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Is subitizing a unique numerical ability?

J. D. BALAKRISHNAN
Northwestern University, Evanston, Illinois

and

F. GREGORY ASHBY
University of California, Santa Barbara, California

Two models that predict the relation between mean enumeration time and numerosity in a
speeded enumeration experiment are tested. The first is a bilinear two-process model, and the
second is a log-linear single-process model. Previously, support for the bilinear model has provided
evidence for the existence of a unique numerical ability called "subitizing." Both models are shown
to yield close approximations to the empirical data, but at the same time to consistently violate
the robust shape of these data. Two fundamental discrepancies exist: (1) Enumeration of single­
element displays is unpredictably fast, both in the data reported here and elsewhere, and (2) the
response-time function for multiple elements is continuously convex upward, with a significant
log-quadratic component. The findings support the contention that enumeration is a capacity­
limited pr.ocess,but no statistically reliable change in processing character, that is, from subitiz­
ing to some other process, is evident in enumeration of displays of up to six elements.
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In the "speeded enumeration" experiment, subjects re­
port the number of elements in a display as quickly as
possible. Typically the duration of the display is brief
(e.g., 200 msec), but the elements are of high contrast
and easily discriminable from each other and the surround­
ing field. The classical results are that enumeration time
is almost invariant for display sizes up to about four ele­
ments, but thereafter, it increases sharply as display size
increases (Chi & Klahr, 1975; Kaufman, Lord, Reese,
& Volkman, 1949; Mandler & Shebo, 1982). When dis­
play duration is limited, the response time (RT) versus
numerosity function reaches asymptote at about eight ele­
ments, although error rate continues to increase (Kauf­
manet al., 1949; Mandler&Shebo, 1982). Threesepara­
ble regions of the RT data are, therefore: (1) fast and
slowly increasing from one to three or four elements
(region 1), (2) moderately fast and rapidly increasing
from four to six or seven elements (region 2), and (3) slow
and unchanging at eight or more elements (region 3). This
article investigates the numerical processes underlying
regions 1 and 2.

The speeded enumeration paradigm has a long history
in psychology. The fact that subjects enumerate four ele­
ments almost as quickly as one has been interpreted as
support for (1) span of attention or "immediate appre­
hension" (Bourdon, 1908; Cattell, 1886; Jevons, 1871;
Oyama, Kikuchi, & Ichihara, 1981); (2) a unique numer-
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ical ability called "subitizing" (Chi & Klahr, 1975; Kauf­
man et al., 1949; Klahr & Wallace, 1976); (3) canonical
pattern recognition (Mandler & Shebo, 1982; Neisser,
1967; Oyama, 1986); or (4) some form of visual percep­
tualdiscrimination (Saltzman & Gamer, 1948; van Oeffe­
len & Vos, 1982). The relatively sharp increase in RT
in region 2 has sometimes been included in one of these
four categories, but it is more likely to be attributed to
a distinct process called "incremental counting" (Man­
dler & Shebo, 1982). Region 3 is generally considered
to reflect a gross estimation of "numerousness" (Kauf­
man et al., 1949) that depends on perceptual properties
such as local density, rather than enumeration in a strict
sense.

Much of the empirical support for each of these view­
points rests on the exact relation between mean response
time (MRT) and stimulus numerosity and also the degree
to which this relation depends on experimental conditions
(Folk, Egeth, & Kwak, 1988; Mandler & Shebo, 1982).
Two quantitative and testable models of this relation have
been proposed. The first postulates a bilinear dependence
ofMRT on numerosity (Klahr & Wallace, 1976), and the
second postulates a log-linear dependence (Kaufman
et al., 1949). Despite its theoretical significance, methods
of evaluating the empirical MRT versus numerosity func­
tion have not been rigorous, in the sense that neither of
these models has been subjected to statistical goodness­
of-fit testing, nor has a direct comparison of the two ap­
proaches been attempted.

In this article, we test the validity of these two models
with a rigorous statistical analysis and we show that
neither provides a satisfactory account of the data. The
results are then shown to be consistent with a large body
of previous data, including both classical and more re-
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THE BILINEAR MODEL

cent studies. Finally, implications of the exact nature of
the models' failures for theories of subitizing and for
potential adjustments to the models are discussed.

