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Bias produced by fast guessing in
distribution-based tests of race models

JEFF MILLER and ALBANO LOPES
University of California, San Diego, California

A comparison involving cumulative probability distributions of reaction time (RT) has been
used to test race models of the redundancy gain observed in certain divided-attention paradigms.
It has been pointed out, however, that the presence of fast guesses would interfere with this test,
biasing it to accept race models. The present paper reports simulations carried out to determine
the size of the bias introduced by fast guesses. In absolute terms, this bias can be quite large—
exceeding 175 msec in some conditions. Simulations indicate that the bias increases with the
percentage of fast guesses and with the latency difference between the lower tails of guess and
nonguess RT distributions. Discarding and rerunning errors reduces bias somewhat, but a more
elaborate ‘kill-the-twin”’ procedure reduces it much more.

A variety of reaction time (RT) paradigms include some
trials on which a response can be initiated as soon as any
one of several redundant pieces of stimulus information
(often called targets) is detected. In a visual search task,
for example, a ‘‘target-present’’ response can be initiated
as soon as a target stimulus is found. If the display con-
tains several targets, the multiple targets are redundant
because the response can be initiated as soon as any one
is found. Bimodal divided-attention tasks are closely
analogous; targets can be presented to any single modal-
ity, or they can be presented redundantly to more than
one modality at the same time. Similarly, in the same-
different discrimination paradigm, stimuli may differ along
one attribute, along another attribute, or redundantly along
both attributes. In this paradigm, differing attributes are
analogous to targets, because the different response can
be initiated as soon as any differing attribute is found.

In all divided-attention paradigms of this type, responses
are typically faster, on average, when several redundant
targets are present than when only one target is present
(e.g., Egeth, 1966; Holmgren, Juola, & Atkinson, 1974).
In such situations, a race model is an obvious candidate
to explain the faster responses obtained with redundant
targets (Raab, 1962). According to race models, responses
to redundant targets are generated by the faster of two
separate processes, each of which is responsible for de-
tecting one of the targets. That is, if RT; and RT; are
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random variables corresponding to the finishing times for
processes that detect Targets 1 and 2, respectively, then
the finishing time for detecting redundant targets, RTk, is

RTr = min(RT;, RT>). 1)

Miller (1978) noted that race models predict the fol-
lowing relationship among the cumulative probability den-
sity functicns (CDFs) of the finishing times for detecting
targets under three conditions (Target 1, Target 2, and
redundant targets). For every value of ¢,

PrRTg < f) < Pr(RT; < 8) + Pr(RT2: < ¥ (2)

(for discussion and elaboration, see Ashby & Townsend,
1986; Colonius, 1988; Ulrich & Giray, 1986). The left
side of the inequality is simply the CDF of RT in the re-
dundant condition, Fr(f) = Pr(RTr =< 7). Assuming that
the racing processes operate at the same speed in the
single- and redundant-target conditions, which would be
true for a large class of race models, the two terms on
the right side of the inequality are simply the CDFs of
RT in the two single-target conditions, Fi(#) and F(z).
Given this assumption, the inequality predicted by race
models can be written in a compact and testable form as

Fr(t) = Fi(1) + Fx(0), 3

where F1(f) and F(7) are the CDFs of RT in Conditions
1 and 2, respectively.

Inequality 3 is necessarily satisfied for large values of
t, because the left and right sides of the inequality reach
asymptotic values of 1 and 2, respectively. For small
values of ¢, however, violations are predicted by a vari-
ety of models in which two redundant targets mutually
activate a single response or otherwise interact during
response activation (Grice, Canham, & Boroughs, 1984;
Miller, 1982, 1986, 1991; Mordkoff & Yantis, 1991;
Schwarz, 1989). For example, if each redundant target
produces response activation and the two separate acti-
vations sum together before being compared to a response
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criterion, then the minimum RT in the redundant condi-
tion may well be less than the minimum in either single-
target condition. This relation among minima violates the
inequality, because for ¢ equal to the redundant minimum
Fg(f) > 0, although Fi() + F>(r) = 0.

