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A model for visual intensity threshold discrimination is
described. Simplified assumptions represent the main features
of the visual afferent paths. Discriminative responses are
selected centrally by a statistical decision procedure, limited
by the noise level. Noise arises from the irreducible physical
variability of light, from spontaneous firing, and from varia-
tions in transmission in the afferent paths. These variations
will tend to be positively correlated. The model was simu-
lated on a computer: it correctly predicts the form of the
Weber function (the relation between difference threshold and
background intensity) and the features of spatial and tem-
poral ““summation”. It also shows that the function relating
the central effect of a stimulus to its physical intensity is
unlikely to be logarithmic or a power function with a small
exponent.

I. The Model

"Weber's law stands as a milestone in psychological
research. It is one of the first psychological laws
worthy of the name, and it may prove to be of far
greater and more general significance than the differ-
ential threshold problems that provided its initial for-
mulation. In effect, it establishes a law of psychological
relativity: subjective discriminations are not bound to
absolute characteristics of stimuli but to relations
between them.'' (Berelson & Steiner, 1964). This claim
illustrates a common error among psychologists: the
over-evaluation of 'laws,'' whose discovery is taken
as an end in itself for psychology.Weneed to substitute
for this nineteenth century fallacy the appreciation that
the observation of a behavioral regularity is not the
conclusion to a psychological investigation, but a ques=
tion inviting one; a ''law'’ can only be said to be satis-
factorily understood when we have a model of how the
subject functions from which the observed behavior
follows as a logical consequence. No grandiloguent
generalization can substitute for this. The present
paper arises from an attempt to examine whether we
are yet in a position to devise such a model to account
for Weber's law and some related findings (Treisman,
1964a); to examine the implications of the model
devised it was simulated on a digital computer.

The model as presented is intended to apply only
to the simplest detection situation: determination of the
increment or absolute threshold for a flash super-~
imposed on a background of the same area or larger.
Extra assumptions will be needed to extend it to more
complex situations, such as determination of the CFF,
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but it will be better to add these assumptions when the
basic model has been evaluated. It has been applied
to visual thresholds since we know more about the
absorption of energy by the receptors for vision than
for other senses, but in principle it is capable of
being adapted to any sense.

The main assumptions on which the model rests are:
(i) There is a statistical relation between the nominal
intensity of a stimulus and its effect on the retinal
receptors. The variation from trial to trial in the
number of quanta absorbed from a light-flash of con-
stant nominal intensity is described by a Poisson dis-
tribution. (ii) There is a statistical relation between -
the effect on the sense organ and the nervous message
received centrally. Thus if the same number of quanta
were absorbed by the receptors on more thanone trial,
sensory noise would nevertheless cause the number of
nerve impulses arriving at the point where the threshold
is determined to vary. (iii) The variation due to this
sensory noise is, to some degree, positively correlated.
(iv) A statistical decision procedure determines the
response made.

For the most part, these assumptions are not new,
The last three could be adapted to apply to any sensory
system, and would then account for the occurrence of
Weber's law (Treisman, 1964a)., A number of lesser
assumptions are included in the model to give a closer
fit to the visual system, though the model should still
be considered schematic, and the importance of some
of these parameters and assumptions hasbeenassessed
by varying the values given to them in the computer
program, The model is essentially an information-
processing account in which the successive stagesbeara
rough parallel to those which physiological observations
suggest may occur in the visual pathway. A brief
description of the computer program will be given
which will also serve as a more detailed account of
the model. Some of the assumptions will then be dis-
cussed more fully.

We start by considering a single trial on which a
background light-flash of intensity I quanta/ sec.deg.z,
and area Aj; deg.2 is exposed to the eye for t; sec.
Steps (1) to (5) below describe how the program computes
the effects of such an exposure.

(1) When a visual stimulus of given intensity is
presented to the eye the number of quanta absorbed by
retinal receptors will depend on the area and duration
of the stimulus and the extent to which light is lost in
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the optic media or bypasses the receptors. This last
is represented by f, the proportion of the quanta
incident at the cornea which is absorbed by visual pig-
ment. Rushton (1956) estimates that 10 per cent of the
light entering the eye (A=505mp, 20° parafoveal) is
absorbed by rhodopsin, and f was always taken as 0.1
in the program, which also had,unlessotherwise stated,
Ay=1 deg,,2 and t; = 0.1 sec. Then the expected number
of quanta absorbed from the flashof intensity [; is given
by gq1;, where gy =fA,t;. However, noise arising inthe
visual system may spontaneously produce events con-
fusable with the absorption of quanta of light by visual
pigment. Following Barlow (1957) we shall treat these
events as though they were always due to the spontaneous
decomposition of molecules of visual pigment, and
represent this retinal noise by an equivalent ''dark
light,'" I, whose intensity is such that it would produce
quantal absorptions at the same rate as that at which
these noise events occur. Then the tfotal expected
number of guantal absorptions (using this term, from
here on, to include noise events confusable with quantal
absorptions, unless otherwise stated) will be given by
x1 = g1({11 + In). Theprogram tookIn = 1000 quanta/sec.
deg.2 (Barlow, 1957).

(2) The mean number of quanta absorbed on each
trial is given by x;. But the actual number of quanta
absorbed will vary from trial fo trial because of the
irreducible quantum variability of light. This is de-
scribed by a Poisson distribution, so the program takes
the actual number of decompositions of visual pigment
on the given trial as x5, where this is a variable from
a Poisson distribution with mean x;. (For x1>100 a
normal approximation to the Poisson distribution was
used.)

(3) Not all the quanta absorbed may be effective at
the stage at which sensory messages are set up. We
assume that light adaptation acts by reducing the number
of absorptions which are effective in setting up sen-
sory messages, so that the effect of adaptation is
represented by the conversion of X9, the actual number
of guantal absorptions on the given trial, to xg3, the
number of absorptions effective in determining the
neural message. Various assumptions might be made
about this relation, since little is known about light
adaptation. Those selected for inclusion in the program
were:

(i) N (no) Adaptation.
effective,

(ii) F (fractional) Adaptation. Xg=hxs, 0<h< 1. The
number of absorptions effective is a fixed proportion
of the total absorptions on a given trial. This would
represent an adaptive process approximately as rapid
in its effects as the direct excitatory action of the
stimulus.

(iii) P (partial) Adaptation. This assumes that the
momentary stimulus input can be considered to be
divided into two parts, an ''adaptation level'' deter-
mined by the average intensity of the stimuli over a

Xg=Xg. All absorptions are
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series of trials, I, and the deviation from this adapta-
tion level of the given input; these two parts are dif-
ferently effective at the stage at which the neural
message is determined. The deviation was taken as
X'g=x9 -~ kx1, with k=0.95, and the adaptation level was
then x'"'g=kx;y.

(iv) C (complete) Adaptation.  This is similar, except
that the 'adaptation level'' is assumed to have no
further effect. x3=x2-kx1=x2—x1+cx1, 0< ¢c< 1. The
number of decompositions effective at the next stage
is given by the excess of the actual number on the
given trial over the mean number for a series of
trials, plus a proportion, ¢, of this mean number. It
was taken that ¢ =0.05.

(v) M Adaptation (adaptation to the mean).
Only the deviation from the mean level is effective
at the next stage. This would imply that information
about the absolute level of illumination must be con-
veyed by some other, presumably less sensitive, system
than the one under consideration which determines
intensity discrimination. \

(4) We shall represent the relation between the
final neural effect (E) of the stimulus, and its physical
intensity (I) as the overall '‘transducer function,
E=f(I). This is taken here to reflect the relation be-
tween the numbper of sensory messages set up, Xy
and the number of pigment decompositions effective in
setting them up, x5. For reasons which will be given
below the effects of five alternative transducer func-
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tions were explored: (i) x4=log xg; (ii) x4=xg’ 3

(iii) x4=xg'6; (Iv) x4=%g; (V) x4=x?;‘4. The overall

transducer functions resulting from these relationsare
represented as E=log I, E=IO'3, etc. In the case of
partial adaptation it was assumed that the "'adaptation
level'' is always transduced logarithmically, the func-
tions given above applying to deviations from thislevel.
Thus for E=I "4, x4=x'31°4+log x"4, for E=log I,
X4 =log x'3 +log x''3, etc.

(5) The number of sensory messages set up, x4, has
now been computed. We will suppose that each message
consists of a train of nerve impulses, but any other
neural coding compatible with the other assumptions
of the model could be substituted for this. If the mean
number of nerve impulses in a sensory message is s,
and the total number of impulses arising is summed
centrally to give E, the effect of the light-flash at the
point where responses are selected, then the expected
value of E would be sxy. But this is unlikely to be the
magnitude of the central effect of the stimulus on any
given trial since sensory noise will cause the actual
number of nerve impulses in each sensory message to
vary about s; it is assumed that this variation is nor-
mal, with variance o gg The program takes s=1 and
treats the message size as a continuous variable with
05=0.1. The ''noisiness'' of the sensory message is
then indicated by its coefficient of variation, v=  /s=
0.1. There is little relevant evidence on the variability

X3=X2—Xl.
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of firing in sensory nerve fibersbutitis of interest that
Stein and Matthews (1965) have measured the distribution
of inter-pulse intervals for cat muscle spindle afferents
under constant stimulation, and found that, except at
the lowest frequencies, this was normal with v constant,
its mean value being 0.05 for primary and 0.02 for
secondary afferent endings. It seems unlikely that the
visual system is much noisier than the proprioceptive.
As a prediction from the present model depends on v
being small, 0.1 was taken as a conservatively large
figure.

However, we are not yet in a position to determine
X5, the sum of the nerve impulses arising on the given
trial, as the variance of the central effect, E, will depend
not only on o g, the variance of the sensory messages,
but also on the correlations between them. As an il-
lustration let us suppose that exactly two sensory
messages arise on each of N trials, and that on each
trial we arbitrarily label these s; and sy;. We could
then calculate the product-moment correlation coeffi-
cient, ryg, between the magnitudes of s; and sy over
the N trials. Sensory noise might be partly due to
factors such as variation in the level of facilitation of
synapses in the visual afferent pathway by the ascending
reticular system or any other source, variation in
oxygen supply depending on the phase of the pulse-
cycle, or other causes which would tend to affect
different sensory messages arising at the same time
in a similar way. This would make it seem likely that
Tri9 would be positive though, of course, it could have
any value between -1 and +1. If there were three
sensory messages on each of the N trials, then, since
we label them arbitrarily, we would expect T1p=Try3=
Tog=r, where r is the meanlevel of correlation between
sensory messages., In this case, however, it is no
longer true that r can range between -1 and +1. The
possible range of values for r can be shown as follows:
we assume that there are n sensory messages on each
trial, s, Sg, ... 8y «.. Sy, With 5;=0 and o;=1. Then

..Sn) 2 20

2

s] +ZS§Z sf+
(Zs]s2+ 25153+ Z snsn-T)] >0

n+n(n-1)r >0
Therefore
r>-1/(n-1)

Thus the lower limit of pogsible values of r is given by
r=-1/(n-1), where n=x4. Furthermore, since we wili
almost always have large values of x4, the possible
negative values of r will be very close to zero, so that
in most cases the range can be taken as effectively
0 to +1. To examine the effect of the degree of correla-
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Fig. 1. The relation between the physical stimulus intensity,
I, and its central effect, E, underlying measurement of the absolute
or incremental threshold by the method of constant stimuli. The
psychometric function relates P(Y), the probability of the response
‘Yes’, to the physical magnitude of the stimuli presented. The three
distributions on the central decision axis, E, correspond to three
stimuli, I;, the background stimulus (I;=0 when the absolute thresh-
old is measured), Iy, the background + increment whose mean cen-
tral effect coincides with the criterion, E.. and l3, a stimulus
whose mean central effect, E, is exactly one standard deviation
above E., and for which P(Y) is, therefore, 84 per cent. lz—ll=A 1.

tion between sensory messages, r was taken as 0, 0.2,
0.5, 0.6, or 1.0, and x5, the total number of nerve
impulses arriving centrally on the given trial, was taken
as a variable from a normal distribution with mean x4
and variance determined by og and r.

We have now given an account of how a single pre-
sentation of the stimulus might produce a central ef-
fect, E, which the computer calculated as Xg5. However,
we are interested in making predictions about the dif-
ference threshold, AI, or absolute threshold, I,. Before
describing how the program determines these measures,
we shall briefly elaborate the assumption that threshold
responses are determined by a statistical decision
procedure.

Figure 1 illustrates assumptions about the determina~
tion of absolute or difference thresholds which have
been put forward by a number of authors, but which
are perhaps best known and have been most energetically
developed as the basis of modern signal detectability
theory; as this theory, and the considerable evidence
for it, are well described elsewhere, only a brief
account of the determination of incremental and absolute
thresholds will be given here (Cattell, 1893; Solomons,
1900; Thurstone, 1927; Rose, 1948; Tanner & Swets,
1954; Gregory, 1956; Barlow, 1956; Swets, Tanner, &
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Birdsall, 1961; Swets, 1964; Treisman, 1964a, 1964b,
1965; Treisman & Watts, 1966). We start with the
assumption that there is a statistical relation between
the central effect of a stimulus at the locus where the
threshold response is determined—the ''decision axis,'"
E—and its physical magnitude. Let us suppose that a
stimulus, of intensity I, is repeatedly presented to a
subject. Then, because of physical and sensory noise,
the stimulus will not have identically the same central
effect each time it is presented; instead its different
central effects can be described by a frequency distribu~
tion, which is assumed to be approximately normal.
Figure 1 shows three such distributions, centered on
Ei, Eg and Eg, the expected central effects of three
stimuli, Iy, I2 and Ig; to a first approximation it is
taken that their variances, ¢ s are equal,

In the determination of an incremental difference
threshold by the method of constant stimuli, 11 would
represent the background or steady stimulation. On
some trials I is presented, and on other trials one of
a range of stimuli greater than Iy is given. Each time
the subject must respond '"Yes'' or ''No'' to indicate
whether or not he considers that an incrementhas been
added to I;. Since the central distributions overlap,
the value of E; occurring on trial (i) is not an un-
ambiguous indicator of which stimulus was in fact
presented on that trial. Statistical decision theory shows
that in such a case the optimal procedure for the
subject is to select a value on the decision axis, E cr @8
a criterion, and to make each decision by reference to
it: if the central effect on a given trial exceeds E
he should respond ''Yes,'' if it does not he selects
the response ''No.'' Then the probability that the sub-
ject will respond ''Yes,'" P(Y), on trials when a given
stimulus is presented, is given by the proportion of
the corresponding central distribution which lies to the
right of E;. Figure 1 shows the psychometric function
which results when P(Y) is plotted against the stimulus
values. For Iy, the value of P(Y) is the ''false positive
rate,"' the proportion of the distribution centered on Ey
which exceeds Ec. I happens to be the stimulus whose
mean central effect, E2, coincides with the criterion,
Eq; it follows that for this stimulus P(Y)=0.5. In
general, as larger values of I aretaken P(Y) increases,
giving a psychometric function which is a normal
ogive. P(Y)=0.5 is usually taken as the experimental
criterion defining the incremental threshold; it fol-
lows that AI, the threshold increment, is given by
Al=lg-1y. When I;=0 the mean value of E; will be
due to the retinal noise, I, and I, will now be taken as
the absolute threshold for light, I,. The distribution
corresponding to 1; is sometimes called the 'noise'’
(N) distribution, the others being ''signal +noise'' (SN)
distributions.