The first model postulates that MRT increaseslinearly
with a small slope in region 1 and increases linearly with
a significantly larger slope in region 2 (Chi & Klahr,
1975; Klahr & Wallace, 1976; Mandler & Shebo, 1982;
Oyama et al., 1981). Formally, this model predicts that

where j is the stimulus numerosity, j is the trial number,
m is 3 or 4, ni.i is a random variable with a mean of zero,
and C(k and 13k are free parameters. Note that the noise
is indexed by trial and stimulus numerosity to account for
the fact that the empirical RT variance increases with in­
creasing numerosity.

The change in slope between the two functions in the
Equation 1 model is seen as prima facie evidence for a
capacity-limited process that operates on the smallest dis­
plays (Chi & Klahr, 1975; Klahr & Wallace, 1976). The
term "subitizing;" originally chosen by Kaufman et al.
(1949) to describe enumeration of up to six elements, was
adopted by Klahr and his colleagues to emphasize the dis­
tinction between the two linear regions. This usage has
become widely accepted.

The shallow linear slope of the function in region 1 is
often thought to reflect the operation of a specialized nu­
merical ability, perhaps present even at birth (Starkey &
Cooper, 1980; Starkey, Spelke, & Gelman, 1983).
However, an alternative view is that subjects learn to
recognize canonical geometric patterns existing in two­
dimensional displays of small numerosity (one element
is a "dot," two elements form a "line," and so forth),
and then use these geometric properties to enumerate the
displays quickly (Mandler & Shebo, 1982; Neisser, 1967;
Woodworth & Schlosberg, 1954). In the present paper,
the stimuli did not include canonical display patterns, but
enumeration was nevertheless rapid and accurate for dis­
plays of up to about four elements.

10g(RTi.i) = ai + 10g({3) + 'T/i,i'

Thus log (RT) is a linear function of numerosity.
Various physical properties of the stimulus might sug­

gest the Equation 2 model; for example, the relative
change in stimulus energy with numerosity. If the model
holds, then it could be construed as evidence that enumer­
ation processes are dominated (with respect to the tem­
poral demands of the task) by perceptual processes and
that there is no differentiated subitizing mechanism.

The results reported below suggest two fundamental
problems with the quantitative models just described.
First, enumeration of single-element displays is uniquely
fast, leading to a significant discontinuity in MRT between
one and three elements that is not predicted by either
model. Second, although the MRT function at numeros­
hies 2-6 is continuous and convex upward, ruling out the
bilinear model, it has a sharper bend than the exponen­
tial family of functions can predict (i.e., it has at least
a log-quadratic component and possibly higher compo­
nents as well). This complexity, we believe, should dis­
courage attempts to use the RT data as evidence for a dis­
tinct numerical ability.

To test the validity of these two models, a speeded
enumeration task was run in which the stimuli were
horizontally linear arrays of solid-eolored rectangular
blocks. This arrangement eliminates geometric cues to nu­
merosity for all except the single-element displays (which
could be seen as "dots" instead of "lines"), and thus per­
mits a test of the canonical-pattern-recognition hypothe­
sis (see above). In one condition, the elements were
equally spaced and the total length of the display varied.
In the second condition, length was fixed and the distance
between elements varied. To reduce the correlation be­
tween physical properties of the display, such as total
energy or contrast in the image, from numerosity, the
colors of the individual blocks were also varied. (Note
that local density would also have some correlation with
numerosity in the fixed-length condition. As it turns out,
conclusions to be drawn below are not dependent on
differences in the two display conditions.)

METHOD

(1)
j :S m,

j > m,

RTi,i. = C(.j + 13. + ni.j,

RTi,i = C(l j + 131 + ni.),

THE LOG-LINEAR MODEL

The second quantitative model proposes that there is
no discontinuity between regions 1 and 2, but instead that
enumeration time is a continuous, exponential function
of numerosity. Formally,

where 1 :S j :S 7, {3 and C( are free parameters, and ni,i
is defined as before (Kaufman et al., 1949; von Szeliski,
1924).1 Equation 2 is an example of a log-linear model
because after the natural log of both sides is taken, it
becomes

RT.. = (.J eai+ni.i
I.) fJ , (2)

Subjects
Eighteen subjects participated. Eight subjects were current or

former student employees at the University of California, Santa Bar­
bara, and 10 were undergraduate students satisfying part of an in­
troductory psychology course requirement.

