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A model for visual intensity threshold diserimination is
described. Simplified assumptions represent the main features
of the visual afferent puths. Diseriminative responses are
seleeted centrally by a statistical decision proeedure, limited
by the noise level. Noise arises from the irredueible physieal
variability of light, from spontaneous firing, and from varia
tions in transmission in the afferent paths. These variations
will tend to be positively eorrelated, The model was simu
lated on a computer: it eorreetly prediets the form of the
Weber funetion (the relation between differenee threshold and
background intensity) and the features of spatial and tem
poral "summation", It also shows that the funetion relating
the eentral effeet of a stimulus to its physical intensity is
unlikely to be logarithmie or apower funetion with a small
exponent.

I. The Model
"Weber's law stands as a milestone in psychological

research, It is one of the first psychological laws
worthy of the name, and it may prove to be of far
greater and more general significance than the differ
ential threshold problems that provided its initial for
mulation, In effect, it establishes a law ofpsychological
relativity: subjective discriminations are not bound to
absolute characteristics of stimuli but to relations
between them." (Berelson & Steiner, 1964). This claim
illustrates a common error among psychologists: the
over-evaluation of "laws," whose discovery is taken
as an end in itself for psychology. Weneed to substitute
for this nineteenth century fallacy the appreciation that
the observation of a behavioral regularity is not the
conclusion to a psychological investigation, but a quea
tion inviting one; a "law" can only be said to be satis
factorily understood when we have a model of how the
subject functions from which the observed behavior
follows as a logical consequence. No grandiloquent
generalization can substitute for this. The present
paper arises from an attempt to examine whether we
are yet in a postnon to devise such a model to ac count
for Weber's law and some related findings (Treisman,
1964a); to examine the implications of the model
devised it was simulated on a digital computer,

The model as presented is intended to apply only
to the simplest detection situation: determination ofthe
increment or absolute threshold for a flash super
imposed on a background of the same area or Iarger ,
Extra assumptions will be needed to extend it to more
complex situations, such as determination of the CFF,
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but it will be better to add these assumptions when the
basic model has been evaluated, It has been applied
to visual thresholds since we know more about the
absorption of energy by the receptors for vision than
for other senses, but in principle it is capable of
being adapted to any sense.

The main assumptions on which the model rests are:
(i) There is a statistical relation between the nominal
intensity of a stimulus and its effect on the retinal
receptors, The variation from trial to trial in the
number of quanta absorbed from a light-flash of con
stant nominal Intensity is described by a Poisson dis
tribution. (ii) There is a statistical relation between .
the effect on the sense organ and the nervous message
received centrally. Thus if the same number of quanta
were absorbed by the receptors on more than one trial,
sensory noise would nevertheless cause the number of
nerve impulses arriving at the point where the threshold
is determined to vary. (Bi) The variation due to this
sensory noise is, to somedegree,positivelycorrelated.
(iv) A statistical decision procedure determines the
response made.

For the most part, these assumptions are not new,
The last three could be adapted to apply to any sensory
system, and would then ac count for the occurrence of
Weber's law (Treisman, 1964a). A number of lesser
assumpttons are included in the model to give a closer
fit to the visual system, though the model should still
be considered schematic, and the importance of some
of these parameters and assumptions has been assessed
by varying the values given to them in the computer
program. The model is essentially an Information
processtng account in which the successive stages bear a
rough parallel to those which physiological observations
suggest may occur in the visual pathway. Abrief
description of the computer program will be given
which will also serve as a more detailed account of
the model , Some of the assumptions will then be dis
cussed more fully.

We start by considering a single trial on which a
background light-flash of intensity 11quanta/sec. deg.2,
and area Al deg.2 is exposed to the eye for t1 sec.
steps (1) to (5) belowdescribehowtheprogram computes
the effects of such an exposure,