A number of researchers have tested race models us-
ing Inequality 3 (e.g., Diederich & Colonius, 1987; Dijk-
stra, 1990; Grice et al., 1984; Miller, 1978, 1981, 1982,
1986, 1991; Mordkoff & Yantis, 1991; Sanocki et al.,
1985). In many situations, the inequality is clearly vio-
lated (e.g., Grice et al., 1984; Miller, 1981, 1982, 1986),
ruling out race models for those situations. This conclu-
sion is theoretically useful, although the type of model
responsible for the violations is not yet clear (e.g.,
Diederich & Colonius, 1991; Miller, 1986, 1991; Mord-
koff & Yantis, 1991; Schwarz, 1989). In some situations,
though, the data satisfy Inequality 3, indicating that race
models may be a plausible account of the speedup as-
sociated with redundant targets (e.g., Grice et al., 1984,
Experiments 4 and 5; Miller, 1982, Experiments 4 and 5).

Although Inequality 3 seems to provide a useful
distribution-level test of race models, its diagnostic power
is threatened by a potential bias that can arise in experi-
ments where subjects make occasional fast guesses. Fast
guesses are responses given without processing the stimu-
lus, naturally assumed to be much faster than regular
responses. There is good reason to believe that they are
often present, at least in small proportions, in RT experi-
ments (e.g., Ollman, 1966; Yellott, 1971). As mentioned
by Miller (1982) and discussed in detail by Eriksen (1988),
the presence of fast guesses in an experiment biases tests
of Inequality 3 in favor of race models.

Basically, bias arises because fast guesses will inflate
the right side of Inequality 3 twice as fast as they inflate
the left side, assuming that guesses are equally likely in
all conditions, as indeed they must be if conditions are
randomly intermixed and if subjects make fast guesses
without processing the stimulus. More formally, suppose
fast guesses are made with probability g. Then, the CDF
in condition k is

Fig(®) = (1—g)-Fu() + g-G(1), )

where G(r) is the CDF of fast-guess latencies. If the sub-
ject makes fast guesses with probability g in all condi-
tions, then Inequality 3 becomes

(1-)Fr(t) + gG(1) = [(1-g)F (1) +gG(1)]
+ [(1—gF)+8G ()], (5)

which simplifies to
Fa® < A0 + B + 122 GO. ©

Since g/(1—g) - G(?) is necessarily nonnegative, Inequal-
ity 6 can be satisfied even if Inequality 3 is not. Thus,
the presence of fast guesses creates a bias that tends to
favor race models. The bias is a nuisance particularly at
the low end of the observed RT distributions, because
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values of G(f) tend to be relatively large even for ¢ values
near the bottom of the nonguess RT distributions. Thus,
fast guesses work against finding violations of race models
in exactly the range of ¢ values where such violations are
to be expected.

It might seem that the solution to this potential source
of bias is simply to exclude fast guesses from the anal-
ysis, but this is easier said than done. There is large ran-

. dom variation in RT, so the probability distributions of

guess and nonguess RTs may overlap. If there is over-
lap, no RT-based criterion will separate the guesses from
the nonguesses perfectly. In other words, excluding trials
with responses faster than some cutoff will miss some fast
guesses, exclude some nonguesses, or both. In any of
these cases, Inequality 3 may no longer provide a valid
test of race models.

Given that fast guesses may distort the picture obtained
using Inequality 3 in almost any experiment, the influence
of fast guesses on this inequality needs quantitative study.
Although the direction of the effect of fast guesses is quite
clear, the size of the effect is not. It might appear that
the effect size would be relatively easy to determine us-
ing Inequality 6. It turns out, however, that this inequal-
ity cannot be used for one of the experimental procedures
we are particularly interested in evaluating (i.e., the kill-
the-twin procedure described below); in this article, there-
fore, we used simulation methods.

The present paper reports computer simulation studies
examining the size of the bias produced by fast guesses
on tests of Inequality 3. Our results show that the bias
can be quite large—so, experimenters cannot afford to ig-
nore this problem when testing race models, as they have
sometimes done in the past (e.g., Miller, 1982). For-
tunately, the results also show that there is an available
experimental procedure that can greatly reduce this type
of bias.