Stimuli
The stimuli were horizontally linear arrays of one to seven solid­

colored blocks presented on a grayish-white background. The dis­
play monitor hada vertical refresh rate of 60 Hz. Seven colors were
used: red, green, blue, yellow, pink, brown, and gray. Luminance
values were 7.30, 21.89, 56.62, 28.31, 62.46, 4.90, and
21.30 cd/m' for the seven colors, respectively. The stimuli were
selected randomly for each trial, without replacement. The blocks
were 1.0 em in width and 2.7 em in height and were presented at
approximate eye level at a viewing distance of approximately



200 cm. Visual angle of the individual blocks was 0.29 0 horizon­
tally and 0.77 0 vertically.

Two display-pattern conditions defined the location and separa­
tion of the blocks: fixed intervaland fixed length. In the fixed-interval
condition, the distance between blocks was fixed while end-to-end
distance varied. In the fixed-length condition, end-to-end distance
was fixed while distance between adjacent blocks varied. Both con­
ditions were based on an implied template of nine possible loca­
tions in a linear array, separated by 1.4 em from edge to edge.

In the fixed-interval condition, locations were chosen from left
to right sequentially, with the starting position chosen randomly
and constrained by the total number to be displayed. The total visual
angle subtended by the array varied from 0.29 0 to 5.78 0

; the in­
terval between blocks was a constant 0.40 0

•

In the fixed-length condition, when more than one element was
presented, the left- and right-most locations from the template were
always included and the remaining blocks were located randomly
at any of the intervening seven positions. End-to-end visual angle
was a constant 5.78 0

, and intervals between blocks varied from
0.400 to 5.21 0

• For one-element displays, the position was chosen
randomly from the nine possible locations. Note that in this condi­
tion, the single-element display has a more central location on aver­
age than the two-element display, but this is not true for the fixed­
interval condition.

Procedure
This experiment was performed concurrently with a second ex­

periment (not reported here), with the order counterbalanced across
subjects and the two sessions separated by I full week. The sub­
jects wore a lapel microphone, which was connected to a voice key
with an input to the controlling computer. Speed of response was
emphasized, and the subjects were informedthatthe maximum num­
ber ofelements presented would be seven. To begin each trial, the
subjects depressed the space bar on the keyboard in front of them.
They were instructed to enter at this keyboard whatever response
they had actually vocalized for each trial, regardless of whether
or not they had subsequently changed their minds.

The experiment included 14 stimulus conditions (7 numerosities
x 2 display patterns), and display duration was fixed at a constant
200 msec. The displays were presented in a random order for 70
practice trials (5 per condition), followed by 280 test trials (20 per
condition). A short break was allowed at the end of the 70 practice
trials and after 140 test trials. Total session time was approximately
45 min.

RESULTS AND DISCUSSION

Percent correct for the data combined over subjects is
shown in the first (top) panel of Figure 1. Panels 2 and
3 present MRT and RT standard deviation, respectively,
for correct responses in the combined data.

Note that enumeration times are relatively fast and ac­
curate for numerosities up to four elements for both dis­
play conditions; at higher numerosities, efficiency drops
off sharply. To this extent, the data are similar to previ­
ous reports (Atkinson, Cambell, & Francis, 1976; Chi
& Klahr, 1975; Kaufman et al., 1949; Mandler & Shebo,
1982). Further corroboration of this assessment will be
provided by the fitting analyses described below.

Within-subject analysis of variance on RT by numer­
osity and display condition was performed to investigate
the effects of display condition. This showed significant
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effects of numerosity [F(6,2154) = 410.85, p < .001],
display condition [F(l,359) = 39.31,p < .001], andtheir
interaction [F(6,2154) = 4.639, p < .001]. Because the
single-element displays are the same in both display con­
ditions, data from these trials were removed and the re­
maining data were partitioned according to whether nu­
merosity was small (2-4) or large (4-7). As suggested
in Figure I, analysis of this partitioned data showed that
the numerosity x display condition interaction is due to
performance on smaller numerosities [interaction values:
F(2,718) = 8.96, p < .001, for numerosities 2-4; and
F(3,1077) = l.79, p > .148 for numerosities 4-7]. Vi­
sual angle is larger in the fixed-length than in the fixed­
interval condition, and the difference decreases with nu­
merosity, which might account for some of the differences
between the two conditions. Nevertheless, the basic shape
of the two functions is similar; that is, they both appear
to be convex upward. It is this shape, rather thanthe quan­
titative differences, that will determine the validity of the
enumeration models.