There are a number of ways in which a subject
might settle upon a value for E; (Birdsall, 1955),
but the basis proposed by Neyman and Pearson (1933)
is the most plausible for the conventional psychophysical
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methods (Treisman, 1964a, 1964b, 1965). This requires
that the false positive rate must not exceed an accept~
able limiting value, and it is satisfied if Ec= El +zog,
where z is a constant such that P(Y !_11) is equal to
the acceptable false positive rate. Since the central
distribution is taken to be normal, zisthe standardized
normal deviate which cuts off a tail whose area is
equal to the acceptable limiting false positive rate.

Returning to the computer program, we can see that
X5, as determined above, corresponds to a value for E
produced by a single presentation of 1y, the background
stimulus. In order to determine the threshold intensity
increment for I; we need to determine E,=Egq and then
find the corresponding value of I. Then we can obtain
Al= 12 - Il'

(6) Steps (1) to (5) above were repeated 1000 times,
the resulting 1000 values of xg representing the E;
distribution. The acceptable limiting false positive rate
was taken as 2 per cent; a value, Xg, Was found which
was exceeded by 20 of the calculated values of Xg. This
was taken as an estimate of Ec’ the corresponding
value of I2 was determined and A1 wasderived from it.

11, Further discussion of the model

We have now described the model and the computer
program embodying it. This was used to examine the
form of the Weber function (i.e., the relation between
AT and I) and also the implications of various assump-
tions about light adaptation, the form of the transducer
function, and the level of correlation. Before consider~
ing the results some points deserve further discussion.

(1) The transducer function: (i) The logarithmic func-
tion, E=1log I, which corresponds to Xy =log X3 in the
program, has wide support, partly for the reasons
advanced by Fechner (1860), and partly because it is
believed that it provides a basis for explaining Weber's
law, since if AI!I is constant, all values of AT will
correspond to the same fixed difference after the
logarithmic transformation (Gregory, 1956; Le Grand,
1957; Rushton, 1961), However, Fechner's arguments
were based on his particular model for the threshold;
if that is rejected his scaling procedure and his con-
clusions must fall away. A scaling procedure can be
derived from the statistical decision model of the
threshold presented above; when this is useditdoes not
give a logarithmic function but suggests, for vision,
that the transducer function is a power function with an
exponent in the neighborhood of one (Treisman, 1965).

Evidence from a different source appears to be pro-
vided by the finding that category scaling and related
procedures lead to a logarithmic function, and it has
also been argued that the results of ''direct'' sensory
scaling experiments, although usually takenas evidence
for a power function psychophysical law, canbe as well,
or better, interpreted as supporting a logarithmic law
(Stevens, 1957, 1960; Treisman, 1964c, 1964d). But it
has also been proposed that the dimension scaled by
"direct' and category scaling procedures is not the
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same as the discriminal dimension serving as decision
axis in the determination of discrimination responses,
but is a, more central metric dimension storing informa-
tion about the magnitudes of stimulus inputs; this metric
dimension might be related to stimulus intensity by a
logarithmic psychophysical law without this carrying
any implication about the form of the transducer func-
tion (Treisman, 1965), Thus the psychophysical evidence
for a logarithmic transducer function is weak; neverthe-
less, it seemed of interest to include it.

(ii) "*Direct'" scaling methods lead to a psychophysical
law which, for brightness, is held tobea power function
with an exponent of about 0.3 (Stevens, 1957, 1960).
Although these data could be equally well accommodated
by a logarithmic function with a slope constant of 0.3
(Treisman, 1964c, 1964d), and should be interpreted as
relating to the metric dimension, and not the dis-
criminal dimension with which we are now concerned
(Treisman, 1965), it seemed of interest to include
X4=X3' .

(iii) Though implicit in much workthathasbeen done,
the linear law (x4=Xxg3) and similar functions do not
appear to have been systematically evaluated. They may
have seemed implausible because the range of light
intensities over which the eye functions is so large
when compared with the range of useful firing rates
of a nerve fiber, but this is notan insuperable objection:
(a) rods and cones function mainly over different ranges
of intensity; (b) light adaptation may greatly reduce
the firing rates required (partly for this reasona num-
ber of adaptation functions were included in the pro-
gram); (c) we are concerned with the transducer func-
tion as it applies to the experimental measurement of
visual thresholds: in these situations the eye is usually
adapted to a fixed background intensity, and the decre-
ments or increments to this intensity are small. Thus
the linear law need apply to only a small range of
variation about an adapting intensity, while another law
could apply to the mean effect of the background
intensity itself. This possibility was included in the
program as P adaptation, the effect of the "adaptation
level" being assumed to be logarithmic, whatever the
transducer function applying to deviations from this
level might be.

Evidence in favor of a linear or near-linear law
includes: (a) A scaling procedure basedon the statistical
decision threshold model has been applied to data on
brightness discrimination; the results obtained sug-
gested that the transducer function is a power function
with an exponent varying above and below unity. For
individual subjects the exponent may be somewhat
greater or less than one (Treisman, 1965). (b) Complete
temporal summation is found for threshold stimuli
whose duration is less than a limiting value which we
will call - (Bloch's law), and complete spatial sum-
mation (Riccd's law) is found below a limiting area,
«; below these limits the threshold intensity is in-
Versely proportional to the duration or area of the
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stimulus: Iyt=k or I,A=k, where k is a constant.
These laws apply for both absolute and difference
thresholds (Barlow, 1958); they imply that the dis-
tribution of the stimulus energy over time and area
has no effect on its discriminability, which could hold
only if a linear function of energy is transmitted to the
stage at which summation occurs. (c) If a succession
of flashes is given at a rate above the critical flicker
fusion frequency, then their apparentbrightness matches
that of a constantluminance equal to the mean luminance
of the light-dark cycle over one period (the Talbot-
Plateau law)., This appears to be the equivalent of
Bloch's law for brightness discrimination (Le Grand,
1957; Piéron, 1965). This law holds very exactly; since,
above the CFF, variation in the distribution of light
over time does not affect its apparént brightness, a
linear function is again implied. (d) Threshold and
brightness summation might be attributed to a linear
relation at the retina, with non-linearity beyond that
level. However, Levelt (1965a, 1965b) has studied
binocular brightness averaging and has found that for
brightnesses sufficient to allow contour formation the
combination of the information from the two eyes
''can be simply described as anaveragingof energies.'
For a constant comparison luminance, C, the equi-
brightness curve isdescribed by W1E] +WypEL= C,where
wy and w, are constants adding to one, and Ej and Ey
are the luminances of the left and right test fields.
Thus at the central locus where the information from
the two eyes is combined, the inputs summated are
linear functions of the light energy entering the eye.

We may also note that for light signals a linear
detector is the most efficient (Jones, 1959) and Rushfon
(1961) has proposed that neural transmission, from
synapse to synapse, islinear. All theselines of evidence
support the possibility of a linear transducer function
(x4 =x3). It is also possible that, either as a result of
individual variability, or as a result of some feature
of the experimental situation, the transducer function
may not be quite linear, power functions with exponents
somewhat above or below one occurring, and for this
reason x =xg'6 and x4=x%'4 were included.

(2) Where are threshold responses determined?
Before discussing some physiological evidence on the
form of the transducer function, it is of interest to
consider at what level the threshold response might be
selected.

It is generally accepted that the threshold is not
determined at the level of the rods (Pirenne, 1956;
Rushton, 1963, 1965a). Hecht, Shlaer, and Pirenne
(1942) proposed that at the absolute threshold a flash
of light was seen when the number of quanta absorbed
from it by rods lying within a sufficiently small area
exceeded a minimum number, such as six. A simple
interpretation of this might be that each rod absorbing
a quantum gives rise to an impulse, and these impulses
converge on a single ganglion cell which will only fire
when signals arrive in sufficient number, numbers of
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impulses less than this minimum having no further
effect. The subject would then respond ''Yes'! only if
the ganglion cell fired. This account is not consistent
with the threshold model given earlier, since the cri-
terion is fixed, and input values falling below the
criterion are completely lost. An experimentby Barlow
(1956) shows that this model can be rejected. If, in
Fig. 1, the criterion, E,, is moved to the left there will
be a rise in false positive rate (which may be small
or large, depending on the initial position of E;) and a
fall in threshold, since the psychometric function will
shift to the left, but its slope should remain the same.
This describes an expectation of the statistical decision
model. But if the threshold response depends on whether
or not a ganglion cell fires, then values of E falling
below E_ are not recorded so that the subject can only
increase P(Y) by guessing. If he guesses at a given
rate, G, this will produce a corresponding false
positive rate, and P(Y) for each stimulus will increase.
This increase will be greater for the weaker stimuli, so
that the psychometric function becomes flatter since
the new probability of positive response, PYY), is
given by PY(Y)=P(Y)+G [1-P(Y)]. Barlow measured
the absolute threshold with the subject applying a strict
and a lax criterion; with the latter there was a con-
siderable fall in threshold with little change in the
slope of the psychometric function, and the false positive
rate increased only from 0 to 1 per cent. Thus it
appears that the absolute threshold is not a fixed
quantity determined by the firing threshold of the
ganglion cell. Information provided by quantal absorp=-
tions below the critical number is available to deter-
mine positive responses if the subject lowers his
criterion.

However, this does not altogether exclude the gan-
glion cell as a possible site of threshold determination,
if we allow that its firing threshold could be variable
and subject to centrifugal control. Rushton (1963,
1965a) places the site of threshold determination at
this level: he relates the difference threshold fo the
level of firing of rods in the receptive field converging
on a single ganglion cell caused by the background
stimulation. He calls this the '*summation pool’' and
proposes that threshold is reached when the input fo
the pool arising from the stimulus increment is
sufficiently large as compared with the rate at which
signals resulting from the background excitationarrive.

However, there is evidence that the outputs of differ-
ent ganglion cells may contribute to deterrhining the
threshold response. There may be interference or they
may combine to determine a positive response when
individually they would have been insufficient: (a) ""Par-
tial areal summation'' refers to a fall in threshold as
the stimulus area is increased beyond the limits of
Ricco's law, thus bringing in new receptive fields.
(b) Pirenne (1962a) has shown that the threshold for a
test flash 0.1° in diameter, falling in the center of a
black field 2° in diameter, is raised by presenting a
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weak luminous field in the periphery, and this effect
is not due to scattered light; the luminous surround
falls almost entirely oufside the summation pool yet
raised the threshold. (c) The threshold for a test
flash may be raised by a second flash presented not
only ouiside the summation pool but 50 msec. later
(Alpern, 1965).

It is possible that interaction between ganglion cells
at the retina could explain these effects, and Rushton
(1965b) suggests that the criterion for the ''summation
pool' is determined by a larger retinal '"'adaptation
pool."" However, when a stimulus is presented to cor~
responding locations on the two eyes the threshold is
lower than when it is given to one eye alone. When
the two stimuli occur at an interval greater than about
100 msec. the fall in threshold can be accounted for
by probability summation: the increased rate of detec-
tion is that which would be given by combining two in-
dependent detectors. But when the stimuli are given
at shorter intervals the fall in threshold is greater
than can be accounted for by this, indicating that mes-
sages from the two eyes, each of which would be in-
sufficient by itself to determine a positive response,
may be combined and then exceed the criterion (Matin,
1962). The interaction between the eyes in darkadapta-
tion also supports this conclusion (Wolf & Zigler, 1955).

Thus, as with brightness averaging (Levelt, 1965a,
1965b), it appears that outputs from the two eyes are
conveyed centrally, and that they are there summed
and compared with the criterion. That the threshold
response is selected centrally is also supported by the
evidence that stimuli in one modality can affect thresh-
olds in another (Treisman, 1964b). It follows that our
overall transducer function, E =1f(I), must be taken to
cover not only transformations occurring in the retina
but also the message in the optic nerve.

(3) The transducer function: further evidence. At the
retina a large number of receptors may converge on a
ganglion cell, from which arises a single optic nerve
fiber. We have noted that Ricco's law applies up to a
limit, «, which we can consider asa minimum sampling
area for the visual system. It is likely that this can be
identified with the central area of the ganglion cell
receptive field, in on-center fields the area within
which stimulation is excitatory (Pirenne, 1956; Glezer,
1965). We will also take r, the limit to Bloch's law,
as the sampling moment or shortest duration over which
the input to the retina is sampled (Crawford, 1947;
Barlow, 1957; Stroud, 1955; Matin, 1962; White, 1963;
Shallice, 1964; Piéron, 1965). In the model, as it has
been described above, we have limited our consideration
to the case where the area of the increment (Ag)
coincides with that of the background (Aq), which is
assumed equal to =; similarly we have taken to=ty=7.
It can also be applied to the case where Ag=xand
tg=T, but the background to which this increment is
added is larger and of longer duration; here, asa
simplification, we assume that when the increment is
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given the visual system correctly samples the retinal
area and duration occupied by it to determine the value
of the central input E(xg) on that trial, and that the E,
distribution describes the inputs which are given by
""sampling units'' of the same area and duration as
the increment, but excited by intensity I; alone. The
effect of varying A, and ty is examined below, but,
at the moment, we are concerned with the model as it
might apply when only a single receptive field provides
the information which determines the threshold re-
sponse. In this case, what neural changes take place
in the visual pathway?