The current simulations assessed the biasing effect of
fast guesses within three experimental procedures—any
of which might plausibly be used by researchers testing
race models—differing slightly in their attacks on the
problem of identifying and excluding fast guesses. The
include-errors procedure adopts the head-in-the-sand ap-
proach: RTs from correct and error trials are simply
pooled together to form a single RT distribution for each
condition, just as if fast guesses were not present. Obvi-
ously, this procedure was expected to suffer most from
the bias introduced by fast guesses. The rerun-errors pro-
cedure is somewhat better, because errors are discarded
from the data set. When this procedure is used, erroneous
trials are typically rerun later in the block, to ensure that
the estimated RT distributions contain the desired num-
ber of observations and are based only on correct re-
sponses. Obviously, however, this procedure is not per-
fect either, because half of the fast guesses (i.e., the
correct ones) are included in the data set.

A third procedure, discussed by Eriksen (1988) and aptly
named the kill-the-twin procedure by A. van der Heijden
(see Eriksen, 1988), has special intuitive appeal for the
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current problem. This procedure is based on the assump-
tion that each error reflects a fast guess. Naturally, then,
error trials are discarded and rerun later in a block. Fur-
thermore, however, it is explicitly acknowledged that cor-
rect fast guesses are just as likely to occur as erroneous
ones (assuming the usual two-choice task), and that cor-
rect fast guesses should also be excluded from the anal-
ysis to obtain an accurate picture of the nonguess RT dis-
tribution. Thus, each time an error occurs, the correct
trial with the most similar RT (i.e., the ‘‘twin’’ trial) is
also excluded and rerun. This procedure has recently been
used by Mordkoff, Yantis, and Egeth (1990) and by Mord-
koff and Yantis (1991), and it was evaluated here because
it seems a plausible approach to the problem of eliminat-
ing fast guesses from the distribution of correct RTs.1

SIMULATION ASSUMPTIONS

In principle, it is simple to assess the effect of fast
guesses on tests of Inequality 3. One first sees how well
the inequality fits data from simulated experiments without
any fast guesses, and then one sees how the fits change
in simulated experiments with nonzero proportions of fast
guesses. In essence, the effect of guessing is evaluated
by comparing ‘‘experimental’’ simulations including
guesses against ‘‘control’’ simulations without them. The
present simulations were conducted with five different
fast-guessing probabilities (g): 0.00 (control), 0.02, 0.05,
0.10, and 0.20.

A number of explicit assumptions had to be made in
order to generate simulated RTs from the appropriate sort
of divided-attention experiment. First, it was necessary
to have a model to generate RTs for each of the single-
target conditions. The Ex-Gaussian model (Burbeck &
Luce, 1982) was chosen, because it is computationally
simple and provides a reasonable fit to observed RT dis-
tributions (e.g., Blough, 1988; Gholson & Hohle, 1968a,
1968b; Hockley, 1984; Hohle, 1965; Ratcliff & Murdock,
1976). In accordance with this model, each single-target
RT was generated by summing independently generated
normal and exponential random variables. The means of
the normal and exponential distributions varied across
simulations; the standard deviation of the normal was fixed
at 20 msec.

Second, it was necessary to have a model to generate
RTs for the trials with redundant targets. Since the na-
ture of the processes generating redundant RTs is at the
center of the ongoing debate to which this research is rele-
vant, the choice of a model for this purpose was quite
difficult. The candidates include race models in which the
processes detecting different targets have positively cor-
related, negatively correlated, or uncorrelated finishing
times. There are also several alternatives to race models,
and these have general forms quite different from one
another (compare, e.g., the diverse approaches considered
by Grice et al., 1984, Miller, 1986, 1991, and Mordkoff
& Yantis, 1991).

The approach taken here was to generate redundant RTs
in accordance with a boundary case of the race model.
Specifically, redundant RTs were generated such that
there would be equality between the left and right sides
of Inequality 3. Although it may seem peculiar to base
the simulations on the race model—given that the cases
of interest are precisely those in which this model is false
(and yet fails to be rejected because of fast guesses)—
this seemed to be the most reasonable approach. We are
mainly interested in finding out how likely it is that fast
guesses could allow the race model to be accepted even
though the data were actually generated by some other
model. For this to be possible, even given the biasing ef-
fects of fast guesses, the actual model cannot produce
results too different from those consistent with the extreme
race model we simulated. Thus, simulations of the race
model reveal the effects of fast guesses with a distribu-
tion of redundant RTs fairly close to the true one in the
cases of interest. Another advantage of using this race
model in the simulations is that it is a reasonably well
understood benchmark against which other models can
be compared. Finally, it should be noted that the choice
of a modet for redundant RTs probably does not make
too much difference. Our major question concerns the ef-
Sect of fast guesses on Inequality 3—that is, the differen-
tial bias on the left and right sides of the inequality. It
seems likely that this differential will be approximately
the same regardless of the exact values of these quanti-
ties, especially when guesses are considerably faster than
nonguesses in all conditions. Thus, the effect of fast
guesses may be be roughly the same, regardless of the
true model generating redundant RTs.