Figure 1 also suggests unique effects of the stimulus
numerosities 1 and 7 (the extremes of the numerosity
dimension). Specifically, the slope of the function de­
creases: MRT1 - MRT. > MRT3 - MRT1 , and MRT6

- MRTs > 0 > MRT, - MRT 6 • Both results arefairly
consistent across subjects, the first being violated in only
8 of 36 cases (18 subjects x 2 display conditions) and
the second in only 5 of 36 cases. Various strategic be­
haviors could be postulated to account for these results.
Perhaps the simplest explanation is that numerosities 1
and 7 have only one immediately adjacent response al­
ternative (e.g., numerosity 1 has neighbor 2), whereas
all other numerosities have two. Thus, any information
that favors an impossible response (e.g., 0 or 8) could
be taken as strong evidence for numerosity 1 or 7. The
single-element data could also be explained by the differ­
ence in display pattern associated with single-element
versus multielement displays (single elements could be
seen as "dots" as opposed to "lines"). Both accounts
illustrate how learned abilities that do not reflect strictly
numerical skills might significantly affect enumeration
performance. Because neither of the two statistical models
described above is able to predict these effects, further
analyses focused on numerosities 2-6.

Consider first the Equation I model discussed above.
For several reasons, the most appropriate test of this
model would assume that the subitizing limit is four ele­
ments (i.e., m = 4 in Equation 1). Any other hypothesis
would appear to strongly violate the observed data in Fig­
ure 1. Further, since at least three data points are neces­
sary to test the assumption of linearity, by choosing a
subitizing limit at numerosity 4, it is possible to deter­
mine whether any two contiguous regions in the empiri­
cal functions satisfy the bilinear model. If two such regions
exist, then at least one of the two estimated functions un­
der this model must be consistent with the data.
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Figure 1. Summary statistks for speeded enumeration of linear displays of 200­
msee duration. The response-time measures are based on coned: responses only; mini­
mum N = 218.

To optimize the parameter estimates for this version of
the bilinear model, the fits were obtained using a weighted
least squares algorithm that minimizes

4 N [ RT· '-(0 i +(3 ) )2
WSSE = E E IJ 1 1

;=2 j=l Uj

(3)

where (1; is the RT standard deviation when the numeros­
ity is i (to be estimated from the data). Note that Equa­
tion 3 takes into account the increase in RT variance as-

sumed in the model by putting less weight on those data
points with greater estimation error.

The upper panel of Figure 2 shows the best-fitting linear
functions for the Figure 1 data at nurnerosities 2-4 and
4-6. To a first approximation, the model seems quite ade­
quate. However, a closer inspection reveals a tendency
for the empirical values to be underestimated at the end­
points and overestimated in the middle. Note that this is
precisely what is to be expected if the entire function from
2-6 is continuous and concave upward.

To verify the consistency of this result across subjects,
the best-fitting functions were also computed for each sub­
ject individually. The bottom panel of Figure 2 shows the
averaged residuals (i.e., errors of prediction) at each data
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Figure 2. Weighted least squares estimates of a blUnear model for mean respoDlle
time (same data as In Figure 1). The lower plIDel shows the mean prediction error (0b­
served minus predicted) over ftts to individual subjects' data for each data point.

point. (Note that this method is different from fitting to
the combined data set because of the weighting function).
The results are similar in form and even more robust in
comparison to the previous test. However, they are also
misleading in one case. Specifically, for displays of fixed
length at numerosities 4-6, 12 of the 18 subjects show
the opposite result from that suggested in Figure 2 (i.e.,
overestimation of the endpoints and underestimation in
the middle). This result compares with only 2 deviations
from the Figure 2 pattern in the fixed-spacing condition
for numerosities 4-6, and 7 out of 36 for the two other
functions combined. Figure 3 illustrates these results with
four examples from individual subjects.