(1) When a visual stimulus of given intensity is
presented to the eye the number of quanta absorbed by
retinal receptors will depend on the area and duranon
of the stimulus and the extent to which light is lost in
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the optic media or bypasses the receptors. This last
is represented by f, the proportion of the quanta
incident at the cornea which is absorbed by visual pig
ment, Rushton (1956) estimates that 10 per cent of the
light entering the eye (,\ = 505mfl. 200 parafoveal) is
absorbed by rhodopsin, and f was always taken as 0.1
in the program, which also had, unless otherwise stated,
Al = 1 deg.2 and t l = 0.1 sec. Then the expected number
of quanta absorbed from theflash ofintensity11 is given
by glII , where gl =fAltl' However, noise arising inthe
visual system may spontaneously produce events con
fusable with the absorption of quanta of light by visual
pigment. Following Barlow (1957) we shall treat these
events as though they were always due to the spontaneous
decomposition of moleeules of visual pigment, and
represent this retinal noise by an equivalent "dark
light," In, whose intensity is such that it would produce
quantal absorptions at the same rate as that at which
these noise events occur, Then the total expected
number of quantal absorptions (using this term, from
here on , to include noise events confusable withquantal
absorptions, unless otherwise stated) will be given by
Xl = gl(ll + In). Theprogramtookln = 1000quanta/sec.
deg.2 (Barlow, 1957).

(2) The mean number of quanta absorbed on each
trial is given by Xl' But the actual number of quanta
absorbed will vary from trial to trial because of the
irreducible quantum variability of light. This is de

scrfbed by a Poisson distribution, so the program takes
the actual number of decompositions of visual pigment
on the given trial as x2' where this is a variable from
a Poisson distribution with mean Xl' (For xl> 100 a
normal approximation to the Poisson distribution was
used.)

(3) Not all the quanta absorbed may be effective at
the stage at which sensory messages are set up, We
assume that light adaptation acts by reducing the numher
of absorptions which are effective in setting up sen
sory messages, so that the effect of adaptation is
represented by the conversion of x2' the actual number
of quantal absorpttons on the given trial, to x3' the
number of absorptions effective in determining the
neural message. Various assumptions might be made
about this relation, since little is known about light
adaptation, Those selected fo r inclusion in theprogram
were:

(i) N (no) Adaptation. x3=x2' All absorptions are
effective.

(U) F (fractional) Adaptation. x3=hx2, o<~< 1. The
numbe.r of absorptions effective is a fixed proportion
of the total absorptions on a given trial. This would
represent an adaptive process approximately as rapid
in its effects as the direct excitatory action of the
stimulus ,

(iU) P (partial) Adaptation. This assumes that the
momentary stimulus input can be considered to be
divided into two parts, an "adaptation level" deter
mined by the average intensity of the stimuli over a
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series of trials, 11, and the deviation from this adapta
tion level of the given input; these two parts are dif
ferently effective at the stage at which the neural
message is determined. The deviatton was taken as

x'3=x2 -kxl, with k=0.95, and the adaptation level was
then x"3 =kxl'

(iv) C (comp/ete) Adaptation. This is similar, except
that the "adaptation level" is assumed to have no
further effect. x3 =x2 - kxl =x2 - Xl + cXl' 0< c < 1. The
numher of decompositions effective at the next stage
is given by the excess of the actual number on the
given trial over the mean number for aseries of
trials, plus aproportion, c, of this mean number , It

was taken that c = 0.05.
(v) M Adaptation (adaptation to the mean). x3 =x2 - Xl'

Only the deviation from the mean level is effective
at the next stage, This would imply that information
about the absolute level of illumination must be con
veyed by some other , presumably less sensitive, system
than the one under consideration which determines
intensity discrimination.

(4) We shall represent the relation between the
final neural effect (E) of the stimulus, and its physical
intensity (I) as the overall "transducer function,"
E = f(I). This is taken he re to reflect the relation be
tween the number of sensory messages set up, x4'
and the number of pigment decompositions effective in
setting them up, x3' For reasons which will be given
below the effects of five alternative transducer func-

d ' ) I (") 0.3.tions were explore: (1 X4= og ](3; 11 x4 =x3 '

(iii) x4 =x~·6; (iv) x4 =~; (v) x4 =X~.4. The overall
transduc er functions resulting from these relations are
represented as E=log I, E=Io.3, etc, In the case of
partial adaptation it was assumed that the "adaptation
level" is always transduced logartthmtcalty, the func
tions given above applying to deviations from this level.
Thus for E=I1.4, x4 =x'l·4+log x"3' for E=log I,

x4=logx'3+logx"3' etc,
(5) The number of sensory messages set up, x4' has

now been computed. We will suppose that each message
consists of a train of nerve impulses, but any other
neural coding compatible with the other assumptions
of the model could be substituted for this , If the mean
nurnber of nerve impulses in a sensory message is s,
and the total number of impulses arising is summed
centrally to give E, the effect of the light-flash at the
point where responses are selected, then the expected
value of E would be sX4' But this is unlikely to be the
magnitude of the central effect of the stimulus on any
given trial since sensory noise will cause the actual
number of nerve impulses in each sensory message to
vary about s; it is assumed that this variation is nor
mal, with variance o ~. The program takes s = 1 and
treats the message size as a continuous variable with
<18 = 0.10 The "noisiness" of the sensory message is
then indicated by its coefficient of variation, v = s/s =