Since the input to a receptive field is summed at the
ganglion cell we can consider two transductions: that
involved in conveying the information generated by
quantal absorptions to the ganglion cell, and the trans-
formation of this into the message in the optic nerve
fiber. In considering the neurophysiological evidence
there is a serious difficulty, over and above that arising
from the paucity of relevant information, This is that
the transducer functions we are concerned with in the
model may correspond to a succession of physiological
transformations. Consider an input, A, at a point A in
the nervous system which is conveyed to a point B,
where it gives rise to an output, B,. The overall trans-
ducer function might be linear, By=A;; but this could
correspond to an initial logarithmic transformation,
giving a message, log A;, which is conveyed along the
channel, followed by a final exponential transformation,
B,=el%8 Ai=A.. (Or we might have By =e" 1°8 A1 A,
giving an overall transduction described by a power
function.) In this case, neurophysiological evidence
might reveal the logarithmic relation between the
message in the channel and the original input, but this
would be misleading if mistaken for the overall trans-
ducer function. A related difficulty is that a physio-
logical observation may refer to the '""wrong'' neural
coding and thus give misleading information about the
function observed. In the model we have assumed that
the sensory message consists of a number of nerve
impulses, the variance of each message, o2 §» being
constant, and the impulses combining additively to give
E; but, if this model applies, it might prove to be peak
firing rate, minimum inter-pulse interval or some other
aspect of the neural response that has the properties
assigned to s in the model, rather than average firing
rate., If we select the wrong neural correlate of the
message, the function describing it will be correspond-
ingly misleading. ’

(i) Transformations in the retina. The most im-
portant neurophysiological evidence at this stage is the
observation that when the discharge from single ganglion
cells in the retina of the cat or frog is recorded, and
a constant threshold or suprathreshold discharge from
the ganglion cell is used as criterion, then Ricco's
law (complete spatial summation) is found to hold as
the area of the stimulus is varied, provided it falls
in the central excitatory region of a receptive field
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(Hartline, 1940; Barlow, 1953; Barlow, FitzHugh &
Kuffler, 1957). Thus for different stimulus areas the
total quantity of light, Q, required to evoke a constant
response from the ganglion cell remains constant, and
this occurs at levels of illumination at which each
receptor must absorb a number of quanta. The im-
plications for some possible transformations describing
the fransmission from receptor to ganglion cell will
be briefly considered.

(a) Logarithmic transduction. If we describe the out-
put from a single receptor cell (as it is received at the
ganglion cell) as O,, and assume that this receptor
absorbs Q quanta, within a sufficiently short period
of time, then the output which reaches the ganglion
cell might be given by O,.=log;yQ (Rushton, 1961).
Thus if Q=100 quanta, we would have Op=2. Letus
suppose that this quantity, acting on the ganglion cell,
is just sufficient to cause it to fire, i.e., the ganglion
cell-firing threshold is equal to 100 quanta when these
are absorbed by one receptor. If the incident quanta
are now spread evenly over n receptors (n>1) then
the output from any one of these receptors would be

—log(Q/n), and the total effect on the ganglion cell
w111 be given by S‘O =n log (Q/n). If we must have
20 =2 to reach threshold what quantity of light will
be needed to evoke the constant ganglion cell response
as we vary n? Riccd's law implies that the total
quantity of light, Qq» required when n receptors are
stimulated, is always equal to Q, the quantity required
for 1 receptor But if we assume that O,=log Q and
take 20 =2 as the threshold input to the ganglion
cell, then we would have for n=1, @=100; for n=2,
Qp=20 (since 2 log (20/2)=2); for n=4, Q4 =12.65;
Qg =12.56; Q8=14.22; Q10=15.85; Q20=25.19; Q50 =
54.83; Q100=104.7; Q1000 =1005. These figures are
meant only as an illustration, but they serve to show
that a logarithmic transduction at the retinal level
would not be compatible with Ricco's law. We see that
initially as n increases instead of simple complete
summation there is marked enhancement, Qp» the fotal
quantity of light required, falling to a minimum for
5 receptors. Buf then, as n increases further, Qp also
increases and summation soon falls to averylow level,
with threshold intensity (Qn/n) almost constant. The
minimum appears later for higher threshold values
but the general picture remains the same: if we
take §Or=6 as the critical value required to evoke
a given constant response from the ganglion cell we
have for n=1, Q= 106, followed by marked enhancement
as n increases. The minimum is at n=14, when
Q14=37.5. Then there is the same rapid disappearance
of summation; Q100=114.8, Q1000=1014.

It appears that a logarithmic function is difficult to
reconcile with experiment. The initial enhancement
could well have been missed, since it covers so small
an area, but the rapid disappearance of summation
beyond this small area is inconsistent with the finding
that Ricco's law holds in the central receptive field.
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Glezer (1965) believes that ''the excitation is ... di-
rectly proportional to the logarithm of acting light"!
and recognizes that 'If this is the case, then increase
of stimulus area at constant light intensity must cause
an increase of response, i.e. an enhancement.'' He
suggests '""Then the law of full summation ... can be
explained by the inhibitory process that arises with the
spatial gradient . The inhibition arising in the
whole receptive field but with different strengths at
different points. It is more strongly pronounced in the
periphery of the field.'' It is possible to conceive an

‘ase of inhibition as we pass from the center of
the ield (assuming that our stimulus is always at

center of a field) which would exactly counter-
balance the enhancement produced by the logarithmic
transformation, so that the excitatory and inhibitory
effects together would produce an overall linear trans-
duction from receptor to ganglion cell. But if this were
the case it would appear rather surprising that the
slopes of complete summation curves are so similar
while the slopes of partial summation curves show
considerable variation (Barlow, 1958), and since lateral
inhibition decreases during dark adaptation (Barlow,
FitzHugh, & Kuffler, 1957) we would expect dark adapta~
tion to alter the balance between the two processes
and so ''reveal'' the underlying enhancement, which
does not happen, But the major difficulty with this
argument is that it rests on the assumption that the
enhancement is shown for all values of n, which, as
we have seen, is not the case. Even if inhibition
ceased sharply outside the small area of enhancement,
the logarithmic function would still produce the rapid
disappearance of summation beyond this area, rather
than Ricco's law, so that this suggestion gets us no
further. Nor would it explain why, if we vary the dura-
tion of the stimulus, we do not observe short-term
enhancement, followed by rapid disappearance of sum-
mation, which, rather than Bloch's law, thelogarithmic
transduction would produce.

(b) Op=QL4 . If Q=100 quanta are absorbed by a
single receptor, this transduction would give 0,=631.
If we take this figure as the threshold criterion,
and vary n, the number of receptors on which the light
falls, then at threshold 631= 0, =n(Q, /m14. 1t fol-
lows that we would get for n=1, Q;=100; Qg=122;
Q10=192; Qy4=373. There is no area of complete
summation at all; Ricco's law should never be shown.
Similarly, if n is taken tfo refer to the temporal
parameter, Bloch's law would not be found.

(c)Op=Q%3 If Q=100 quanta a.roe3absorbed by a
single receptor and we take O,=100"""=3.981 as the
threshold criterion, then, as we increase n we get, for
the threshold quantity of light, for n=1, Q=100;
Q9 =19.86; Q19=0.46. Enhancement begins ir‘nmediately
and is marked for all values of n; Ricco's law and
Bloch's law should not be shown. Transductions much
closer tfo linearity but with exponents still less than
one, all show a considerable degree of enhancement.
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For example, for OI.=QO'9 we would have Qq =100,
Q2=92.6, Q10= 77.4, Q100=60u0.

(d) The linear function; O, = Q. For any value of
n, §0r=n(Q/n)=Q. Thus as area (or time) increases,
a constant value of Q, will give a f:onsta.nt summed
effect on the ganglion cell, and Ricco's law will hold
until the boundary of the central excitatory field is
reached. We see that this only occurs if we assume
a linear transduction, and since Ricco's and Bloch's
laws are such reliable experimental findings, and
occur at intensities at which each receptor must
absorb many quanta, it follows inescapably that a
plausible model must assume linear transduction from
receptor to ganglion cell. For this reason, taking the
model as we have given it above as a description of
the succession of events that might occur in a single
receptive field and its central connection, the different
transducer functions were applied not to the quanta
absorbed by each receptor but to Xg, S0 that the
latter represents a sum of linear effects of all the
quantal absorptions occurring in the receptive field.

(ii) The ganglion cell output. The rate of firing in
the optié nerve fiber of the horseshoe crab is approx-
imately logarithmically related to the fotal light energy
acting on the ommatidium (Hartline, 1934; Rushton,
1961; Ratliff, 1965), but there is little evidence on the
form of the optic nerve discharge in the mammalian
retina, ’

However, it is of interest to note that FitzHugh (1957)
recorded discharges from cat ganglion cells whenbrief
near-threshold flashes were presented against back-
grounds of weak or zero intensity to which the eye
was adapted. He found that the relation between the
number of impulses recorded from an optic nerve
fiber during a critical period following a flash, and
the intensity of the latter, was usually described by a
power function. The range of mean exponents for
different cells examined was 0.6-1.2.

This result would accord with a linear overall
transducer function, E =1, if weare correctin supposing
that the sensory message is coded as a number of
nerve impulses. In view of the difficulties in relating
neurophysiological observations of this sort to the
model discussed above, it seemed desirable to examine
the implications of a range of possible transductions
which might relate the summed linear function of
absorptions (modified by adaptation) acting on the
ganglion cell to the final effect at the locus at which
the threshold response is selected.

(4) Some predictions from the model. The model
has been designed to specify all the major steps which
might lie between presentation of the stimulus and
selection of the response (assuming that the selection
process completely determines the overt response)
with sufficient precision to allow predictions to be made
about the size of the threshold. The variables of
particular interest are the background intensity, Iy,
and the area (A2) and duration (ty) of the stimulus
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increment,

We have seen that AlI=I,-I;, Iy depends on Eg,
and E;=Ej+zop (see Fig. 1). It follows that the
Weber function, the relation found between AI and I
as the latter varies, depends on the overall transducer
function relating E and I, and on the relation between
op and Ey. For the linear transducer function and N
adaptation, the expected value of E; is given by
Eq =sg(ly +1,), which is the product of two variables.
In general the variance of AB, where A a.nd B are two

independent variables, isgivenby Kz 0123 + B mA + UZA 0123

Since s and g(I +I,) are independent and the variance
of the latter is described by a Poisson distribution,
if we take the mean correlation between pairs of sen-
sory messages to be r=4+1, then the variance of Eq is
given by

ot -0 g (| ) )24 529“1*%) + ol 41 ).
We can consider the first term on the right as deter-
mined by the sensory noise, the second by the physical
noise.

Since Eg-Ej=E.-Ej=zop=sg(lp+I))-sg(l; +1)=
sgAl, it follows that the Weber function is given by

Al = i'aE = é \/92v2(|]+ln)2+ glly+l,) + v29(|]+ln) Mm
where v= Us/s. This relation contains four parameters,
z, g, v, and I, but independent procedures for esti-
mating them can be designed (Treisman, 1964a).

H vi<< 1, which is plausible, then for g(I; +L,)
small the function will approximate to

Al =zg72 (134l ) @)

This is the square root law which has been predicted
from the quantum fluctuations of light (Rose, 1948;
Barlow, 1957). Equation (2) shows that when the number
of quanta absorbed is small the threshold is mainly
determined by the effects of the physical variability of
light, and the ''dark light'' due to spontaneous firing,
but the effect of the sensory noise arising from the
variability of central transmission of messages is
negligible. This accords with the relatively close ap-
proach of brightness discrimination thresholds at low
intensities to the limits set by the physical nature of
light (Hecht, Shlaer, & Pirenne, 1942; Crouzy, 1961).

The square root law has been found to hold for low
intensities of I but not for high (Barlow, 1957). '""When
the test stimulus is of long duration or large area, and
when the background intensity is high'' (Barlow, 1957)
''"the experimental. points deviate from the appropriate
theoretical curve and tend to obey the Weber law
instead'' (Barlow, 1958). The reason for this is im-
mediately apparent from equation (1); an increase in
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any of these three variables willl increase g(I; +1,),
(since g=fAt), and when this quantity is large the
correlated component of the variance of E, whicharises
from the sensory noise, becomes predominant and
equation (1) approximates to

Al = zv(|-|+|n) (3)

the linear generalization of Weber's law. Thus the
model predicts both the square root law found ex-
perimentally at low intensities, and the continuous
transition to the traditional Weber function which is
observed at high intensities.

If we assume C adaptation, and O< r< 1, equation (2)
remains unchanged, but equation (3) becomes

Al = zver?? (|]+ln) (4)

Thus a low value of ¢ or r will imply a low value of
AI if Iy is large, but will have little effect on the
threshold when I is small. One consequence is that
if either c¢=0, as in M adaptation, or r=0, the term
in equation (1) which bulks large when g2(I; +I)2 is
large, and so determines the transition to Weber's
law (equation (4)) disappears, and the square root law
will now hold for the whole range of values of I.

We can discover what the consequence of varying the
area or duration of the increment will be by writing g
in full in equation (1). The case we have considered
so far is that in which the increment coincides with a
'sampling unit'' of area « and duration -, but if we
vary Ag or ts other cases will arise. The simplest
assumption to make is that in order to compute the E;
distribution and so the best location of E,, when the
background is illuminated by I;, the visual system
records the values of E given by samples whose area
and duration equal those of the increment, (i.e., it
takes Aj=Ag and t) =ty) when Ay> ~ and t3> r. When
Ag< « the visual system must, of course, take A==,
the minimum sampling area, and similarly when
t2< 7 tl =7

Since E,-E; = sig1(Iy +L)) + ggAl] - sgy (I +1p) =
8go Al = Zop (see Fig. 1), we can write equation (1) as

Al =

z
Ay 1o V2 ATVl ) + A () (L) &)
This approximates to
14
2 AL )
Mo ————— (6)

when gl(Il +L) is small, and, when this quantity is large,

Aqtyzviig+l )

hzvihy

Al ——— 7
Aoty
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E=log!
r=02

E=zlogl

logl

Fig. 2. The Weber fraction, A l/ll. is plotted against log I;. The
transducer function was E=log I, and r=1.0 or 0.2. The Weber func-
tion is shown for three conditions of adaptation, N, P and C.