If the bilinear model is correct, then the errors of predic­
tion (i.e., the residuals) should be normally distributed
with a mean of zero. This hypothesis provides another
means of statistically corroborating the failures of the
bilinear model. Kolmogorov-Smirnov tests on the nor­
mality of the residuals collected over the 18 subjects were
therefore performed for each of the four linear fits. Depar­
tures from normality were significant in each of the four

cases (maximum p = .014), providing further evidence
that although the violations of the bilinear model are small,
they have a consistent form.

These results suggest that the log-linear model might
fare better, since it predicts a continuous MRT versus nu­
merosity function. However, the log-linear model per­
formed no better than the bilinear model. Weighted least
squares estimates on the observed 10g(RT) data are shown
in Figure 4. Note that the data strongly suggest at least
a quadratic trend and possibly higher components in
10g(RT). The effect is also consistent across subjects and
display conditions. The lower panel of Figure 4 shows
the averaged residuals for each data point. Only 5 of the
36 total tests differ noticeably from the pattern shown in
Figure 4.

To facilitate comparison with the bilinear model, the
data were divided into the same four groups as before (nu­
merosities 2-4 and 4-6 x two display conditions) and
Kolmogorov-Smimov tests for normality were performed
on best fits to these. Interestingly, despite clear violations
evident in Figure 4, these tests were nonsignificant for
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Figure 3. Representative examples of the bilinear model fit to individual subject data.

for some constants a and (3. The second and third models
were versions of the log-linear and power-function mod-

numerosities 4-6 (p > .08 for the fixed-interval andp >
.55 for the fixed-length displays). Significance was
reached, however, at the smaller numerosities (p < .01),
and so the log-linear model is nevertheless strongly re­
jected.

In addition to the models described in Equations 1 and
2, three related models were also tested. The first model
assumed that enumeration time is a power function of nu­
merosity:

RTi,i = (3iOl + ni,i> (4)

els, with one additional parameter. The three-parameter
log-linear model assumed

RTi,i = (3eOli +n i
, j + 'Y, (5)

where a, (3, and 'Yare free parameters. A third free pa­
rameter was added in a similar way to the power-function
model of Equation 4. Although we omit the details, very
similar conclusions were obtained for each of these
models. Specifically, the predictions of each model devi­
ated from the data in a manner similar to the log-linear
model. Thus, each of these models can be rejected.

Both the bilinear and log-linear models, as well as
several related ones, are seen to be unequivocally rejected
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Figure 4. Weighted least squares estimates 01 the exponential model lor mean
respolllle time (same data as In Figure 1, and lower panel defined as In Figure 2).

by the present data. Before considering the implications
about subitizing on the basis of these results alone,
however, it is important to first address the issue of their
generality. Of particular concern is whether the failure
of these quantitative models could be due to an artifact
of the experimental conditions of this particular study.

Such an explanation would seem unlikely for several
reasons. First, the most important features that have previ­
ously been identified with subitizing (fast and accurate
enumeration of small numerosities followed by sharp in­
creases in RT and error rate) are also characteristic of
the data in Figure 1. Therefore, if different mechanisms
were invoked by the stimulus conditions of this study, then
more than one kind of subitizing would be implied, even
though both mechanisms must be highly efficient.

Second, these same properties appear to be robust with
respect to a wide variety of experimental manipulations.
For example, several studies have found no effect of nu­
merosity range on what defines subitizing and when it is
operating (Klahr & Wallace, 1976; Mandler & Shebo,
1982). The overall pattern of results also seems to de-

pend little on the developmental level of the subjects.
Although their responses are slower overall, young chil­
dren produce MRT versus numerosity curves of the same
type as Figure 1 (e.g., Svenson & Sjoberg, 1978). Fi­
nally, Oyama et al. (1981) found apparent support for the
bilinear model using displays of different durations fol­
lowed by a pattern masker. Specifically, the authors pro­
posed a two-stage model in which elements mayor may
not be encoded, but if they are encoded, then they are
enumerated and RT increases according to the bilinear
model.