0.1. There is little relevant evidence on the variability
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Fig. 1. The relation between the phyaical stimulus intensity,
I, and its centraI effect, E, underlying measurement of the absolute
or incremental threshold by the method of constant stimuli. The
psychometric function relates P(Yl, the probability of the response
·Yes·. to the physical magnitude of the stimuli presented. The three
distributions on the central decision axis, E, correspond to three
stimult, 11, the hackground stimulus(11=0 when the absolute thresh
old is measured), 12, the background + increment whose mean cen

tral effect comcides with the criierion, Ec ' and 13 , a stimulus
whose mean central effect. E3• is exactly one standard deviation
ahove Ec ' and for which P(Y) is, therefore. 84 per cent. 12-11=~ I.

tion between sensory messages, r was taken as 0, 0.2,
0.5, 0.6, or 1.0, and xs' the total number of nerve
impulses arriving centrally on the given trial, was taken
as a variable from a normal distribution with mean x4
and variance determined by o ~ and r.

We have now given an ac count of how a single pre
sentation of the stimulus might produce a central ef
feet, E, which the computer calculated as x5' However,
we are interested in making predictions about the dif
ference threshold, ~ I, or absolute threshold, 10 , Before
describing how the program determines these measures,
we shall briefly elaborate the assumption that threshold
responses are determined by a statistical decision
procedure.

Figure 1 illustrates aasumptlons about the determina
tion of absolute or difference thresholds which have
been put forward by a number of authors, but which
are perhaps best known and have been most energetically
developed as the basis of modern signal detectability
theory; as this theory, and the considerable evidence
for it, are weIl described elsewhere, only abrief
ac count of the determination of incremental and absolute
thresholds will be given here (Cattell, 1893; Solomons,
1900; Thurstone, 1927; Rose, 1948; Tanner & Swets,
1954; Gregory, 1956; Barlow, 1956; Swets, Tanner, &

of firing in sensory nerve fibers but it is of interest that
Stein and Matthews (1965) have measured the distribution
of inter-pulse intervals for cat muscle spindie afferents
under constant stimulation, and found that, except at
the lowest frequencies, this was normal with v constant,
its mean value being 0.05 for primary and 0.02 for
secondary afferent endings. lt seems unlikely that the
visual system is much noisier than the proprioceptive.
As aprediction from the present model depends on v
being small, 0.1 was taken as a conservatively large
figure.

However, we are not yet in a position to determine
x5' the sum of the nerve impulses arising on the given
trial, as the variance of the central effect, E, will depend
not onlyon u~, the variance of the sensory messages,
but also on the correlations between them. As an il
lustration let us suppose that exactly two sensory
messages arise on each of N trials, and that on each
trial we arbitrarily label these sI and s2' We could
then calculate the product-rnoment cor-relation coeffi
cient, r12' between the magnitudes of sI and s2 over
the N trials. Sensory noise might be partly due to
factors such as variation in the level of facilitation of
synapses in the visual afferent pathwayby the ascending
reticular system or any other source, variation in
oxygen supply depending on the phase of the pulse
cycle, or other causes which would tend to affect
different sensory messages arising at the same time
in a similar way. This would make it seem likely that

r12 would be positive though, of course, it could have
any value between -1 and +1. If there were three
sensory messages on each of the N trials, then, since
we label them arbitrarily, we would expect r12 = r13 =
r23 = r, where r is the mean level of correlation between
sensory messages. In this case, however, it is no
longer true that r can range between -1 and +1. The
possible range of values for r can be shown as follows:
we assume that there are n sensory messages on each
trial, SI' s2' •.. Si' .. , sn' with 8i=0 and ui=1. Then

N 2
~ 2::(Sl+52··· Sn) ~O
N .