Equations (6) and (7) become equations (2) and (3)
when Aj =Ag and t) =t,.

Let us supposethatl;, Al and Agare constant and that
ty varies. For t2< 7, t;= 7, so that all terms on the
right-hand side of equation (5) will be constant except
ty, and the equation can be written A1=k/t2, or
A1t2=k, where k is a constant. This is Bloch's law
of complete temporal summation. It is determined by
the assumptions that there is a minimal period below
which reduction in the duration of the increment does
not reduce the duration of background noise sampled
(Brindley, 1960), and that the effects of quantal ab-
sorptions falling within the minimum period do not un~
dergo any non-linear transformation before they are
summed.

For t2> 7 and variable either equation (6) or equa-
tion (7) may hold. Since now ty =t9, equation (6) will
1/2
2

simplify to AI=k'/t;/ 2 or AY2-k', where k' is

a constant. Thus for durations of the stimulus increment
which exceed the limit for complete summation the
difference threshold (or absolute threshold, Ly if I1 =0)

is now inversely related to the square root of the -

duration of the stimulus increment. But this relation
holds only when g, (I1 +In) is small. ¥ I; or A=Ay
is sufficiently large, or, if these are small, when
t1=1:2 becomes large, the relation between threshold
and duration will approximate to that described by
equation (7). As ty=t,, all the terms on the right-
hand side of this equation are constants, so that it
can be written AI=k'" or AItg=k", where k't is a
constant: summation is no longer shown. Thus the
model predicts a transition from complete summation
to a square root law, and that the exponent of t2 will
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then decrease from 0,5 to zeroas I}, Ay or tg increase.

This decrease in summation is not attributed to the
classical assumption that some decline in the efficiency
with which the stimulus is processed occurs as its
duration (or area) is increased and we do not need
to suppose that the visual system fails to extract
any further information when the stimulation exceeds
an arbitrary ‘''utilization time'' (Piéron, 1965) or
limiting area. Instead we assume that whatever the
area or duration of stimulation maximum use is made
of all the information available. Complete summation
reflects the existence of a minimum sampling time.
For intervals greater than  the exponent of to
declines because of the limits on discrimination imposed
by the variability of the central effect of the stimulus.
Initially the Poisson fluctuation of light predominates
in determining this noise, giving a square root law;
but because positively correlated sensory noise hecomes
predominant when the total input from the stimulus is
large, as the intensity, area or duration become high
the exponent declines from 0.5 to 0.

The predicted forms of the Weber function, and of
the functions for spatial and temporal summation, agree
with many experimental findings. However, these pre-
dictions are based on a limited set of assumptions,
such as that E=I and r=+1.0; the computations pre-
sented below were designed to show how far the predic-
tions would be maintained when the main assumptions
of the model were varied.

lil. The form of the Weber function.

Values of Al were computed for different intensities
of Il, conditions of adaptation, transducer functions,
and levels of correlation. Some of the resulting Weber
functions are shown in Figs, 2, 3 and 4. In these the
Weber fraction, A I/Il, has been plotted against 1og_ I,
as is often done in practice. In each figure Weber

‘functions are shown for N, P and C adaptation, and for

I [ g-1"
24| r=10 i r02
20 1
16}
u f
T 12
a.
IR .
A\ .
ol \'\' cl ¢
T a6 8 7 4 68
Logl

Fig. 3. As Figure 2, except that E=11-4 The N adaptation curve
is here shifted upwards 4 units, and the P curve is shifted up 2
‘units.
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Fie 4. As Figure 3, except that E=19-3,

r=1.0 and r=0.2, The three transducer functions shown
are E=log I, E=11* and E=13. The results for
E=1 and E=106 were intermediate between those
shown in Figs. 3 and 4. The curves in Figs, 3 and 4,
but not in Fig. 2, are staggered. The effective zero
for each curve is shown by a dotted line.

We see that all the power functions examined give
Weber functions which appear acceptably similar to
those obtained experimentally, for all the combinations
of adaptation and correlation examined, but this is
not the case for E=log 1. For the logarithmic trans-
ducer function, asfor the power functions, the thresholds
fall as the degree of adaptation increases and as the
level of correlation decreases, but, unlike the power
functions, after first falling to a minimum, the Weber
fraction shows a continuous rise over the remaining
range of values of I;. A rise in the Weber fraction,
starting at a high intensity level, has sometimes been
found experimentally (Steinhardt, 1936; Holway, 1937;
Pirenne, 1962a), but it is suppressed if precautions
are taken to ensure that light adaptation is fully main-
tained when I, is high. Adaptation was, of course,
maintained at a constant level for each curve in
Fig. 2. Aguilar and Stiles (1954) found that the rod
mechanisms became saturated (i.e., AI|I rose) at high
levels of stimulation. But this was a phenomenon of
sharp onset occurring at a level of illumination at
which we can suppose discrimination would normally
be produced by the cones, and for a considerable range
of intensities below this a linear Weber function was
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shown. Although our results do not immediately ex-
clude the logarithmic transducer function they suggest
that it is unlikely to give a more or less acceptable
Weber function unless a high degree of adaptation and
a very low level of correlation can be assumed.

Th= effects of threshold size are shown more clearly
in Figs. 5 and 6, which give AI for each transducer
function, r=1.0, 0.6 or 0.2, and N, P or C adaptation.
In Fig. 5 Al is in each case the average for Il=101'5,
102, 102-5 and 103 quanta/sec. deg.2 (these all gave
similar values, at or close to the absolute threshold),
and in Fig. 6 I; =109 quanta/sec. deg.2.

We saw earlier that, with the linear transducer func-
tion, an increase in the degree of adaptation (a fall
in c¢), or reduction in the level of correlation, would
give lower thresholds for Iy high (this follows from
equation (4)), but would have little effect for low values
of I . The results in Fig. 5 accord with this: the values
of Al are very similar for the three degrees of cor-
relation and the different types of adaptation when
E=I1.0 (and when E=I}%). However, effects of these
conditions are shown when the transducer function is
a power law with a small exponent (E =196and E =IO'3)
or is logarithmic. Figure 6 shows that changes in the
degree of adaptation or correlation produce very much
greater differences in AI, both absolutely and relatively,
at high values of I;. These differences are shown for
all the functions but are greatest for power laws with
low exponents and the logarithmic function.

The usual plot of the Weber fraction, AI/I, against
I or log I, is not well adapted to show a transition
between the square root and linear segments of the
Weber function, as illustrated by Fig. 7, which gives
calculated Weber functions for E=log I, E=103 and
E=10s for N adaptation and r=0. Zero correlation
will produce a square root law for all values of I,
but the Weber functions for 1°:3 and I'+0 shown in
this figure are very similar to those in Figs. 3 and 4,

1800f-
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Fig. 5. Values of A I (in quanta/sec.deg.?) averaged for 1=
101-3, 102, 102-5 and 103 quanta/sec.deg.? are shown for each
transducer function, for N, P and C adaptation, and for r=1.0, 0.6
and 0.2 (the values of r are shown niext to the corresponding curves).
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Fig. 6. A I (in units of 102 quanta/sec.deg.?) for I = 109 quanta/
sec.deg.2 is shown for each transducer function, for r=1.0, 0.6 and
0.2, and for N, P and C adaptation. The values for the log function
are shown separately.

and give the deceptive appearance of according with
Weber's law when I is high. It is of interest that
even when r=0 the logarithmic function shows a low
minimum followed by a continuous rise for values of
I above the minimum.

The relation between threshold and intensity is shown
more clearly when log Al is plotted against log ;.
This has been done in Figs. 8 and 9, which confirm
that all the power laws examined give Weber functions
whose general form is in close agreement with the
usual experimental results (Aguilar & Stiles, 1954;
Barlow, 1957). The initial horizontal segment is mainly
determined by I, the dark light, and is at the level
of the absolute threshold. This is followed by a zone of
transition to which a square root law can be more or
less satisfactorily fitted; as I increases the exponent
of the Weber function (the slope in log-log coordinates)
increases, until finally the function is linear and
Weber's law at last applies. The transitions from one
segment to the next appear fairly sharp for E=+4
or 110, put are more gradual for transducer functions
with a low exponent or the log function. Low values
of r and ¢ both prolong the square root segment and
so delay the transition to Weber's law, which accounts
for their effect in reducing the threshold for high
values of Iy. The transition also tends to occur earlier
if the exponent of a power function is low.

The logarithmic function gives a similar curve.
Above the absolute threshold there is a fairly rapid
transition from the square root segment to a slope
which in this case exceeds one. For r=1.0 these
slopes are 1.24(N) and 1.20(C), for r=0.2 they are
1.15(N) and 1.12(C). These curves are clearly dif-
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ferent from those of Aguilar and Stiles (1954).

Barlow (1957) takes as an estimate of I, the value
of I which corresponds to the point of intersection
of the horizontal line through the absolute threshold
values and a straight line fitted to the initial ascending
limb of the Weber function, plotted as log AI against
log I. Figures 8 and 9 show that this will give satis-
factory estimates for power functions not too far
removed from linearity, but would lead to considerable
underestimation if a logarithmic function or a power
transducer function with a low exponent held.

Figure 10 shows functions for E=log I, 10-3, 130
and 114 when r=0. We saw earlier that if the trans-
ducer function is linear, zero correlation gives a square
root.law for all values of I, and this is shown for E=1I
and also for E=Il '4. Even with zero correlation, how-
ever, it appears that a power function with a low
exponent will depart from the square root law: for
E=10-3 the exponent of the corresponding Weber func-
tion is 0.84 when Iislarge. For E=1log I the slope of the
Weber function, though less than was shown with positive
correlations, is still greater than one when I is large
(it is 1.05). In contrast with r=0, computations for
r=+0.01 (N adaptation) showed that all the power
transducer functions gave linear Weber functions at
high values of I; the logarithmic transducer function
gave a slope a little greater than one.

The effects of the five different adaptation assumptions
are compared in Fig. 11 for E=1I and in Fig. 12 for
E=103, with r=0.6. When the transducer function is
linear N and F adaptation produce identical thresholds.
With C adaptation the linear segment of the Weber
function starts later and, as implied by equation (4),

36
3} 1
28*- N adaptation
r=0
ZLL
20}
al
! 16~>

tog 1
Fig. 7. The Weber functions for r-0 and N adaptation. A I/I is

plotted against log I for E = log I (this curve is displaced 4 units
upwards), E=10-3 (displaced 2 units upwards) and E=11-0.
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Fig. 8. Log A I plotted against
log I for the 5 transducer functions
and N and C adaptation, with r=1.0.
The power function exponents are
shown next to the corresponding
curves. Each successive curve
above the lowest is shifted upwards
2 log units. The three continuous
lines fitted to each curve (by eye)
have, from left to right, slopes of
0, 0.5 and 1.0. In each case the
first two lines were made to inter-
sect at log 1 = 3. The dashed lines
fitted to the log functions have

log!

it is displaced downwards, as compared with N adapta-
tion, by log c (here ¢=0.05 and the displacement is
therefore 1.3 log units). It appears that the effect of
the ''adaptation level'' included in P adaptation is
negligible: the curves for P and C adaptation were so
similar that they could not be plotted separately.
Finally, as expected, M adaptation gives a square root
law for all values of I. The results are similar when
E=10-3 (see Fig. 12), the main difference being that

slopes of 1.24 (N adaptation) and
1.20 (C adaptation).

P adaptation now falls between N and C adaptation,
tending towards the latter as I increases.

We have now seen how the predictions of the model
vary as we alter our assumptions about adaptation,
the transducer functions, and levels of correlation. The
area and duration of the stimulus increment are two
further variables which affect the threshold, and in the
next section we shall examine the effects of variation
in these.

log AI 117

Fig. 9. As Figure 8, except that
1=0.2. The dashed lines fitted to the
log functions have slopes of 1.15
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(N adaptation) and 1.12 (C adapta-
tion).
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Fig. 10. Log A 1 is plotted against log I for 4 transducer func-
tions (E= log 1; 10-3; 11.0; 13-4) for r=0 and N adaptation. Each
successive curve above the lowest is shifted upwards 2 tog units.
The continuous lines were fitted by eye and have, from the left,
slopes of 0 and 0.5; they were made to intersect at log I = 3. The
dashed line fitted to the curve for E=10-3 has a slope of 0.84, and
that fitted to E=log I has a slope of 1.05.

IV. Spatial and temporal summation.

Predictions were made earlier about the threshold
changes that would result when the duration and area
of the stimulus increment are varied. Though it is
so universally used that it could not be abandoned, the
term ''summation," used to describe some of these
effects, is unfortunate, since it is often taken to refer
not only to an observation, but also to an explanation
for it. Thus the transition from ''complete'! to ''partial
summation' is sometimes understood to imply the
hypothesis that when the stimulus area or duration are
large a proportion of the quantal absorptions are in
some way 'lost'' or not taken account of, and that
this is why the total quantity of light required to reack
threshold rises. This is not the explanation the present
model provides. We take it that complete spatial and
temporal summation result from the existence of a
minimum samplingarea, probablybased on the receptive
field, and a minimum sampling duration. As we saw,
this led to Bloch's law, AIt% =k(or log Al=log k~log t5)
for ty< 7; Ricco's law for spatial suramation, log Al=
log k-log Ay, can be iimilarly derived. For tg> 7 the
square root law, ‘AIt% 2=1<:', and the transition to zero
summation, AItg=k", are consequences of the limits
to discrimination imposed by the positively correlated
sensory noise, and its increasing importance in deter-
mining Al or the absolute threshold as g1(I1 +Ip)
increases. Thus the same reasons which expiain the
change in the exponent of (I+I,) from 0.5 to 1.0 as
I increases, when we study the Weber function, also
account for the decrease in the exponent of t, (or Ao,
to which an exactly similar argument applies) from
0.5 to 0, as ty increases. For both the Weber and
summation functions the change in exponent is simi-
larly expedited by an increase in I, Ag or tz.

