect
Factor 2 effect
Rate effect
Crude rate

Standardization

Male Female
(Pop2) (Popl)

36.73 34.81
35.75 35.79
36.26 35.36
37.39 34.60

Difference
(Effect)

1.93
-0.04

0.90
2.79

Percent
Distribution

of Effect

68.97
-1.39
32.41

100.00

age distribution of the effect is -1.39%). The rate effect
counts for about 32.41% of the crude rate difference.

The distribution normality of the component effects
estimated from bootstrapping with 200 resamples was
tested by using Q-Q normal probability plots. In each
plot shown in Figures 5-7, the plot points cluster around
a straight line, indicating that the bootstrapping estimated
values of each component effect are from a normal dis­
tribution.

The component effects and their standard errors were
estimated from the bootstrapping normal approximation
method for various number of resamples changed from
50 to 1,000, with an increment of50 resamples each time.
The component effect estimates and their standard errors
are very stable, particularly when the number of resam­
pies exceeds 150. This provides a support of Efron and
Tibshirani's (1986) finding. We would, therefore, suggest
that 150-200 bootstrapping resamples would be enough
to estimate standard errors of the component effects.

In Table 3 we provide the results of standardization
and decomposition on the basis of 200 bootstrapping re­
samples. In addition to the component effect estimates,
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Figure 5. Normal Q--Q plot of adjusted rate.
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Figure 6. Normal Q--Q plot of Factor 1 effect.

which are very close to those in Table 2, the standard er­
ror ofeach component effect is also reported. With stan­
dard errors available, we are able to conduct significance
tests for the component effects. Among the three com­
ponent effects, only the Factor I effect (i.e., the effect at­
tributed to different age structures) is statistically signif­
icant (t = 6.69, df = 199, P < .001). Neither the Factor 2
effect (i.e., the effect attributed to different ethnic com-

positions) nor the rate effect (i.e., the effect attributed to
the different age- and ethnicity-specific rates) were sta­
tistically significant (t = -0.07, df = 199,p = .9443, and
t = 0.70, df= 199, p = .4847, respectively). Their con­
tributions to the observed rate difference may be nothing
more than chance. The fact that only the Factor I effect
contributes significantly to the observed rate difference
implies that there would be no difference in the HIV
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Figure 7. Normal Q-Q plot of Factor 2 effect.

seropositivity rates between the male and the female IDU
populations in the northeastern United States if the age
structures were the same among the two populations.

DISCUSSION

Standardization and decomposition are widely used
for comparing rates, such as birth rates, death rates, or
unemployment rates, between different groups or popu­
lations in population studies. In fact, the methods can be
applied to a very wide ranges of measures. Any measure
that yields an expected number of events or an expected
total amount of some variable for the population when
multiplied by the number of cases in the population is
appropriate for such application. Rates, percentages, pro­
portions, ratios, and arithmetic means satisfy this require­
ment (Kitagawa, 1964). Behavior and health research
could benefit from the application ofstandardization and
decomposition techniques.

Table 3
Results of Bootstrapping, Standardization, and Decomposition

Decomposition

Standardization Difference Percent

Component Male Female (Effect) Distribution
Effect (Pop2) (Pop l } Dif SE of Effect

Factor 1 effect 36.60 34.66 1.94 0.29 69.05
Factor 2 effect 35.62 35.64 -0.02 0.30 -0.71
Rate effect 36.12 35.24 0.88 1.26 31.65
Crude rate* 37.28 34.47 2.81 1.26 100.00

Note-Standard errors were estimated by bootstrapping on the basis of
200 resamples. *Estimated population crude rates.

However, we should keep in mind that "the problem of
decomposition of the difference between two crude rates
into several additive effects is different from the prob­
lem of, and cannot be adequately handled by, regression
analysis" (Das Gupta, 1993, p. 2). This is because the
difference between two crude rates is not the equivalent
ofa concept like total variance ofa dependent variable in
regression analysis (Kitagawa, 1955). A variable may play
an important role in explaining the variation of a depen­
dent variable in regression but may turn out not to be im­
portant in explaining the difference between two crude
rates. For example, ethnicity is often found to be a signif­
icant factor for explaining the variation of a behavioral
measure in regression analysis. But ethnicity may con­
tribute nothing to explaining the difference in the preva­
lence rate of the behavior between two populations if the
two populations have approximately the same ethnic
composition.