1 [ 2 ..... 2 2N 2:: s
1+2>2···L:sn+

(L s l s2 + L::s 1
s3+····.I: SnSn_l)] >0

n+n(n-1)r ~O

Therefore

r~-1/(n-1)

Thus the lower limit of possible values of r is given by
r=-1/(n-1), where n=X4. Furthermore, since we will
almost always have large values of x4' the possible
negative values of r will be very elose to zero, so that
in most cases the range can be taken as effectively
o to +1. To examine the effect ofthe degree of correla-

Percentton & Psychophystcs, 1966, Vol. 1 205



Birdsall, 1961; Swets, 1964; Treisman, 1964a, 1964b,
1965; Treisman & Watts, 1966). We start with the
assumption that there is a statistical relation between
tne central effect of a stimulus at the locus where the
threshold response is determined-the "decision axis ;"
E-and its physical magnitude, Let us suppose that a
stimulus, of intensity I, is repeatedly presented to a
subject. Then, because of physical and sensory noise,
the stimulus will not have identically the same central
effect each time it is presented; instead its different
central effects can be descrfbed by a frequency distr-ibu
tion, whioh is assumed to be approximately normal,
Figure 1 shows three such distributions, centered on
EI' E2 and E3, the expected central effects of three
stimuli 11 land 13; to a first approximation it is, , 2 2
taken that their variances, a E' are equal ,

In the deterrnination of an incremental difference
threshold by the method of constant stimuli, 11 would
represent the background 01' steady stimulation, On
some trials 11 is presented, and on other trials one of
a range of stimuli greater than 11 is given, Each time
the subject must respond "Yes" 01' "No" to indicate
whether 01' not he considers that an incrementhas been
added to 11' Since the central distributions overlap,
the value of Ei occurring on trial (i) is not an un
ambiguous indicator of which stimulus was in fact
presented on that trial. Statistical decision theory shows
that in such a case the optimal procedure for the
subject is to select a value on the decision axis, Ec' as
a criterion, and to make each decision by reference to
it: if the central effect on a given trial exceeds Ec
he should respond "Yes," if it does not he selects
the response "No." Then the probability that the sub
ject will respond "Yes," P(Y), on trials when a given
stimulus is presented, is given by the proportion of
the corresponding central distribution which lies to the
right of Ec' Figure 1 shows the psychometric function
which results when P(Y) is plotted against the stimulus
values. For 11, the value of P(Y) is the "false positive
rate," the proportion of the distribution centered on EI
which exceeds Ec. 12 happens to be the sttmulus whose
mean central effect, E2, coincides with the criterion,
Ec; it follows that for this stimulus P(Y) = 0.5. In
general , as larger values of I aretakenP(Y) increases,
giving a psychometric function which is anormal
ogive, P(Y) = 0.5 is usually taken as the experimental
criterion defining the incrernental threshold; it fol
lows that ~. I, the threshold increment, i1j given by
~ 1= 12 - 11, When 11 = 0 the mean value of EI will be
due to the retinal notse, Iu, and 12 will now be taken as
the absolute threshold for light, 10 , The distribution
corresponding to 11 is sometimes called the "noise"
(N) distribution, the others being "signal+noise" (SN)
distributions.

There are a number of ways in which a subject
might settle upon a value for Ec (Birdsall, 1955),
but the basis proposed by Neyman and Pearson (1933)
is the most plausible for the conventional psychophysical
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methods (Treisman, 1964a, 1964b, 1965). This requires
that the false positive rate must not exceed an accept
able limiting value, and it is satisfied if Ec=E1 +zuE'

where z is a constant such that P(Y!,11) is equal to
the acceptable false positive rate. Since the central
distribution is taken to be normal, Z is the standardized
normal deviate which cuts off a tail whose area is
equal to the acceptable limiting false positive rate.

Returning to the computer program, we can see that
x5' as determined above, corresponds to a value for E
produced by a single presentation of 11, the background
stimulus, In order to determine the threshold intensity
increment for 11 we need to determine Ec = E2 and then
find the corresponding value of 12, Then we can obtain
L'> 1= 12 - 11,

(6) Steps (1) to (5) above were repeated 1000 times,
the resulting 1000 values of x5 representing the EI
distribution. The acceptable limiting false positive rate
was taken as 2 per cent; a value, Xß' was found which
was exceeded by 20 of the calculated values of x5. This
was taken as an estimate of Ec' the corresponding
value of 12 was determined and !\ 1 was derived from it,

11. Further discussion of the model
We have now described the model and the computer

program embodying it. This was used to examine the
form of the Weber function (i.e., the relation between
~ 1 and I) and also the implications of various assurnp
tions about light adaptation, the form of the transducer
function, and the level of corr-elation, Before consider
ing the results so me points deserve furtherdiscussion.