Third, it was necessary to have a model to generate RTs
for fast guesses. Little information is available about the
distribution of fast-guess times, but it seems plausible that
these should be approximately the same as simple RTs—
fast and with relatively low variance. Because RT distri-
butions tend to become less skewed as their means become
smaller (e.g., Hockley, 1984), it also seemed reasonable
to use a symmetric, rather than a skewed, distribution for
fast-guess RTs. Thus, fast-guess RTs were generated as
normally distributed random variables, with ¢ = 200 msec
and ¢ = 20 msec.

SIMULATION PROCEDURE

A total of 1,215 sets of simulations were run, with each
set defined by a combination of levels of the following
six factors:

¢ Experimental procedure: include errors, rerun errors,
or kill-the-twin.

* Probability of a fast guess, g: 0.00 (control), 0.02,
0.05, 0.10, or 0.20.

¢ Probability of a correct response on nonguess trials:
1.00, 0.95, or 0.90. This parameter was expected to
be of special importance for the rerun-errors and kill-
the-twin procedures.



* Number of trials per subject per condition, n: 10, 20,
or 50.

® Mean of the normal distribution used in generating
nonguess RTs: 200, 300, or 500 msec.

* Mean of the exponential distribution used in generat-
ing nonguess RTs: 50, 100, or 200 msec.

Simulating each subject involved generating RTs for
three experimental conditions: the two single-target con-
ditions and the redundant-target condition. To generate
an individual RT, the first step was to randomly deter-
mine whether the trial was a guess or a nonguess accord-
ing to the probability of a guess (g). If the trial was a
guess, the RT was randomly sampled from a normal dis-
tribution, with x = 200 msec and ¢ = 20 msec. If not,
the RT was randomly selected from the distribution for
the appropriate experimental condition. On a single-target
trial, the RT was simply the sum of independently gener-
ated normal and exponential random variables, with
parameters varying across simulations as indicated above.
On a redundant-target trial, the RT was randomly sam-
pled from the distribution representing the boundary case
of the race model, for reasons outlined in the previous
section. At the beginning of each simulation, this distri-
bution was approximated by constructing a table of 1,000
equally spaced percentile points (i.e., RT values having
percentile ranks of 0.05, 0.15, 0.25, ... 99.95 within
this distribution). More formally, the table contained a
list of 1,000 values of ¢; such that Fr(t;)) = Fi(t;)) + Fa(t;)
= (i—0.5)/1,000, fori = 1, ..., 1,000. On any trial,
then, a redundant-trial RT was generated simply by ran-
domly selecting 1 of the 1,000 values in the table, with
equal probabilities. To give a feeling for what these
redundant-trial distributions look like, Figure 1 shows the
CDFs of RT for guesses, single-target nonguess trials,
and redundant-target nonguess trials for the parameter
values producing the fastest single- and redundant-target
responses.

All RTs (i.e., guesses and nonguesses) generated for
each simulated subject were combined together and ana-
lyzed in terms of Inequality 3 using a data-analysis proce-
dure typical in actual research (e.g., Miller, 1978). The
n RTs obtained in the redundant-target condition, Tk, ;,
i=1,...,n, were used to estimate corresponding true
percentile points of the redundant distribution (cf. Rat-
cliff, 1979). Specifically, the i’th fastest RT value, Tg,q),
is an estimate of the true percentile point, g ;, defined
as the value for which Fr(¢r.;) = (i—0.5)/n.2 For exam-
ple, the fastest and slowest of 10 RTs are taken as the
estimates of the 5th and 95th percentile points, respec-
tively. The 2n RTs obtained in the two single-target con-
ditions, T1,, i =1, ... ,nand Ta2,;, i =1, ..., n,
were pooled to obtain estimates for the corresponding true
percentile points of Fi(f) + Fa(r). Specifically, the i’th
fastest of the pooled RT values, Ti.+2,¢), estimates the
true percentile point £, ., ;, defined as the value for which
Fi(t142,)) + Fa(&142,) = (i—0.5)/n. For example, the
fastest and slowest of 20 pooled data values are estimates
of the points at which the sums of percentiles (summing

GUESSING BIAS IN CDF ANALYSES 587

10 1 ?-I o .