- NF
10F
C,P
ol E=10
r=0-6
B.
=] M Fig. 11. Log Al is pl i
e g. 11. Log is plotted against log
3 I for E=11-0 and r-0.6. N represents no
adaptation (X3=Xs); F represents frac-
6k ' tional adaptation (x3=0.005x5); P is
partial adaptation (see text); C is com-
plete adaptation (X3=x2—x1+0.05x1) and
sk M is adaptation to the mean ( x3=Xg—Xq ).
(xy is the mean number of quantal ab-
sorptions per trial, x5 is the actual num-
4t ber of absorptions on a given trial, and
X3 is the number of absorptions which
contribute to determining the magnitude
3+ of the sensory message generated after
, , N \ X , . ) ) ) | adaptation). From left to right, the
2 3 4 5 6 7 8 9 10 1 12 straight lines, which have been fitted
log I by eye, have slopes of 0, 0.5 and 1.0.
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Fig. 12. As Figure 11, except that E-10-3.
No lines have been fitted to the results for

2 3 4 ) 6 7 8 9
log I

Figure 13 shows temporal summation data obtained
by Barlow (1958). They appear to be in full accord
with the predictions from the model. As log Alis
plotted against log t, a slope of -1 corresponds to
complete summation, -0.5 to the square root law
(log AI=log k'-0.5 log ty), and a zero slope indicates
that there is ''no summation.!'" Examining those por-
tions of the curves which lie beyond the range of com~
plete summation, we see that for any value of ty
the slope tends to be flatter if 11, the background in~
tensity, is high and if the stimulus area is large; and,
of course, as ty increases the curves flatten out.
Corresponding effects are shown by spatial summation
curves (Barlow, 1958; Glezer, 1965). Two further
features of the results in Fig. 13 are worthy of note.
First, the thresholds are uniformly lower for the
large stimulus area (Az 27.6 deg. 2) than for the
small (A5=0.011 ‘deg. ) This would be expected when
either equation (6) or (7) applies (the valuesof I; and Ay
determine whether one or other or an intermediate
form holds for a given range of ty). Equation (6) con~

tains the term Al/ 2/A2. When Ay is large Ap=Aj,
and this term is small; thus for Ay =27.6 deg. Al/ 2/A

~1/a}/220.19. When Ag< = (we will take 0.1 deg.?
as a reasonable value for « (Barlow, 1958)) we get a
large value for Al/ 2/Az, which becomes «1/2 /A2
0.11/2/0.011=28.8. Thus the change from the large to
the small value of A; would cause an increase in
log Al of the order of 2.18 log units, if equation (6)
applies.

Equation (7) contains the term A;/A,. When Ay is
large A;/ Ag=1. For Ag< « this term becomes larger:
«/A3=0.1/0.011=9.09. Thus the decrease in Ay should
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10 1 12
P adaptation (indicated by open triangles).

increase log AI by about 0.96 log units, if equation (7)
applies,

These predicted threshold changes agree fairly well,
though not exactly, with those shown in Fig. 13, and,
as we would expect, the differences in the figure de~
crease as Iy increases. We could not expect to predict
the differences very accurately, not only because we
have had to assign a somewhat arbitrary value to =,
but also because « is not constant. A second notable

T
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log (background intensity)
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=
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log (duration of stimulus)

Fig. 13. Data obtained by Barlow (1958). Log A1 (or log L,) is
plotted against log t for a small (8.011 deg.?) and a large {27.6
deg.”) stimulus area at five different background intensities. The
straight lines have a slope of —~1 and continue up to 0.1 sec. Inten-
sities are given in quanta (507 my) /sec.deg.z, durations in seconds.
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feature of the results in Fig. 13 is that r decreases
as Ao or I increase, and this parallels a similar
effect of I; and ty on «, which can be treated as
constant only as a first approximation.

These changes in = and r (Keller, 1941; Barlow,
1958; Glezer, 1965; Piéron, 1965) do not follow from
the model which has been presented here, but require
some additional explanation. They have led Treisman
(1964a) and, in more detail, Glezer (1965) to suggest
that « and r may be controlled by feedback processes.
These may serve to prevent the total output of a
"'sampling unit,'* i.e., a central receptive field taken
over a single sampling duration, becoming unduly high;
the output of a sampling unit is a function of f« r(Iy +1)
and so will fall or rise if the minimum sampling area
or duration decreases or increases. An increase in Iy
or in Ay might reduce = by increasing the level of
lateral inhibition; it has been shown that this falls
during dark adaptation (Barlow, FitzHugh, & Kuffler,
1957).

Although the predictions agree well with experi-
mental spatial and temporal summation curves, they
were derived for a limited set of assumptions, such
as a linear transducer function and r=+1.0. Thus it
seemed of interest to compute summation curves for
different combinations of parameters, and so the
program given above was modified for this purpose.

The computer was made to calculate the absolute
or difference threshold for values of ty from 0.01
to 3.20 sec. for two values of background intensity,
I;=0 or 108 quanta/sec. deg.2, two values of Ao,
0.01 deg.2 or 30 deg.z, two levels of correlation,
r=0 or 0.5, and C adaptation. We saw that r and «
decrease as I; increases, not as a consequence of the
present model but for reasons requiring a separate
explanation. However, = was treated as constant, being
given the value « =0.1 deg.2 7 was made equal to
0.1 sec. for I;=0, and 0.05 sec. for I; =108, These
values lie within the range found experimentally (Barlow,
1958). The program was modified so that, given a set
of stimulus parameters, the computer first deter-
mined the corresponding number of '"sampling units.'
The number of sensory messages generated by each
sampling unit was then calculated, and the outputs were
assumed to correlate and sum as before. In detail:

(1) As before it was assumed that Aj=Ag oOr o,
whichever is greater, and ty =ty or r, whichever is
greater. A sampling unit is an area = taken over a
time r, and N, the number of sampling unifs cor-
responding to a given value of A; and t;, was taken as
Aqty/« 7. (For convenience, parameters which give
integral values of N were used in the program, and it
was assumed that the onset of the stimulus increment
always coincided with the start of a sampling duration,
and that its area always projected on to the correct
number of complete sampling areas). The expected
number of quantal absorptions for each summation unit
was given by x'y =fur (I3 +1,).
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Fig. 14. Log A I (log 1_, when 1;=0) is plotted against log t
(seconds), for E=log I; E=I -3; E=11-°;’ and E=11-%. For each trans-
ducer function curves are given for two values of Ay 0.01 deg.2 and
30 deg.z; two levels of correlation, r=0 and r=0.5; two values of
Iy: 0 and 108 quanta/sec.deg. 2; and C adaptation. For t><r contin-
uous straight lines with a slope of 1.0 (Bloch’s law) and for other
values of ty lines with a slope of ~0.5 (the square root law) have
been fitted by eye. The dashed line fitted to one curve for E=f9-3
and 1y=0 has a slope of —1.7. Difference thresholds are represented
by circles, and absolute thresholds by squares.

(2) For each of the N summation units, the actual
number of quantal absorptions on the given trial, x'y,
was taken as a variable from a Poisson distribution
with mean x';. (For X'y >100 the normal approximation
to the Poisson distribution was used.)

(3) For each of the N summation units, the number of
absorptions which would be effective after adaptation
had operated was calculated. Since C adaptation was
assumed, this was given by x'3=x'2-x'1+0.05x‘1.

(4) We now have N values of x'g which can be taken
to represent the linearly summed effects of the quantal
absorptions acting on each of N ganglion cells. The
number of sensory messages generated by each ganglion
cell is determined by the transducer function. The
selected transducer function was applied to each of the
N values of x's to give N corresponding values of x'y,
the number of nerve impulses generated by each ganglion
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cell. The four transducer functions mainly used were
x'y =log x'3, x'4=x'%'4, X'y =x'g, x'4=x'g'3.

The total number of sensory messages is then given
by summing the outputs of the N ganglion cells:
Xy = I§x'4..

From this point on the description of the program
is identical with that given before: a value of xg, the
total ceniral effect (E) of the stimulus on the given
trial, is computed, tfaking into account the variance
of the sensory messages, ag, and the level of correla~
tion between sensory messages. The sequence of steps
to this point is repeated a 1000 times, to allow Xg, AN
estimate of E_, the criterion which would give rise to
a 2 per cent false positive rate, to be determined,
and Al or I, is calculated from this, Figure 14 shows
some curves generated by this program.

This figure presents results for temporal summation
for the absolute threshold, and for a difference threshold
with a high background intensity, for a number of
combinations of parameters. Since { and A behave in
the same way in the equations describing the model,
this figure can equally well be read as a set of pre-
dictions for spatial summation, "'sec.'' and "deg.z",
being interchanged wherever they occur. There is an
encouraging degree of agreement between the curves
for r=0.5 and those in Fig. 13, the effects of increase
in area or background intensity, and even the order of
magnitude of the thresholds, being similar. To demon-
strate the effects of r and v on the slope of the partial
summation curves for high stimulus intensities we
have also calculated partial summation curves for
r =50 msec., I, =108 quanta/sec. deg.?, E=log I, 103,
17 or 10, and different values of r and v, and the
slopes between 0.1 and 3.2 sec. are given in Table I.
Since the slope of the difference threshold partial
summation curve depends on the values of bothv and r,
as either increases the slope gets flatter. The slopes
for the uppermost curves in Fig. 13 were read from
the graph as: -0.33 for Ap=0.011 deg.? and ~0.03
for Ag=27.6 deg-z. When v=_.1, a large value, these
slopes would correspond to r< 0.1, depending on the

Table 1. Slopes of difference threshold partial summation curves

(r =50 msec.; Iy = 108 quanta/sec.deg‘z).

Transducer

function: log 0.3 0.7 1.0
Ay(deg.d: 0.01 30 001 30 001 30 001 30
v r
0.1 0 -0.58 0.49 | -0.53 -0.51 {-0.53 -0.49 | -0.50 ~0.49
0.1 0.01] -0.34 0.01 | -0.29 0.02 |-0.39 -0.03| -0.41 -0.02
0.1 0.1} -0.11 -0.02 | -0.08 -0.01 }-0.15 -0.02] -0.22 0
0.1 0.2 -0.06 -0.03 | -0.04 -0.02{-0.11 -0.01| ~0.15 0
0.1 0.5} -0.03 0 -0.05 -0.03 -0.12 0.01
0.010.5| -0.15 0.01 | 0.27 © -0.47 -0.02| -0.49 -0.03
0.010.8 | -0.12 0.02 | -0.24 0.01 |-0.43 -0.02| 043 O
00110 -0.11 O 0.19 © -0.35 -0.01] ~0.45 -0.01
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transducer function. When v=,01, a rather low value
(Stein & Matthews, 1965), r must be high to match
the curves in Fig. 13 (for E=I a larger value of v
would also be required).

When r=0 in Fig. 14, and the background intensity
is high a square root law is found for ail vaiues of t5>7
(values up to 3.2 sec. were employed). Thus, whatever
the transducer function, positive correlation is neces-~
sary to explain the departure from the square root
law for spatial and temporal summation beyond « or
r at high background intensities. At low intensities
the value of r has little effect on the threshold curves
except when a power transducer function with a low
exponent is assumed: when A, is also large, E=10-3
gives a higher absolute threshold curve for r=0.5
than for r=0.

When I = 108 quanta/sec. deg.z, for all combinations
of to and A, the difference threshold increases as the
exponent of the power transducer functions decreases,
and it is highest for the logarithmic function, as was
found previously (see Fig. 6). However, the similar
slight increase which was found for the absolute
threshold (see Fig. 5, C adaptation) is shown only for
the same case, that is, when the incrementis contained
within one receptive field and sampling duration
(Ag< =, t9< 7). When either the area or durationof the
increment exceeds these limits, then,at theselowlevels
of stimulation, the opposite effect is seen, I, falling
as the exponent of the power function decreases. We saw,
in an earlier discussion of transduction from the
receptor to the ganglion cell, that as the number of
receptors affected increases, power functions with an
exponent less than one would give an enhancement ef-
fect rather than simple complete summation. A similar
enhancement, produced as the number of samplingunits
increases, is shown here.

There are differences between the curves given by
the various transducer functions in Fig. 14, and this
suggests that a comparison between these curves and
experimental data might give some indication of the
most acceptable form for the subject's transducer
function, and so provide a basis for a procedure for
scaling E. There is little to choose between the curves
given by the four transducer functions when the back-
ground intensity is high, as a match to data like those
in Fig. 13. The sensorynoise rather thanthe transducer
function has the predominant effect in determining their
form. For each transducer function a combination of
v and r could be found which would match the partial
summation curves for the experimental data. On the
other hand the absolute threshold curves are for the
most part little affected by change in r and show con~
siderable differences. Thus, if we compare the '"partial
summation segments'' (the curves for t5>r) of the
absolute threshold curves for As=0.01 deg.z, we see
that this adheres to the square root law when E=I,
is somewhat flatter for 114 and logI,and is considerably
steeper (the slope is ~1.7) for IO°3. On the other hand
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the absolute threshold partial summation curves for
Ag=30 deg.2 and r=0.5 accord with a square root law
when E=I, but are somewhat flatter for each of the
other laws, though to varying extents. In Fig. 13 the
‘partial summation segment of the absolute threshold
curve for Ay small and I;=0 has a slope somewhat
steeper than -0.5, and the corresponding segment of
the curve for Ay large is flatter than the square root
law would give. This suggests that the transducer
function for these data is not linear, but may lie some-
where between E=1 and E=IO'3, and that E=log I or
power functions with exponents greater than or equal
to one can be excluded.

To examine this more closely, curves for I;=0
were computed for a number of transducer functions,
and the overall slope between log t2=T.3 and log to=
0.5 (0.2 to 3.2 sec.) was determined for both values
of Ag. The slopes of the partial summation segments
for Barlow's (1958) data for both spatial and temporal
summation were read from his graphs. Both sets of
slopes are shown in Table II. (For A2 small the slopes
for r=0 and r=0.5 were averaged together, as there
were no consistent differences between them. For Ay
large the slopes given are for r=0.5.)