There is little evidence, then, that the use or availabil­
ity of a subitizing mechanism is particularly susceptible
to variations in the stimulus conditions. The present data
constitute further evidence against such a position because
the fast and accurate enumeration of small displays was
possible in the absence of geometric cues. The question
that remains is therefore whether the exact nature of the
model failures demonstrated above is also robust across
changes in experimental design. If similar sorts of incon­
sistencies can be shown to exist in previous studies as well,
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then this would constitute strong evidence that the bilinear
and log-linear models must be rejected or revised.

The essential issue is the slope of the MRT function.
If it increases continuously, then the bilinear model is
ruled out, and if it increases, but not in a constant propor­
tion to MRT, then the log-linear model is ruled out. Fig­
ure 5 shows the best-fitting functions to the often-cited
data of Kaufman et al. (1949; from the condition in which
response speed was emphasized). Each of the two fun­
damental problems reported above surfaces once again
in these data: uniquely fast responses to single-element
displays, and increasing but nonexponential slopes from
2-6 elements. Similar results are obtained if one applies
the log-reciprocal transform that Kaufman et al. (1949)
used. Note that these data were obtained from an experi­
ment with a larger range of numerosities (1 to 15 elements)
and the standard two-dimensional random-dot displays.

Other frequently cited data were reported by Jensen,
Jensen, and Reese (1950) and by Mandler and Shebo
(1982). The data of Jensen et al. (1950) were obtained
using response-terminated displays, whereas Mandler and
Shebo (1982) used a fixed display duration. In addition,

Mandler and Shebo (1982) investigated the effects of nu­
merosity range in a series of three conditions (i.e., ranges
1-15, 1-6, and 1-3). Estimates of the MRT increase be­
tween each successive pair of numerosities are given in
Table 1. Also included in the table are the two instruc­
tion conditions from Kaufman et al. (1949). All three data
sets noticeably violate the bilinear predictions because of
monotonically increasing slopes in the 2-6 range. The log­
linear model also shows the same pattern of violations as
before in all three data sets. What emerges from this sur­
vey, then, is not a consistent body of evidence in favor
of one model or the other, but additional evidence con­
trary to both.

Implications
The function relating MRT and numerosity appears to

be continuous and convex upward, with an acceleration
that is too abrupt to be explained by any of the classical
functions. The bilinear and the log-linear models each cap­
tured one important feature of the data, however. The
bilinear model predicted the distinctively fast responses
at small numerosities, and the log-linear model predicted
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Table 1
Slopeof Mean Response TImeby NumenJllity In D8ta of (1)Kaufman et aI. (19019) (Mediaa Rn,

(2) Jensen et aI. (1950) (MediaD Rn, IIIId (3) Mandler IIIId Sbebo (1982) (Me8D Rn*
(I) (2) (3)

Instructions Response-Terminated Range

N Accuracy Speed Displays 1-15 1-6 1-3

1-2 90 100 50 30 -10 15
2-3 20 20 50 80 70 35
3-4 30 120 160 190 200
4-5 380 210 260 300 220
5-6 1,090 330 380 310 180

·Estimates for Mandler and Shebo (1982) are based on their Figures 7 and 8.

a continuous increase in slope. Before any strong claims
can be made about a special numerical ability, it is neces­
sary to reconcile these two results.

Perhaps the simplest revision of the bilinear model that
would maintain a dual process account and still predict
a continuous function would be to assume that the capac­
ity of subitizing is not fixed, but instead varies from sub­
ject to subject, or else from trial to trial for an individual
subject. The latter hypothesis is more consistent with the
results presented above, since the bilinear model also
failed when it was fit to the data of individual subjects.

In this revised model, the MRT at each numerosity is
a mixture ofa subitizing and an enumeration process. Let
P(S Ii) be the probability that a display of size i is subi­
tized, and let P(Cli) = 1 - P(Sli) be the probability
that it is "counted." In addition, let MRTs.i be the mean
RT on subitizing trials when the display size is i and let
MRTc.i be the analogous mean RT on counting trials.
These two values are the expected values of the first and
second linear functions in Equation 1, respectively. Over­
all mean RT at numerosity i is therefore equal to

MRTi = p(SI i) MRTs.i + P(CI i) MRTc.i. (6)

With the additional free parameters, this model can ac­
count for the continuity in the averaged data, despite the
fact that the component processes are linear.