N ‘ i/

= 0.8 [ /

o [/

0 Il

o 1N

o 0.6 .'I |

o m

Q :', [

-‘2_ 0.4 ({ 0} Single Target

@© [ - Redundant Targets

= - Guess

E 024 |ff
00 +—4

200 300 400 500 600 700 800

Reaction Time (ms)

Figure 1. Cumulative probability distributions of RTs for fast
guesses, single-target trials, and redundant-target trials. The fast-
guess distribution is a normal with u = 200 and ¢ = 20. The single-
target distribution is an Ex-Gaussian with normal parameters x =
200 and o = 20 and exponential parameter u = 50. At each value
of 7, the redundant-target distribution has a cumulative probabil-
ity exactly twice as large as the single-target distribution, up to the
bound of 1.0.

across F; and F) are 5 and 195, respectively. In terms
of percentile points, the prediction of race models cor-
responding to Inequality 3 is that {r,; = &142,, fori =
1, ..., n; in essence, the prediction is that a larger RT
is nceded to exceed a glven percentage of the redundant-
target distribution than is needed to exceed the same
summed percentage across the two single-target distribu-
tions. This prediction can be evaluated statistically by
comparing the estimated percentile points for the
redundant-target distribution against estimates of the
points with the same summed percentage across the single-
target distributions. That is, we compared g, against
£142,i, where £ is the average across (simulated) sub-
jects of the corresponding Tk )’s (k=1+2 or R).

Within each set of simulations, at least 200 subjects
were simulated. Since it was not clear in advance how
many subjects would be required to get stable estimates,
the stopping rule was defined in terms of the desired ac-
curacy for differences in estimated percentile points be-
ing compared. After each 100 simulated subjects in a
given set of simulations, the standard error of the differ-
ence £g,i—£1+2,i was computed fori = 1, ... , n. This
standard error was simply the standard deviation of the
differences Tr,¢)—T1+2,i), computed across simulated
subjects, divided by the square root of the number of sub-
jects simulated. Each set of simulations was terminated
when the standard error of the difference was less than
or equal to 1 msec for all n percentile points.> The main
values recorded for subsequent analysis were the aver-
ages, across simulated subjects, of £g,; and £142,; for
i=1,...,n

Each simulation set was summarized in terms of n
difference scores,
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Di = Eri—Ei42.i @)

fori =1, ..., n. Positive difference scores indicate that
the percentile point of the redundant-target distribution
is larger than the point having the same sum of percen-
tiles across the two single-target conditions, as predicted
by race models. Of particular interest were the biasing
effects of fast guesses on these differences; therefore, it
is convenient to explicitly indicate the dependence of these
differences on guessing probability by writing them as
Di(g), although of course the D; values may depend on
other parameters of the simulation as well. In any case,
the biasing effect observed in a simulation with guess
probability g may then be defined as

Bi(g) = Di(g)—Di(0). @®

That is, the bias measure B;(g) is the change in D; values
produced by a given proportion of fast guesses, with all
other simulation parameters remaining fixed.

RESULTS AND DISCUSSION

Figure 2 displays the biasing effect of fast guesses as
a function of the four simulation parameters having the
largest effects:* experimental procedure, probability of
fast guess, mean of normal component of nonguess RT,
and percentile.®> On the basis of the stopping rule for the
simulations, these estimated bias values are very precise,
each having a 95% confidence interval width of less than
+2 msec, so there is little need to worry about random
error in interpreting the large differences shown in the
graphs.