The slope assigned to a partial summation curve will
depend partly on the range of values of log ty over
which it is taken. Nevertheless, the values in Table II
present a fairly clear picture. They show that for the
linear transducer function the predicted slope of the
temporal (spatial) partial summation curve for I,
is 0.5 whether A, (t,) is small or large. For E=log I,
or for power functions with exponents greater thanone,
the partial summation curves are flatter than this for
both values of Ag(fg). When the exponent of a power
transducer function is less than one the slope of the
predicted partial summation curve steepens as the
exponent decreases for Ag< « (or for ty<r, if the
table is taken to refer to spatial summation curves);
but for Ag>> « (i9>>7) the slope becomes flatter as
the exponent decreases (for r=0.5). Barlow's (1958)

Table 2. Slopes of absolute threshold partial summation curves.

Ag: 0.01 deg.? 30 (or 27.6) deg.2

Form or exponent of
transducer function

log -0.22 0.00
1.4 -0.29 -0.45
1.0 -0.50 -0.52
0.9 -0.51 -0.44
0.8 -0.59 -0.42
0.7 -0.74 -0.37
0.6 -0.86 -0.20
0.5 -1.02 -0.16
0.3 -1.71 0.05
Barlow

(spatial) -0.59 -0.39
Barlow

(temporal) -0.68 -0.27
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data for temporal and spatial summation show a relation
between the slopes for Az(tz) small and Az(tz) large
which is similar to that predicted for power trans-
ducer functions with exponents less thanone. His spatial
partial summation slopes would suggest a transducer
function with an exponent of 0.8 (ty small) or 0.7-0.8
(t2 large). His temporal summation data would suggest
0.7-0.8 (Ag small) or 0.6-0.7 (Ag large). Of course,
these results should not be given too much weight since
the effects on the predicted partial summation slopes
of altering the parameters of the model require fur-
ther study. Nevertheless, it is of interest that the
suggested exponents lie within the range of values
which has been given by a newly developed method for
scaling E (Treisman, 1965), and is also within the range
found for cat's optic nerve fibers by FitzHugh (1957).
The comparisons made here suggest that, with further
study, and provided the model presented here proves
acceptable, it may be possible to use the form of
partial summation curves at the absolute threshold as
guides to the form of the transducer function.

Glezer (1965) has recorded spatial summation curves
at the fovea during dark adaptation. He finds that as
it proceeds ''there is a regular increase in the zone
of full summation'' and partial summation increases.
He concludes from this increase in partial summation
that ''it is evident, that the increase of spatial sum-
mation during dark-adaptation is connected with a
gradual cessation of inhibition.!" But the results we
have presented show that caution isnecessary in coming
to conclusions of this sort. Since the stimulus inten~-
sities used (and probably the retinal noise level)
decrease during the course of dark adaptation, this
alone should cause equation (7) to giveplace to equation
(6), with a consequent increase in partial summation.
Inhibition may well decrease during dark adaptation,
but, if our model is accepted, Glezer's finding is not
evidence that this and the level of partial summation
are necessarily linked.

V. Discussion,

We have presented a model for visual intensity dis-
crimination in which the central effect of a stimulus
varies because of physical noise in the stimulus, the
spontaneous generation of nerve impulses (which we
have treated as retinal noise or '"dark light') and
variation in.the transmission of the sensory paths
(sensory noise), and this noisy central input is subject
to a statistical decision procedure which determines
the final response. We have shown that it is likely
that the variations constituting the sensory noise are
positively correlated, in contrast to the uncorrelated
physical noise. At low levels of stimulation the uncor-
related noise predominates and tends fo produce the
square root law, but as the intensity of the background,
or the area or duration of the stimulus increment
increase the proportion of the total variance due to the
correlated component of the sensory noise increases
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rapidly; as it becomes predominant the Weber function
departs from the square root law towards a slope of
1 (in log~log coordinates) and the spatial and temporal
partial summation functions tend towards a slope of 0.
Thus the model affords a single explanation for a num-
ber of phenomena often regarded as unrelated. The
basic assumptions could be applied to other modalities
than vision, and should then account for most cases
of Weber's law; the occurrence of this law in temporal
discrimination has been explained along these lines
(Treisman, 1963). To adapt the model to apply to
visual intensity discrimination a number of particular
assumptions were added so that precise predictions
could be made which could be compared with available
data. It is encouraging that the computations given
above have shown that the ancillary assumptions coul_d
be considerably varied without seriously disturbing the
main predictions. We have found no unavoidable con-
sequences of the model which clearly conflict with
established observations.

Certain points deserve further discussion.

(1) What is the form of the transducer function?
This is equivalent to asking how to scale E, the central
effect of the stimulus. There has been much interest
in the question of how ''sensation'’ or ''psychological
magnitudes' can be measured or scaled (Fechner,
1860; Stevens, 1960). Fechner proposed that sensation
was logarithmically related to intensity. Stevens has
argued that the psychophysical law is a power function
with, for brightness, an exponent of 0.3. Stevens be-
lieves that his law describes the transducer function
for the peripheral sense organs, but this appears
unlikely. It has been argued that judgments about sen-
sory magnitudes arebasedon stored central representa-
tions or neural codings of stimulus magnitudes recorded
on a dimension which we shall refer to as the ""metric
dimension,'" and that the so~called ''direct'' scaling
procedures should be regarded as relating stimulus
intensity to this ''metric dimension,' It has also been
shown that-the evidence that the '""psychophysical law''
is a power function is ambiguous, and that a better
case can be made for regarding the central metric
dimension as logarithmically related to stimulus inten-
sity (Treisman, 1964c, 1964d, 1965). But in either case
it follows that the form of the psychophysical law
is irrelevant to the question of the proper form of the
transducer function, since there is no reason to suppose
that the form in which information about stimulus
magnitude is coded and stored centrally is necessarily
linearly related to the separate central effect of the
stimulus used to select discriminative responses
(Treisman, 1965). A model which appears able to
explain a number of features of temporal judgment as-
sumes that information about durations is stored in
logarithmic form, but that temporal discrimination
operates on a linear representation of elapsed time
(Treisman, 1963).

Fechner's ''sensation'' is obviously analogous to E.
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However, Fechner's scaling procedure was based on a

-model of threshold discrimination which appears in=-

ferior to the signal detection model assumed to hold
here (Swets, 1964), which detracts from the weight
his law can be given. There are many obscurities
about ''sensation;'' this term has been avoided in the
model presented here which gives an account of dis-
crimination in terms which should all be ultimately
identifiable with neural events. Thus if the form
of the transducer function can be determined be-
haviorally, this information might help to guide physio-
logical observations. The model, if correct, canhelpus
to identify the transducer function if it can show that
some functions are compatible with experimental ob-
servations but others not.

To some extent the results we have presented above
do allow us to narrow down the range of transducer
functions which can be considered acceptable. The
Weber functions computed were in conformity with
experimental results for a number of parameter com-
binations provided a power transducer function was
assumed. But difficulties arose with the logarithmic
function, When included in the present model it pro-
duced a Weber function with an exponent greater than
unity, the computed Weber fraction increasing as I
increased even with zero correlation and a constant
state of light adaptation (see Figs. 7 and 9). This does
not altogether exclude E=log I from consideration,
through it makes it appear less plausible than a power
function, since it is possible to take r=0 or very
near it and make special assumptions to make the model
generate an acceptable Weber function. For example,
we could require that the degree of adaptation increases
as I increases at a rate just sufficient to counter-
balance the rise in the Weber fraction which would
otheérwise occur.

The summation functions generated by the model
provide information which further narrows down the
range of possibilities. For all the transducer func-
tions the results in Fig. 14 showed that if r=0 then the
difference threshold curves at a high background inten-
sity should follow a square root law for all values
of t5> r (for temporal summation) or Ag> « (spatial
summation), which does not agree with the experimental
data. In each case it is necessary to have r>0 if the
partial summation difference threshold curves are to
show the shift towards a zero slope which is found with
experimental data. Since r=0 is excluded the difficulty
of finding parameters that would allow the logarithmic
transducer function to produce both acceptable Weber
functions and difference threshold summation curves
is increased, though if v is large a small value of r
may produce considerable departure from the square
root law (see Table I). However, further evidence is
provided by the absolute threshold partial summation
curves: when Ag< = ({5< 7 ) the temporal (spatial) par-
tial summation curve for E=log I would be flatter
than the square root law, whereas Barlow's observa-
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tions give curves which are steeper than this. Taking
all these points into consideration it appears that
E =log I can probably be excluded.

The absolute threshold curves in Fig. 14 allow us to
go further and discriminate between the different
possible power functions. If the linear law holds all
partial summation curves should have slopes of -0.5,
but for power functions with exponents less thanone the
temporal summation slope will be steeper than this for
Ag< «, and flatter for Ag>>=. Barlow's data followed
this pattern, matching most closely the computed
curves for power functions with exponents in the range
0.6 ~0.8. They are clearly incompatible with the very
steep slope (-1.7), corresponding to marked threshold
enhancement, which was given by E=103 for Ag<=
This appears to exclude power functions with exponents
of this order.

The value of 0.6-0.8 found for the exponent of the
transducer function is subject to two reservations.
It is an approximation which may require modification
when we have better estimates of some of the param-
eters involved, such as r (though for Ay < = this does
not affect the curves calculated). But it is unlikely that
any minor change in the model would shift it as low
as 0,3, or raiseitto1.0.Secondly, it should be regarded
as applying only to Barlow's two subjects. It is quite
likely that there may be considerable individual varia-
tion in the exponent of the transducer function, a prob-
lem which may repay study. However, it is of interest
that it lies within the range of values which have been
given by initial applications of a newly developed scaling
procedure which is based on the signal detection
model of the threshold (Treisman, 1965). It is a con-
sequence of this model that the experimental relation
between the Crozier ratio (A1/s p, whereo 5j is the
standard deviation of the threshold) and the Weber frac-
tion depends on the form of the transducer function,
and so can be used to determine the latter. Applying
this procedure to Mueller's (1951) data for two subjects
gave exponents of 0.5 and 0.6, and data obtained by
Blackwell and Law (1958) from four subjects gave
a mean of 1.1.

It might appear that the transducer function could be
simply discovered by determining the relation of d' to
AT in experiments which allow signal detection theory
to be applied (Swets, 1964). The valueofd' correspond-
ing to a stimulus I2 =I1 + Al, where Il is the background
or 'moise'’ and I is the '"'signal +noise," is given by
d'=(Eg~Eq)/o (see Fig.1). Tanner and Swefs (1954)
performed yes-no and forced-choice experiments, using
intensity increments on a 10-ft.~-L background, and
found that log d' was linearly related to log AI. They
concluded that '‘change in neural activity is a power
function of change in light intensity.''" They do not
give the exponent of this power function, but it can be
read from their graphs and ranges between 2.5and 3.5,
values very much greater than those we have found.
However, this relation cannot be taken as the transducer
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function, since it depends on an arbitrary origin, Ej.
If E=I, and we write Y=Eg-Ej and X=Ip-I3, it
does not follow that Y=X": this would require that
1§ - 1§ = (I3-1;)", which isonly true whenn=1.Since Y=
g(X) is not simply related to E = f(I) we cannot readily
use the former to determine the latter. Conversely,
the same transducer function may give different em-
pirical relations between d' and AI as Ij varies.

It appears that if the model holds we can exclude
E=log I and E=10:3 as possible transducer functions
for visual intensity, and a power function with an
exponent somewhat less than one gives the best match
to the experimental data considered. This result pro-
vides us with a basis for using threshold summation
curves to determine the form of the transducer func-
tion. This suggests that it would be of interest to apply
both the scaling procedure based on summation curves,
and the procedure which uses the relation between the
Crozier ratio and the Weber fraction (Treisman, 1965)
to data from the same subjects; if the two procedures
converged on the same or similar functions this would
greatly strengthen the arguments for their validity.
However, it must be remembered that the transducer
function with which we are concerned gives the relation
between E and I for (relatively small) variations in I
about a level to which the eye is adapted. (It also
assumes linearity of transmission from receptor to
ganglion cell, any non-linearity arising at or beyond the
latter). It does not necessarily follow that the same
function holds for the portion of the central effect
contributed by the ''adaptation level.'' As the results
for P and C adaptation have shown, this component
of I can produce a logarithmic central effect or no
effect and satisfactory Weber functions will still be
given. The way in which light adaptation might separate
this component from the effects of small stimulus
fluctuations and allow a separate function to apply
to eachisdiscussed in more detail elsewhere (Treisman,
1967),

We discussed earlier the difficulties of usingphysio~
logical observations as a guide to the formof the over~
all transducer function in a general model of the sort
presented here. The problem arises because there are
a number of different possible measures of the neural
response to a stimulus and no obvious criterion for
choosing between them. But the choice made deter-
mines the function we record: the number of impulses
vcourring in a critical period may have one relation
to the intensity of the stimulus evoking them, but the
peak firing rate quite another. This is a problem we
may be able to solve by combining behavioral and
physiological observations. Thus if psychophysical pro-
cedures suggest that the transducer function has a
certain form, and it is found that a particular measure
of the neural response is related to stimulus intensity
by the suggested function, this agreement between the
functions might be taken as a reason for identifying
this particular neural measure as the form in which the
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stimutus information is coded. We would then hope that
if we can follow the fate in the nervous system of
the nervous messages so defined, this would agree with
the further assumptions of the model. It is of inferest
as a possible illustration of thisargument that FitzHugh
(1957) recorded the discharge from cats' ganglion cells
to near-threshold flashes of light and found that the
number of impulses occurring in a critical period
following the flash was related to its intensity by a
power function with exponents ranging from 0.6 to 1.2
for different cells. This agreement with the transducer
function suggested by the psychophysical observations
above might be taken as evidence that intensity is
coded as a number of impulses. If this work is con-
firmed it would suggest that it might be possible to
demonstrate, at some higher level in the nervous sys-
tem, some process corresponding to simple summa-
tion of these impulses.