(1) Ihe transdueer rune tion: (i) The logarithmic func-
tion, E = log I, which corresponds to x4 = log x3 in the
program, has wide support, partly for the reasons
advanced by Fechner (1860), and partly because it is
believed that it provides a basis for explainingWeber's
law, since if ~ I II is constant, all values of ~ I will
correspond to the same fixed difference after the
logarithmic transformation (Gregory, 1956; Le Grand,
1957; Rushton, 1961). However, Fechner's arguments
were based on his particular model for the threshold;
if that is rejected his scaling procedure and his con
clusions must fall away, A scaling procedure can be
derfved from the statistical decision model of the
threshold presented above; when this is useditdoes not
give a logarithmic function but suggests, for vision,
that the transducer function is apower function with an
exponent in the neighborhood of one (Treisman, 1965).

Evidence from a different source appear-s to be pro
vided by the finding that category scaling and related
procedures lead to a logarithmic function, and it has
also been argued that the results of "direct" sensory
scaling experiments, although usually taken as evidence
for apower function psychophysicallaw,canbeas well ,
01' oetter , interpreted as supporting a logarithmic law
(Stevens, 1957, 1960; Treisman, 1964c, 1964d). But it
has also been proposed that the dimension scaled by
"direct" and category scaling procedures is not the
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same as the discriminal dtmenslon serving as decision
axis in the determination of discr-imination responses,
but Is a, more central metric dimension stortng info rma
tion about the magnitudes of stimulus Inputs: this metric
dimension might be related to stirnulus intensity by a
logarithmic psychophysical law without this carrying
any impltcation about the form of the transducer func
tion (Treisman, 1965). Thus the psychophysical evidence
for a logarithmic transducer function i s weak; neverthe
less, It seemed of interest to include it,

(H) I 'Direct I I scaltng methods lead to a psychophysical
law which, for brightness, is held to bea power function
with an exponent of about 0.3 (Stevens, 1957, 1960).
Although these data could be equally weIl accommodated
by a logarithmic function with a slope constant of 0.3
(Treisman, 1964c, 1964d), and should be interpreted as
relating to the metric dimension, and not the dis
criminal dimension with which we are now concerned
(Treisman, 1965), it seemed of interest to include

x4 =xg·3

(iii) Though implicit in much workthathasbeen done,
the linear law (x4 = x3) and similar functions do not
appear to have been systematically evaluated. They may
have seemed implausible because the range of light
intensities over which the eye functions is so large
when compared with the range of useful firing rates
of a nerve fiber, but this is not an insuperable objection:
(a) rods and cones function mainly over different ranges
of intensity; (b) light adaptation may greatly reduce
the firing rates required (partly for this reasona num
ber of adaptation functions were included in the pro
gram); (c) we are concerned with the transducer func
tion as it applies to the experimental measurement of
visual thresholds: in these situations the eye is usually
adapted to a fixed background intensity, and the decre
ments or increments to this intensity are small. Thus
the linear law need apply to only a small range of
variation about an adapting intensity, while another law
could apply to the mean effect of the background
intensity itself'. This possibility was included in the
program as P adaptation, the effect of the "adaptation
level" being assumed to be logarithmic, whatever the
transducer function applying to deviations from this
level might be.