Two very striking results of the simulations are immedi-
ately apparent from Figure 2. First, fast guesses can pro-
duce a huge bias in favor of race models, especially when
errors are either included in the analysis or simply discarded
and rerun. When errors are included, the presence of even
5% fast guesses produces bias approaching 90 msec at the
5th percentile with the normal mean of 500 msec. Since
5% fast guesses would translate into an error rate of only
2.5%—quite acceptable in most RT experiments—this must
be seen as a strong signal that the fast-guessing problem
needs to be addressed in order to test race models with
the CDF approach. Furthermore, with 10% or 20% fast
guesses, bias is both larger in absolute terms and more ex-
tensive over percentiles of the RT distribution, and even
the corresponding 5% and 10% error rates would not be
considered outrageous in many experiments.

The second striking result is that the three different ex-
perimental procedures have quite different sensitivities to
bias (note the greatly magnified vertical scale for kill-the-
twin). Across all simulations and percentiles, the aver-
age biases were 22.0, 12.2, and 1.6 msec for the include-
errors, rerun-errors, and kill-the-twin procedures, respec-
tively. Comparing the three graphs shown in Figure 2,
it is clear that this difference in averages reflects a con-
sistent ordering of procedures across simulation param-
eters and percentiles. It is not surprising that bias is much
larger for the include-errors procedure than for the rerun-

errors procedure, because the former procedure includes
twice as many fast guesses (i.e., correct and incorrect ones)
in the analysis as the latter (i.e., only correct ones). What
is perhaps surprising is that the kill-the-twin procedure is
so very effective, relative to the other two, in excluding
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Figure 2. Bias introduced by fast guesses, plotted as a function
of the probability of a fast guess, the mean of the normal compo-
nent of the nonguess RT distribution, and percentile. Separate plots
are shown for experiments including errors, excluding errors, and
using the kill-the-twin procedure. Note the different scale on the ver-
tical axis for the latter procedure.



fast guesses from the analysis altogether. Clearly, this pro-
cedure must have been very successful in identifying and
excluding a high percentage of the correct fast guesses.
Obviously, it cannot be perfect, of course, because fast
guesses do not always come in offsetting pairs (i.e., one
correct, one error) with closely matched latencies.

Two other factors having large effects were, predict-
ably enough, the proportion of fast guesses and the RT
percentile. As expected, the biasing effects of fast guesses
were larger when there were more guesses, with average
bias effects of 2.6, 6.5, 12.7, and 25.8 msec for guess
probabilities of 2%, 5%, 10%, and 20%, respectively.
Biasing effects also tended to be larger at the lower per-
centiles, as is apparent in the general decrease from left
to right within each panel of Figure 2. This dependence
is natural, because fast guesses are most likely to be used
as estimates of lower percentile values.

There was also an interesting interaction between these
two factors, most clearly apparent with o = 500. When
the probability of a fast guess was low, bias decreased
monotonically as percentile increased. When the proba-
bility of a fast guess was relatively high, however, bias
was an inverted-U-shape function of percentile, peaking
near the 40th percentile for the include-errors procedure
and the 25th percentile for the rerun-errors procedure.
Why did bias actually drop off at the lowest percentiles
when guessing probability was high? The reason is that,
for the low percentiles, the simulated values Tg (i) were
very likely to come from the guessing distribution, just
as the simulated values T} . 2,¢) usually did. Since the two
T values came from the same distribution, there was lit-
tle difference between them, and therefore little bias in-
troduced by guessing at this point. For higher percentiles,
on the other hand, there was a much better chance that
Tr,) would come from the nonguess distribution while
Ti+2,¢4) came from the guessing distribution, because
there were likely to be twice as many guesses in the pool
of 2n single-target trials as in the n redundant-target trials.
In this case, there would be a large difference between
the two T values from different distributions and, hence,
a large bias introduced by guessing.

Another parameter having a very large effect on bias
is the mean of the normal component of the normal-plus-
exponential RT distribution for nonguesses. When this
mean was 200 msec, there was virtually no bias—regard-
less of the mean of the exponential component—so the
simulations using this value have been omitted from Fig-
ure 2. Biases of as much as 50 msec were observed, how-
ever, when this mean was 300 msec; biases exceeding
175 msec were observed when this mean was 500 msec.

Interestingly, the mean of the exponential component
had virtually no effect on bias, so this factor was not in-
cluded in the figure. In fact, average bias changed only
4 msec as the exponential mean increased from 50 to
200 msec. Thus, bias is not directly sensitive to the overall
mean RT of nonguesses, because changing this mean by
adjusting the parameter of the exponential had little effect.