(2) The level of correlation. The assumption that
there is some degree of positive  correlation between
the sensory messages set up by a flash of light is
essential for the more important predictions given
above, But it was shown that the range of possible
correlations (except if very few quanta are absorbed,
when, in any event, r does not affect the curves pre~
dicted) is effectively 0 to 1, and the computed Weber
function eventually becomes linear even if the correla-
tion is taken as low as +0.01. Thus any factor, however
small, which would produce some degree of positive
correlation would suffice to account for the form of the
Weber function. A number of physiological mechanisms
might have effects of this sort; a good example is the
ascending reticular system. It is known that sensory
inputs follow not only the classical direct paths to the
appropriate areas of cortex, but also send collateral
messages to the reticular formation which in turn
produces more or less widespread ''activation'' of the
cortex. This in part determines the cortical responses
to the message along the primary pathways (Magoun,
1963). There is considerable convergence in the retic-
ular formation, not only between messages in a single
modality but also between signals arising in different
modalities, so that the ascending effect when a stimulus
is given may be considered as a sort of average of the
input to the formation at that time, both from the
stimulus and from other sources. Since onany trial this
averaged cffect will probably produce a similar degrec
of facilitation for each sensory message reaching the
cortex by the direct pathways, and since the level of
this activation should vary from trial to trial even if
the number of sensory messages were constant (both
because of noise in the reticular aweraging process,
and because of variation in the components from other
modalities averaged in with the effects of the flash)
this should produce some degree of positive correla-
tion between the sensory messages.

It would be of interest to know the value of r. At high
levels of stimulation the Weber function is given by
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Al= zcvrl/ 2(11 +1,) and the temporal partial summation
curve tends to the same value (for Aj =As). It may be
possible to estimate c¢ (see below) and z can be esti-
mated from the false positive rate, or a psychophysical
procedure can be used which avoids it (Treisman,
1964a). But this still leaves both v and ri/2 tobe
determined from the asymptotic value of AI in sum-
mation, or the slope of the Weber function, and it is
likely that physiological evidence will be needed to
separate these two parameters. Their product is the
square root of the correlated portion of the variance
of the sensory message, expressed as a proportion of
the mean, )

(3) Adaptation. Dark adaptation has not been dis-
cussed but it can also be included in the model though
some difficulties remain to be- resolved (Rushton,
1965a). It has been shown that at any time after ex-
posure to a bleaching light, the threshold depends on
the amount of unregenerated pigment still present; for
any proportion of bleached pigment there is an "‘equiv-
alent background,'' I, which gives the same threshold
levels under a range of conditions (Crawford, 1947;
Rushton, 1965a). It has been suggested that the bleached
pigment produces effects similar to those resulting
from stimulation of the eye with light (Rushton, 1963,
1965a; Barlow, 1964); thus AI is high after recent
exposure to a strong light because of an effective rise
in I, the retinal noise, and the threshold fall during
the course of dark-adaptation reflects the return of
I, to its resting level as the bleached pigment re-
generates, A full discussion of the retinal basis of
dark and light adaptation is given elsewhere (Treisman,
1967).

A number of alternative assumptions about light
adaptation, the adjustment to the background intensity,
were tested in the model.

(i) Since light adaptation does occur N (no) adaptation
is not a satisfactory assumption but it was included as
a basis for comparison; it is clear (see Figs. 2, 3, 4,
8 and 9) that it is sufficient to allow acceptable Weber
function curves to be generated in some cases.,

(ii) P adaptation was included because it seemed
possible that '‘compression'' of the stimulus range to
match the range of response of the nerve fiber might
be achieved by transducing the main effect of Ij
logarithmically with transient departures from the
"adaptation level'' being transformed by some other
law. The Weber functions this assumption produced
were in general acceptable, falling between those for
N and C adaptation (see Figs. 2, 3, 4, 11 and 12); it
appeared that the law applying to departures from the
"adaptation level'' mainly determined their form.
Levelt (1965a, 1965b) found that binocular brightness
averaging of suprathreshold stimuli is linear, which
is not readily reconcilable with a logarithmic trans-
formation of the mean stimulus level but does not ex-
clude some non-linearity for ranges of stimulation other
or larger than those he studied.
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(iii) In C adaptation the '"'fadaptation level'' produces
no central effect. The deviation of the actual number
of quantal absorptions on a trial from the mean num-
ber, X9-x), plus a proportion of the mean effect,
CXy (¢ was taken to be 0.05 in the program), together
determine the number of sensory messages generated
(subject to the operation of the transducer function).
No difficulties arise with this assumption; it appears
the most satisfactory of those made, though many
alternatives could be proposed. To the extent that
this description of light adaptation is satisfactory it
suggests a number of advantages that the process may
have for the organism: (a) We saw, in Figs. 11 and 12,
that the main effect of C adaptation is to slow down
the transition from the square root to the linear law,
thus giving lower thresholds at the higher intensities.
Information about the magnitude of the background
stimulation is preserved if the corresponding message
is always scaled down to cxq, butthe amount of sensory
noise generated at the next stage is reduced. This
reduction lowers the threshold and a higher level of
background stimulation is necessary before the cor-
related sensory noise can become predominant and
make the Weber function linear. (b) Light adaptation
and other factors such as the presence of receptors
with different ranges of operation (the rods and cones)
allow the large range of light intensities which the eye
can discriminate to be matched to the response capa~
bilities of ganglion cells. Thus a transducer function
such as the logarithmic, which could also do this but
which would entail low differential sensitivity at high
intensities, can be avoided. (c) It may keep the firing
rate of ganglion cells near the optimal level at which
they respond best to increments or decrements. At
half the maximum firing rate the signals (impulse or
space) are equiprobable and so their mean information
is highest, but the optimal rate is most probably that
at which v is minimal. When the fiber is firing at a
high rate, and difficult to excite further, or is held
down to a very low rate, it is possible that v may
increase.

It seems likely that the mechanisms producing the
initial phase of light adaptation are closely related to
or identical with those which reduce = and 7 as g(Iy +1,)
increases. Treisman (1964a) and Glezer (1965) have
suggested that this reduction is due to feedback. It
may serve to prevent the ganglion cell firing rate
(which is a function of f«7 (I +I,)) rising too high,
which, we have suggested, is one function of the
processes underlying light adaptation. It is probable
that « is reduced by an increase in lateral inhibition,
and this, as well as other mechanisms (Treisman,
1967), may also contribute to the fall in ¢ fromc=1
(the value before adaptation) to the resting level, ¢,
in 7 adantation.

At high levels of stimulation the Weber fraction may
start to increase, and this increase may he prevented
by surrounding the photometric comparison field with
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a large field ofa similar order of luminance (Steinhardt,
1936; Holway, 1937; Pirenne, 1962a). Possibly at these
high values of I; inhibitory activity in the area il-
luminated reaches a maximum. Then if I increases
further the rise in excitation is no longer countered
by a corresponding increasein inhibition, so thatc rises
(see equation (4)), which would increase the slope of
the Weber function. If adaptation declines the rate of
firing of the ganglion cells may rise, which might
increase v and reduce the response to increments, an
effect equivalent to a fall in the exponent of the power
transducer function. Both these changes would also
contribute to the disproportionate rise in AI. The addi~
tion of the illuminated surround may prevent this
departure from Weber's law by recruiting further
lateral inhibition and thus returning c to its previous
value.

It would be of interest to estimate c. Baker (1949)
followed the course of light adaptation during 15 min.
exposure to an adapting light in subjects who had been
previously dark-adapted. He found that AI dropped to
a minimum in about 3 min., and then rose slightly to
a resting level whichitreachedin10or 15 min, Assum-~
ing equation (4), we can attribute these changes to a
decline in ¢ from a value of 1 at the light-onset when
there is effectively no adaptation to the final resting
level, c,, and the difference between the threshold at
light onset and the final resting level can be used to
give C, an estimate of c,. High adapting intensities,
for which equation (4) applies, should all, if the model
is correct, give the same value for ¢, since Co is con-
stant. At very low light intensities equation (2) applies
and ¢, does not enter into the determination of the
threshold, so we should get ©=1. Intermediate values
of I;, at which the transition from equation (2) to
equation (4) occurs, should give intermediate values of
¢. Baker used four adapting intensities, 5, 50, 500
and 5000 trolands, and the corresponding mean values of
¢ for his two subjects, as givenby the difference between
the initial threshold and the final level after 15 min.
adaptation, were: 0.75, 0.44, 0.48, 0.47. These results
show the initial high value and a fall to a more or less
constant level which we expected, but the actual values
are very high. However, they are certainly over-
estimates: Baker's initial threshold reading was in each
case an average of measures taken over the first
quarter minute. During this time the threshold is
falling very rapidly, so that his average must be
considerably less than the true initial threshold which
would correspond to c=1. Crawford (1947) found that
the threshold fell about 1.5 log units in the first
0.4 sec. of exposure to a 100 c/ft.2 conditioning
stimulus. Further experiment is clearly needed to pro-
vide a basis for accurate assessment of ¢, but Baker's
observations suggest that the relation tol; isin general
agreement with expectation.

(ivy In M adaptation ¢=0 so that only deviations
from the mean effect of I; produce sensory messages.
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Consequently there is no transition from equation (2)
to (4) and the former applies to all values of Ij.
This should produce lower thresholds at the high inten~
gities than any other assumption, but it would also
require a second retinal system which would respond
to absolute levels of intensity. Since the square root
law does not apply for all values of Iy, the assumption
that ¢=0 must be rejected.

(v) In Fractional (F) adaptation it was assumed that
the number of quantal absorptions on each trial was
reduced to a constant proportion: xg=kxo, 0< k< 1.
As an account of light adaptation this is unsatisfactory
since it implies that adaptation is as rapid a process
as excitation, so that the reduction in response at any
moment is directly proportional to the actual input
at that time, whereas we know that light adaptation is
a relatively slow process.However, the relation X3 =kxg
could serve as a description of the reduction in the
number of quantal absorptions effective in producing
sensory messages that would occur if the quantum
efficiency of the bleaching of visual pigment by light
were less than one, and it isof interest for this reason.
This is discussed below.

(4) Quantum efficiency. ~ We have implicitly assumed
that each quantum absorbed bleaches the corresponding
molecule of visual pigment, i.e., that the quantum ef-
ficiency, v , defined as the ratio of the number of
chromophores dissociated to the number of quanta
absorbed, is one, but there is some evidence against
this (Dartnall, 1957). Hagins (1955) illuminated the
rabbit's retina with flashes less than about 1 msec.
in duration and found that no matter how intense the
flash was, it bleached no more than half the rhodopsin.
This seemed to imply a maximum quantum efficiency
no greater than 0.5, although the result is consistent
with much smaller values. According to Williams (1965)
as the flash intensity increases the quantum efficiency
is reduced because of the occurrence of photo-reversal
of bleaching: if a molecule absorbs an odd number of
quanta it bleaches, but if it absorbs an even number
within a sufficiently short period it does not bleach.
Thus v depends on the intensity of the light: at low
intensities ¥ 1is one, but as intensity increases v
tends to zero and the proportion of pigment bleached
by a short flash tends to 0.5.

The effectiveness of light in stimulating the eye does
not decline at the same rate as the quantum efficiency
of bleaching. As the intensity of light increases quanta
will be absorbed but will fail to bleach the molecule
because their effects are immediately cancelled by ab-
sorption of a second quantum. But the receptor output
which signals the absorption of a quantum of light does
not depend on the bleaching of the molecule which has
absorbed the quantum, but more probably arises from
the isomerization of the chromophore or during the
conversion of pre-lumirhodopsin to metarhodopsin (or
their equivalents for other visual pigments). Thus on
some occasions a molecule of visual pigment may
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absorb a quantum of light, emit a light signal, and then
be reisomerized to the original form by absorption of
a second quantum; the two quanta absorbed would not
contribute to bleaching (and so would reduce?y ) but
they would contribute to signalling the absorption of
light. Thus if we define the "'quantum efficiency of
light signal generation,' §, as the ratio of the number
of light signals produced to the number of quanta
absorbed, this will fall when multiple absorptions occur
but should not fall as much as ¥, (However, it must be
borne in mind that some authors have discussed Y
as though it were an index of light signal generation).

What effect would 6 have on the threshold? This
would be represented, in the model, by xq=§x5,0< § < 1,
where xg now stands for the number of light signals
emitted, and x9 is the number of quanta absorbed, on
a given trial. The relation Xg= 0.005x9, which has been
presented as '"Fadaptation'* exactly corresponds to this,
and the F curves in Figs. 11 and 12 can be considered
as representing the effects of a constant value of
6 =0.005, As the N curves, for which é=1, and the F
curves were identical, it follows that the decrease in
5 as 1, increases has no effect on the threshold.

This absence of effect on intensity discrimination is
surprising. It occurs because the effect of introducing
$ into the model as we have done is merely to rescale
Xy The mean number oflight signals generated becomes
6 81(13 +1I,) and its variance is 62g1(11 +1,). This makes
equation (1)

Al = ;_g V8222141 ) 26201141 ) +622g(1 141, )

which simplifies to equations (2) and (3) exactly as
before, s disappearing, However, this argument is
based on treating § as a constant, whereas the propor-
tions of molecules absorbing different numbers of quanta
will obviously vary, even when the total number of
quanta absorbed is constant. We can neglect the slight
correlation that must exist between § and the fluctua-
tions in the number of quanta absorbed from a constant
stimulus and allow for this variation by treating § in
the same way as f, i.e., we can take the number of
light signals generated to be a Poisson variable with
mean and variance equal to §g(I +1,) (Aguilar & Stiles,
1954). When we do this equation (2) becomes

Al

14
= i (17+1,)%2
but equation (3) remains unchanged. (Strictly & will
be slightly less for Ip than for I; so that equation (3)
should really be increased by §;/64, but this factor
would be only negligibly greater than one and can be
ignored). But when the fraction of rhodopsin bleached
by I is small § (and even more so, 51 2) will be very
close to one. Even if each quantum absorbed bleached
one molecule, a retinal illumination one million times
threshold (50 trolands) would bleach only one per cent
of the rhodopsin in an hour (Pirenne, 1962b) so that



the quantum efficiency of bleaching would be negligibly
less than one (Williams, 1965), yet at this level of
illumination the Weber function would be linear. Thus
the conclusion suggested by the F curves remains
unchanged. At low levels of stimulation § appears in
equation (2) but is little less than one so that its effect
on the threshold is negligible. As I; increased § de~
creases, but it also disappears from the equation de-
scribing the Weber function, and thus does not affect
the difference threshold.