Evidence in favor of a linear or near-Itnear law
Includes: (a) A scalingprocedure basedon the stattstical
decision threshold model has been applted to data on
brightness discrimination; the results obtained sug
gested that the transducer function is apower function
with an exponent varying above and below unity. For
individual subjects the exponent may be somewhat
greater or less than one (Treisman, 1965). (b) Complete
temporal summation is found for threshold stimuli
whose duranon is Iess than a limiting value which we
will call T (Bloch's law), and complete spatial surri
mation (Ricco's law) is found below a limiting area,
~; below these limits the threshold intensity is in
versely proportional to the duration or area of the
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stimulus: 10t = k or 10A= k, where k is a constant.
These laws apply for both absolute and difference
thresholds (Barlow, 1958); they imply that the dis
tribution of the stimulus energy over time and a.rea
has no effect on its discriminability, which could hold
only if a linear function of energy is transmitted to the
stage at which summation occurs. (c) If a succession
of flashes is given at a rate above the critical flicker
fusion frequency, then their apparent brightness matches
that of a constantluminance equal to the mean luminance
of the light-dark cycle over one period (the Talbot
Plateau law) , This appears to be the equivalent of
Bloch's law for brightness discrimination (Le Grand,
1957; Pieron, 1965). This law holds very exactly; since,
above the CFF, variation in the distribution of light
over time does not affect its apparent brightness, a
linear function is again implted. (d) Threshold and
brightness summation might be attributed to a linear
relation at the retina, with non-Imeartty beyond that
level. However, Levelt (1965a, 1965b) has studied
binocular brightness averaging and has found that for
brightnesses sufficient to allow contour forrnation the
combination of the information from the two eyes
"can be simply described as anaveragingofenergies."
For a constant comparison luminance, C, the equi
brightness curve is described by wlEI + wrEr = C, where
wl and wr are constants adding to one, and EI and Er
are the luminances of the left and right test ftelds,
Thus at the central locus where the information from
the two eyes is combined, the inputs summated are
linear functions of the light energy entering the eye.

We mayaiso note that for light signals a linear
detector is the most efficient (Jones, 1959) andRushton
(1961) has proposed that neural transmission, from
synapse to synapse, is linear. All these ltnes of evidence
support the possibility of a linear transducer function
(x4 =x3)' It is also possible that, either as a result of
individual variability, or as a result of some feature
of the experimental situation, the transducer function
may not be quite linear, power functions withexponents
somewhat above or below one occurring, and for this
reason x4 =xg·6 and x4 =x~·4 were included.

(2) Where are threshold responses determined?
~efore discussing some physiologtcal eviderice on the
form of the transducer function, it is of interest to
consider at what level the threshold response might be
selected,

It is generally accepted that the threshold is not
determined at the level of the rods (Pirenne, 1956;
Rushton, 1963, 1965a). Hecht, Shlaer, and Pirenne
(1942) proposed that at the absolute threshold a flash
of light was seen when the number of quanta absorbed
from it by rods lying within a sufficiently small area
exceeded a minimum number, such as stx, A simple
interpretation of this might be that each rod absorbing
a quantum gives rise to an impulse, andthese impulses
converge on a single ganglion cell which will only fire
when signals arrive in sufficient number, numbers of
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impulses less than this minimum having no further
effeet. The subject would then respond "Yes" only if
the gangllon eell fired. This aceount is not consistent
with the threshold model given earlier, since the crt
terion is fixed, and input values falling below the
criterion are completely lost. An experimentbyBarlow
(1956) shows that this model can be rejected. If, in
Fig. 1, the criterion, Ec' is moved tothe left there will
be a rise in false positive rate (which may be small
01' large, depending on the initial position of Ec) and a
fall in threshold, since the psychometrie function will
shift to the left, but its slope should remain the same,
This describes an expectation of the statistical decision
model . But if the threshold response depends on whether
01' not a ganglion cell fires, then values of E falling
below Ec are not recorded so that the subject can only
tncrease P(Y) by guessing. If he guesses at a given
rate, G, this will produce a corresponding false
positive rate, and P(Y) for each stimulus will increase,
This increase will be greater for the weaker stimuli, so
that the psychometric function becomes flatter stnce
the new probabtlity of positive response, P'(Y) , is
given by P'(Y) =P(Y) +G [1- P(Y) 1 . Barlow measured
the absolute threshold with the subject applying astriet
and a lax criterion; with the latter there was a con
siderable fall in threshold with little change in the
slope of the psychometrie function, and the false positive
rate increased only from 0 to 1 per cent, Thus it
appears that the absolute threshold is not a fixed
quantity determined by the firing threshold of the
ganglion cell , Information provided by quantal absorp
tions below the critical number is available to deter
mine positive responses if the subject lowers his
criterion.