From the very different effects of the normal and ex-
ponential components on bias, it appears that a crucial
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determinant of bias is the extent to which the responses
in the lower tail of the guess distribution are faster than
those in the lower tail of the nonguess distribution. In-
creasing the mean of the normal component essentially
shifts the whole RT distribution, including the lower tail,
up to larger values. Increasing the mean of the exponen-
tial component, on the other hand, mainly increases the
positive skew, extending the upper tail of the RT distri-
bution but having little effect on the lower tail. Since the
former manipulation increases bias dramatically and the
latter has virtually no effect, it seems reasonable to con-
clude that bias is mostly sensitive to the relative locations
of the lower tails of the guess and nonguess distributions,
at least for reasonably small guessing probabilities. This
conclusion is also supported by the fact that there was vir-
tually no bias when the normal component of the non-
guess distribution had the same mean (i.e., 200 msec) as
the guessing distribution, even though the nonguess dis-
tribution had an additional exponential component.

The remaining simulation parameters—the number of
observations per condition, n, and the probability of a cor-
rect response on nonguess trials—had negligible main ef-
fects and interactions with other factors.

CONCLUSIONS

Researchers interested in conducting powerful tests of
race models must deal with the possibility that fast guess-
ing will prevent rejection of race models even when they
are false. This is especially likely to happen to the extent
that fast guesses are common and the lower tail of the
distribution of guessing times is below the lower tail of
the distribution of nonguessing times. In extreme cases,
fast guessing could conceal true violations of race models
larger than 175 msec.

The best solutions to this problem are procedural rather
than statistical in nature. Increasing the number of ob-
servations per subject, for example, clearly has no effect
on the bias. What would be effective, first and foremost,
is to make sure that subjects do not adopt a strategy of
making fast guesses. Thus, the experimenter should de-
mand high accuracy in general and penalize unusually fast,
inaccurate responses in particular (for a reasonable payoff
schedule, see, e.g., Meyer, Yantis, Osman, & Smith,
1985). Unfortunately, one cannot demand perfect perfor-
mance, because it is very difficult to interpret average RT
in a condition in which no errors are observed, as dis-
cussed by Pachella (1974).

The kill-the-twin procedure should almost certainly be’
adopted in any circumstance where even a small number
of fast guesses are likely, as indicated by data patterns
such as (1) errors significantly faster than correct re-
sponses, (2) near-chance accuracy for the fastest re-
sponses, and/or (3) equal minimum RT's across conditions
differing in mean RTs. Because of the potentially large
effects of fast guesses, failure to correct for fast guesses
would seriously weaken the conclusions of any experi-
ment with sizable error rates that failed to find violations
of Inequality 3.
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NOTES

1. Both articles by Mordkoff and his colleagues cite Grice, Nullmeyer,
and Spiker (1977) as originators of the kill-the-twin procedure. Although
Grice et al. did adjust their correct RT distributions as a function of
the distribution of error RTs, their adjustment procedure was intended
to serve a different purpose than the kill-the-twin procedure and is al-
gebraically quite different from it (Grice, personal communication, July
1991), as is now acknowledged by Mordkoff (personal communication,
July 1991). Thus, it appears that the first published discussion of the
procedure was that of Eriksen (1988).

2. The subtraction of 0.5 assigns each ordered RT value to the mid-
dle of the 1/nth section of the distribution that it represents.

3. Since each of the simulations with g > 0 was to be compared
against a corresponding control simulation with g = 0, it was desirable
to have greater accuracy for the simulations with g = 0. Thus, a crite-
rion of 0.1 msec rather than 1.0 msec was used for simulations with
g=0.

4. Using bias as the dependent variable, mean squares were computed
for a seven-factor design, including percentile as a seventh factor in ad-
dition to the six factors varying across simulations. These mean squares
were used to order the main effects and interactions of the different simu-
lation parameters, and it is on this basis that factor effects and interac-
tions are referred to as being relatively large or small.

5. For comparability across the different values of n, 10 percentile
values were used: 0.05, 0.15, ..., 0.95. The ¢’s corresponding to these
values were provided directly by the simulations for n = 10 and n =
50, and they were obtained by linear interpolation for n = 20.

(Manuscript received April 22, 1991;
revision accepted for publication July 29, 1991.)