When decomposition analysis is conducted by using
sample rather than population data, it is desirable to take
the uncertainty into account. In such a case, the standard
errors of the component effects need to be estimated for
significance tests. According to the best of our knowl­
edge, this study is the first to estimate standard errors of
the component effects and to conduct significance tests
for them. Our analytic results provide evidence that the
sampling distribution of the component effects is ap­
proximately normal; therefore, the bootstrapping normal
approximation method can be used to estimate the stan­
dard errors of the component effects with a limited num­
ber (i.e., 150-200) of resampies. As a result, it can sub­
stantially reduce the computing time for bootstrapping.



366 WANG, RAHMAN, SIEGAL, AND FISHER

REFERENCES

BICKEL, P.J., HAMMEL, E. A., & O'CONNELL, J. W (1975). Sex bias in
graduate admissions: Data from Berkeley. Science, 187, 398-404.

BONGAARTS, J. (1978). A framework for analyzing the proximate de­
terminants offertility. Population & Development Review, 4, 105-132.

BROWN, B. S., & BESCHNER, G. M. (1993). Handbook on risk ofAIDS:
Injection drug users and sexual partners. Westport, CT: Greenwood.

CHO, L. J., & RETHERFORD, R. D. (1973). Comparative analysis ofre­
cent fertility trends in East Asia. Proceedings ofJUSSP International
Population Conference, 2,163-181.

CLaGG,C. C. (1978). Adjustment of rates using multiplicative models.
Demography, 15, 523-539.

CLOGG, C. C, & ELIASON, S. R. (1988). A flexible procedure for ad­
justing rates and proportions, including statistical method for group
comparisons. American Sociological Review, 53, 267-283.

CLOGG, C. C; & SHOCKEY, J. W (1985). The effect of changing demo­
graphic composition on recent trends in underemployment. Demog­
raphy, 22, 395-414.

CLOGG, C. C., SHOCKEY, J. W, & ELIASON, S. R. (1990). A general sta­
tistical framework for adjustment of rates. Sociological Methods &
Research, 19,156-195.

DASGUPTA, P. (1991). Decomposition of the difference between two
rates and its consistency when more than two populations are in­
volved. Mathematical Population Studies, 3, 105-125.

DAS GUPTA, P. (1993). Standardization and decomposition ofrates: A
users's manual (U.S. Bureau of the Census, Current Population Re­
ports, Series P23-186). Washington, DC: U.S. Government Printing
Office.

EFRON, B. (1979). Bootstrap methods: Another look at the Jackknife.
Annals ofStatistics, 7, 1-26.

EFRON, B. (1981). Nonparametric standard errors and confidence inter­
vals [with discussion]. Canadian Journal ofStatistics, 9, 139-172.

EFRON, B., & TIBSHIRANI, R. (1986). Bootstrap methods for standard er­
rors, confidence intervals, and other measures of statistical accuracy.
Statistical Science, 1, 54-77.

KIM, Y.J., & STROBINO, D. M. (1984). Decomposition of the difference
between two rates with hierarchical factors. Demography, 15,99-112.

KITAGAWA, E. M. (1955). Components of a difference between two rates.
Journal ofthe American Statistical Association, 50, 1168-1194.

KITAGAWA, E. M. (1964). Standardized comparisons in population re­
search. Demography, 1,296-315.

LIAO, T. F. (1989). A flexible approach for the decomposition of rate
differences. Demography, 26, 717-726.

MILLER, R. G. (1974). The Jackknife: A review. Biometrika, 61, 1-15.
MOONEY, C. Z., & DUVAL, B. D. (1993). Bootstrapping: A nonpara­

metric approach to statistical inference. Newbury Park, CA: Sage.
NATHANSON, C. A., & KIM,Y.1. (1989). Components of change in ado­

lescent fertility. Demography, 26, 85-98.
PULLUM, T. W. (1978). Standardization (World Fertility Survey Tech­

nical Bulletins, No. 597). Voorburg, The Netherlands: International
Statistical Institute.

PULLUM, T. W, TEDROW, L. M., & HERTING, J. R. (1989). Measuring
change and continuity in parity distributions. Demography, 26,
485-498.

UNITED NATIONS (1979). The methodology ofmeasuring the impact of
family planning programs (Manual IX, Population Studies, No. 66).
New York: Author.

WOJTKIEWICZ, R. A., McLANAHAN, S. S., & GARFINKEL, I. (1990). The
growth of families headed by women: 1950-1980. Demography, 27,
19-30.

(Manuscript received April S, 1999;
revision accepted for publication November 13,1999.)