Of recent years the work of Rushton (1965a) and
others has obliged us to discard the notion that the
rise in threshold subsequent to exposure to a bleaching
light is wholely attributable to a reduction in the amount
of pigment available to catch quanta. If the present
arguments are accepted, we can drop altogether the
hypothesis that changes in the efficiency with which
quanta are absorbed from the incident light, and used
to generate light signals, play a partinraising the dark
adaptation threshold. By elimination, this further favors
the hypothesis that bleached pigment raises the threshold
in the dark by increasing the retinal noise.Immediately
after exposure to a strong light the proportion of un-
bleached pigment will be low so that there will be a
reduction in the number of quanta absorbed froma given
light stimulus. The effect of this on the production of
light signals can be regarded as exactly equivalent to
the effect which would be produced if the pigment com-
plement were maintained unchanged but § fell. But
since the noise level will be high equation (3) will
apply (with Ig substituting for (I3 +1,)) and é does not
appear inthis. When most of the pigmenthas regenerated
equation (2) will come to apply, but now the reduction
in & which would have an effect equivalent to the loss
of pigment would be small and 51/ 2 would be very
close to one. (Of course if the pigment level were to
fall and no retinal noise were created, so that levels
of stimulation could remain relatively low, the threshold
would rise, to an extent depending on the value of §
equivalent in its effect to the pigment fall.)

"Quantum efficiency'' is sometimes used to refer to
the efficiency of the eye as a whole (really the subject)
in performing some task, as compared with the per-
formance of an ideal device limited only by the
quantum variability of light. Barlow (1962a) defines the
overall quantum efficiency of the eye as

F_Least quantity of light theoretically required for performing a task

Least quantity required in practice for performing that Same task

The tasks usually used arethe detectionofan increment
(Jones, 1959) or discrimination between two stimuli
differing in intensity. Barlow (1962b) employed the
latter task. It is possible to calculate the minimum
number of quanta that each stimulus must provide if an
ideal device limited only by the Poisson variability
of light is to discriminate between them at the same
level of performance as the subject. The ratio of
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this value to the actual meannumber of quanta delivered
to the subject's eye (the ratio is the same for each
stimulus) is then the overall quantum efficiency, F.
Barlow found a maximum value of about 5 per cent
for this.

It is obvious that F is a complex measure, affected
by all restrictions on performance other than that
resulting from the Poisson variability of light. A major
restriction is the loss of light occurring between
arrival at the cornea and absorption by the rods; in
the model this is represented by the constant, f. Rushton
(1956) estimated that about 10 per cent of the light
incident at the cornea was absorbed by visual pigment.
If this restriction were excluded from consideration,
the quantum efficiency would be given by F/f, which
would make Barlow's maximum about 50 per cent.
Barlow considers the retinal noise, I,, and 7, the
quantum efficiency of bleaching, as the remaining
restrictions on performance. However, we have seen
that v can be disregarded. Furthermore, there seems
no good reason to suppose that visual discriminations
are wholly determined at the retina, or that the brain
beyond the retina is completely noiseless. In terms of
the model presented here the two sources of biological
noise, retinal and sensory, should together account for
F/f falling short of 1. If o and I, were both zero
F/f would equal one, but the bigger the proportionate
contribution of these sources of noise fto 012_3, the
smaller will the overall quantum efficiency be. A
number of consequences follow from the model which
it is of interest to compare with Barlow's (1962b)
results. (a) If r is positive the proportionate contribu~
tion of the sensory noise to the central variance
increases as g1(11+1n) increases and this should
cause F to fall, Barlow's findings are in keeping with
this: F is maximum near the absolute threshold and it
falls if the intensities of the two stimuli to be dis-
criminated are made higher, even when the eye is
adapted to their order of intensity. (b) Light adaptation
allows c to fall to a resting level, cg. This reduction
in the contribution of the adapting intensity to the
magnitude of the central message reduces the amount
and proportion of correlated central noise which con-
tributes to 0123. It follows that F should be greater
when the eye is adapted to the intensity of the stimuli
to be discriminated than when it is not. Barlow showed
that this is so0. (¢) We have suggested that there may
be an optimal firing rate for the optic nerve fiber at
which v is minimal, and that one function of light
adaptation may be to maintain the firing rate of the
ganglion cell for stimuli in the threshold range near
this rate. In accordance with this Barlow found that as
the intensity of the two stimuli was shifted above or
below the intensity threshold for the adapting field, F
also varied, being highest near threshold and falling
off at the intensities on either side of this level. Thus
Barlow's three main results using this measure are
all in agreement with the model.
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VI. Conclusion

The model that has been presented was constructed
in the belief that any adequate account of sensory dis-
crimination must make minimum assumptions about
every stage between the impingement of the stimulus
on the receptors and the choice of the final response,
and that we must attempt to make the assumptions
precise at all stages. It is dangerous to assume that
because more is known about the retina than about the
brain beyond it, the latter can be assumed to have no
effect on discriminatory performance and safely ig-
nored; or that references to ''conscious sensation'
allow us tacitly to assume linearity and noiselessness
beyond the periphery. We have also tried throughout
to maintain a distinction between explanations and
descriptions, important when using terms such as
""adaptation'* or '"summation.'' The model is somewhat
schematic: it was desired to test its general usefulness
as a framework to which further assumptions could be
added if particular problems requiredthem. Many of the
assumptions employed have already given useful ser-
vice elsewhere; the number used seemed the minimum
which would allow the construction of an adequate
model. Thus no attempt was made to take account of
the shift from rod to cone vision, though this could
readily be included by assuming an appropriate change
in parameters. We have not considered the effects of
overlap between receptive fields though it is likely
that this occurs and is important; it might be related
to some of the differences that may be found between
spatial and temporal summation. We have dealt only
with incremental thresholds determined by the
method of constant stimuli, but our arguments
could be extended without difficulty to the other
psychophysical procedures for measuring thresholds
(Treisman, 1964a).

The model appears to be able to explain a number
of features of discrimination and leads to some results,
such as the irrelevance of & to the increment or dark
adaptation threshold, which might not otherwise have
been suspected. It demonstrates that observed changes
in a complex system do not necessarily imply that
corresponding changes are occurring in underlying
causal factors which have a simple one-to-one relation
to the observed phenomena. An underlying ''summation
process'' does not become less efficient as the param-
eters of the increment increase: noise is sampled as
before but its description changes. The lesser degree
of light adaptation shown when the adapting light is
weak does not imply that ¢ is larger than at high
intensities; the finding is sufficiently explained by the
shift from equation (4) to equation (2) which reduces
the weight of c in determining the threshold. The
increase in partial spatial summation thatoccursduring
the course of dark adaptation (Glezer, 1965) does not
need to be explained by a corresponding decrease in
lateral inhibition; it would follow from the shift from
equation (3) to equation (2) as the retinal output (Ip)
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falls, even if lateral inhibition did not decrease.

The model may prove useful in suggesting predictions
and experiments. Thus it will be of interest to attempt
to estimate all the constants in the model. Procedures
can be suggested for estimating z, ¢, f, and I, (Treisman,
1964a; Rushton, 1956; Gregory,1956; Barlow,1957),and
it maybe possible to obtain separate estimatesof v and r
by combining behavioral and physiological observations.
In determining the transducer function it may be
possible to compare two separate scaling procedures,
one based on the Weber function (Treisman, 1965),
the other on the absolute threshold partial summation
curve, and examine whether they converge on the same
result. As well as allowing individual variation to be
studied, determination of the transducer function by
behavioral means may facilitate the interpretation of
physiological observations, as was discussed above.

It may prove possible to derive results from the
model which otherwise might have seemed to require
special assumptions. A possible case in point is the
observation that '"at high intensities the Weber fraction
AI/I of the cone systemasawhole ., . becomes constant
(Weber's law) and has about the same value for light
of all spectral compositions'' (Pirenne, 1962a). A pos-
sible explanation for this is that there are a number
of cone systems (Stiles, 1959) and that at high intensities
the incremental threshold is determined by the most
sensitive of them. However, let us consider what the
present model would predict. We will suppose that the
wave-length of AI, A5, may differ from that of Iy, A ;.
Since the capture of quanta of light by the receptors is
a function of wave-length it follows that we will have
different values of f in each case. Thus to include
variation in wavelength among the determinants of the
Weber function at high intensities we can generalize
equation (4) to

f1Aqt
At UL ey, (®)

foAgty

(If f; changes than L, the '"dark light'' corresponding
to the rate of spontaneous generation of impulses in
the visual system, should change too. But at high
intensities this can be ignored.) It follows that for
Ay =Ag> « the resulting Weber function is independent
of Ag, for ty=tg> r it is independent of to, and for
f;=15 the Weber function is the same whatever the
actual spectral composition of the light, provided the
level of stimulation is high. A prediction which follows
from equation (8) is that when f; < f5 AI will be lower,
and when fy >fy it will be higher than when f; =f5, and
the effect on the threshold is given by f;/fy. It follows
that interchanging the wave-lengths used asbackground
and increment may have a marked effect on AlL. The
hypothesis that the single most sensitive mechanism
determines all thresholds when the level of stimulation
is high is quite compatible with the present model,



but we see that if the model is accepted the observa-
tion quoted above does not require this hypothesis to
explain it but follows simply from equation (8).

Summary

A model for visual intensity discrimination is
described. The mainassumptions are: (i) The absorption
of quanta from a light-flash by the retinal recepfors is
subject to fluctuations due to the physical variability
of light; (ii) absorbed quanta may give rise to neural
messages; (iii) retinal noise also gives rise to neural
messages; (iv) the number of neural messages depends
on the "overall transducer function'' relating the central
nervous effect (E) of the stimulus to its physical
intensity (I): E=£(I), and on (v) the state of light adapta-
tion; (vi) sensory noise affects the magnitude of the
neural messages; (vii) the magnitudes of the sensory

messages generated by a given light-flash are positively
‘ correlated; (viii) the sensory messages sum to give
the final central effect, E, and the response selected
is determined by a statistical decision procedure.

Many of these assumptions are already accepted or
are plausible. To examine their predictions when taken
together, and the effects of variation in the parameters
and functions assumed, the model was simulated on a
digital computer. It appears that it correctly predicts
the relation between the difference threshold, AI'and
the intensity of the background stimulus, I (the Weber
function), found experimentally, and it also predicts
a number of the features of retinal summation, including
the effects of increase in background intensity, and
stimulus area and duration, on partial temporal or
spatial summation. Evidence is provided thaf the overall
transducer function is not a logarithmic function or a
power function with a small exponent, and a new basis
for scaling the sensoryeffectofa stimulus is suggested.
It is shown that Weber's law arises if there is any
degree of positive correlation between sensory mes-
sages, but not if there is zero correlation, and possible
mechanisms of light adaptation are considered.

The assumptions which allow Weber's law to be
derived for vision are sufficiently general tobe capable
of being applied to other sensory systems.
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Glossary of Symbols

« : the limiting area below which complete spatial summation
occurs; the minimum sampling area.

Aj @ area of the background stimulus in deg.

A2 . area of the stimulus increment in deg.2

C adaptation : Complete adaptation; x3=x2—kx1 = X9-X{ + CXy

¢ ! the proportion of the mean number of molecular decompositions
effective in setting up sensory messages after C adaptation (for
N adaptation ¢ = 1; for M adaptation, ¢ = 0).

A1 the difference threshold, the brightness increment detected on
50 per cent. of trials.

E : the sum of the sensory messages arriving centrally on a given
trial, the decision axis for the determination of the response.
Corresponds to X5 in the programme.

Ej : the mean value of E for stimulus I

E, : the mean value of E for stimulus Iy

E‘c . the criterion determining the response.

F : overall quantum efficiency of the eye. The ratio of the least
quantity of light theoretically required for performing a task to
the least quantity required in practice.

F adaptation : Fractional adaptation, xg=hxs.

f : the proportion of the quanta incident at the cornea which is
absorbed by visual pigment.

f; : the value of f for the background intensity, Iy

f5 @ the value of f for the stimulus increment, Al

y = number of chromophores dissociated; the quantum efficiency

number of quanta absorbed

g = fAt
g1 = fAltl
g9 = fA2t2

h : the proportion of the molecular decompositions on a given trial
effective in setting up sensory messages. See F adaptation

I; : the intensity of the background stimulation in quanta/sec.deg.”.

I, : the intensity of the increment plus background.

Ig: the equivalent background having the same effect as the retinal
noise after exposure to a bleaching light.

I the ‘‘dark light’’, the intensity which would produce quantal
absorptions at the same rate as the retinal noise produces events
confusable with them.

k : the proportion of the mean number of molecular decompositions
constituting the ‘adaptation level’ in P and C adaptation.

A = the wavelength of light

)\1 = the wavelength of Iy

Ag = the wavelength of Al

M adaptation : Adaptation to the mean; xg=Xo~X;.

N : The number of summation units contained in a given sampling
area and duration.

N adaptation : No adaptation; xg=X,

O, the output of a single receptor cell

P adaptation : Partial adaptation; xJ=x,~kx., and x'é :kxl.

P(Y) : the probability of the response ‘Yes’ on trials on which a
stimulus is presented.
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P(Y/Il) . the value of P(Y) for trials on which stimulus I is pre-
sented.

Q : the total number of quanta absorbed from a given stimulus.

Q the total number of quanta absorbed to reach threshold when
light from the stimulus is distributed over n receptors.

r : the mean level of correlation between the sensory messages
arising at a given time.

: the variance of the central effects produced by repeated pre-
sentations of a given stimulus.

of : the variance of a sensory message

s : the mean number of nerve impulses constituting a sensory mes-
sage; s=1 in the programme

r : the limiting duration below which complete temporal summation
occurs.

ty: the duration of the background stimulus in sec.

to : the duration of the stimulus increment in sec.

v : the coefficient of variation of the sensory message; v=as/s

[

[

[ZN I ]
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Xy ¢ the expected number of molecular breakdowns when a flash
is given including quantal absorptions and the effects of the
‘‘dark light'': xy = g(I3+p).

X9 ! the actual number of molecular breakdowns on a given trial;
a variable from a Poisson distribution with mean = x;.

Xg :the number of molecular breakdowns contributing to determining
the neural message, after light adaptation has operated.

Xq4 * the number of sensory neural messages set up by a given
stimulus input.

X5 the total number of nerve impulses arriving centrally on a
given trial; this corresponds to E.

Xg * the value exceeded by 2 per cent. of the computed values of
x5 for a given set of conditions; an estimate of E,.

z : a standardized normal deviate.
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