Apart from the fact that it is untestable because of the
added parameters, this mixture model has an interpreta­
tion problem. Specifically, the slope of the best-fitting
linear function in the putative counting region is steeper
than in the subitizing region (see Figure 2). Thus, through­
out the subitizing range, the predicted counting time is
less than the predicted subitizing time! One consequence
of this fact is that the slope of the counting function can­
not represent the time to enumerate an element in the dis­
play, nor can the counting function be ascribed to a sin­
gle process that is distinct from subitizing. Otherwise,
subitizing would be the slower of the two processes.

One way to avoid this difficulty is to assume that the
quasilinear regions do not provide good estimates of the
two slopes because of the change in subitizing capacity be­
tween trials. To fit the model, one could constrain each
function to predict thesame intercept, with thisvalue being

the estimated time for a motoric response and other non­
numerical processes. Although the constrained and uncon­
strained versions are both untestable with the extra mixing
parameters of Equation 6, one way to examine thesemodels
in more detail is to determine the least squares estimates
of the slopes of the two functions, under theconstraint that
they be as close as possible to the estimates from the Equa­
tion I nonmixture model (i.e., minimizing the amount of
mixing predicted). This can be achieved by adding to the
weighted sum of squared errors (WSSE) of Equation 3
the value a max[P(SI i), I-P(Si», where a is a positive
constant.

Table 2 shows the results of this analysis for each of
the two mixture models just described. Note that the ap­
parent capacity of the subitizing process differs signifi­
cantly in the two models. In the single-intercept model
it is about four or five elements, and in the two-intercept
model it is three or four elements (depending on the cri­
terion). Note also that the estimated slopes in the two­
intercept model are comparable to the estimates in the no­
mixture model, whereas the estimates for the single­
intercept model are quite different. This difference sug­
gests that the usual method of fitting the Equation I model

Table 2
Estimated Slope (a), y-Intercept <P>, and Prob8biIlty of SubitiziDI

Given Numerosity i (PI) for tbe Standard 8IUnelIr IIIId
Bilinear Mixture Models De8mbed In tbe Text

Bilinear Mixture

No Mixture Version I· Version 2t
Fixed Fixed Fixed Fixed Fixed Fixed

Interval Length Interval Length Interval Length

a, 53 62 25 37 25 37
(:3, 429 430 492 485 492 485
all 148 156 155 159 79 90
(:311 59 76 37 69 492 485

P, 1.00 1.00 1.00 1.00
~ 1m 1m 1m 1m
p. 0.01 0.55 0.99 0.96
p. 0.00 0.02 0.86 0.74
p. 0.00 0.00 0.01 0.04

Note-" 1" and "2" indicate regions oCthe linear fit (see text); slope
and intercept values are in milliseconds. ·Two intercepts. tonein­
tercept.
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provides little information about the capacity and speed
of subitizing.

CONCLUSIONS

Each of the two existing models of speeded enumera­
tion fails to adequately describe the dependence of
enumeration time on stimulus numerosity. Because of its
implicit assumption of two processes, the bilinear model
constituted a major source of support for the existence
of a unique numerical process in humans. Rejection of
this model therefore significantly weakens the evidence
for such a process. Failure of the log-linear models, on
the other hand, rules out the class of single-process models
that relate the temporal demands of enumeration to the
proportional change in numerical magnitude as integer
magnitude increases. The latter result is important because
for larger numerosities than those used in the present
study, proportional changes in integer magnitude appear
to be quite good predictors of numerical judgments (van
Oeffelen & Vos, 1982).

Although it is not unreasonable to suppose that some
variance in the capacity of subitizing might account for
the lack of a discontinuity in the MRT versus numerosity
functions, there seems to be little reason to favor this po­
sition over more parsimonious accounts of the data, in
which subitizing is seen as one of many manifestations
of a general capacity limitation. In keeping with this view,
Broadbent (1975) has compiled a long list of experiments
in which at most three or four items can be processed with
high efficiency in memory. Even granting that the RT data
differ appreciably in some of these experiments, it is un­
likely that separate structural mechanisms are necessary
to account for each of them. The challenge raised by the
present results is therefore to provide a more convincing
demonstration that subitizing deserves its current status
as a unique numerical mechanism.
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NOTE

1. Kaufman et aI. (1949) actually fit a slightly different function to
median response time; however, the differences are inconsequential.
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