However, this does not altogether exclude the gan
glion cell as a possible site of thresholddetermination,
if we allow that its firing threshold could be variable
and subject to centrifugal control. Rushton (1963,
1965a) places the site of threshold determination at
this level: he relates the difference threshold to the
level of firing of rods in the receptive field converging
on a single ganglion cell caused by the background
stirnulation, He ealls this the "summation pool" and
proposes that threshold is reached when the input to
the pool arising from the stimulus inerement is
sufficiently large as eompared with the rate at which
signals resulting from the background excitation arrive.

However, there is evidence that the outputs of differ
ent ganglion cells may contribute to deterrhining the
threshold response. There may be interference 01' they
may combine to determine a positive response when
individually they would have been insufficient: (a) "Par
tial areal summation" refers to a fall in threshold as
the stimulus area is increased beyond the limits of
Ricco's law, thus bringing in new receptive fields.
(b) Pirenne (1962a) has shown that the threshold for a
test flash 0.10 in diameter, falling in the center of a
black field 20 in diameter, is raised by presenting a
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weak luminous field in the periphery, and this effect
is not due to scattered light; the luminous surround
falls almost entirely outside the summation pool yet
raised the threshold. (c) The threshold for a test
flash may be raised by a second flash presented not
only outside the summation pool but 50 msec. later
(Alpern, 1965).

It is possible that interaction between ganglion cells
at the retina could explain these effects, and Rushton
(1965b) suggests that the criterion for the "summation
pool" is deterrnined by a larger retinal "adaptation
pool." However, when a stimulus is presented to co1'

responding locations on the two eyes the threshold is
lower than when it is given to one eye alone, When
the two stimuli occur at an interval greater than about
100 msec, the fall in threshold can be accounted for
by probabiltty summation: the increased rate of detec
tion is that which would be given by combining two in
dependent detectors. But when the stimuli are given
at shorter intervals the fall in threshold is greater
than can be accounted for by this, indicating that mes
sages from the two eyes, each of which would be in
sufficient by itself to deterrnme a positive response,
may be combined and then exceed the criterion (Matin,
1962). The interaction between the eyes in dark adapta
tion also supports this conclusion (Wolf & Zigler, 1955).

Thus, as with brightness averaging (Levelt, 1965a,
1965b), it appears that outputs from the two eyes are
conveyed centrally, and that they are there summed
and cornpared with the criterion. That the threshold
response is selected centrally is also suppor-ted by the
evidence that stimuli in one modality can affect thresh
olds in another (Tr'eisman, 1964b). It follows that our
overall transducer function, E = f(I), must be taken to
cover not only transformations occurring in the retina
but also the message in the optic nerve.

(3) The transducer function: further evidence. At the
retina a large number of receptors may converge on a
ganglion cell, from which arises a single optic nerve
fiber. We have noted that Ricco's law applies up to a
limit, ~, which we can consider as a minimum sampling
area for the visual system. It is likely that this can be
identified with the central area of the ganglion cell
receptive field, in on-center fields the area within
which stlmulation is excitatory (Pirenne, 1956; Glezer,
1965). We will also take T, the Iimit to Bloch's law,
as the sampling moment 01' shortest duration over which
the input to the retina is sampled (Crawford, 1947;
Barlow, 1957; Stroud, 1955; Matin, 1962; White, 1963;
Shallice, 1964; Pieron, 1965). In the model, as it has
been described above, we have limited our consideration
to the case where the area of the increment (A2)
coincides with that of the background (All, which is
assumed equal to ~; similarly we have taken t 2 = t1 = T •

It can also be applied to the case where A2 = ~ and
t2 = T, but the background to which this increment is
added is larger and of longer duration; here, as a
simplification, we assume that when the increment is
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given the visual system correctly samples the retinal
area and duration occupied by it to determine the value
of the central input E(x5) on that trial, and that the EI
distribution describes the inputs which a.re given by
"sampling units" of the same area and duration as
the increment, but excited by intensity 11 alone. The
effect of varying A2 and t2 is examined below, but,
at the moment, we are concerned with the model as it
might apply when only a single receptive field provides
the information which determines the threshold re
sponse, In this case, what neural changes take place
in the visual pathway?

Since the input to a receptive field is summed at the
ganglion cell we can consider two tr-ansductions: that
involved in conveying the information generated by
quantal absorptions to the ganglion cell, and the trans
formation of this into the message in the optic nerve
fiber. In considering the neurophysiological evidence
there is a serious difficulty, over and above that arising
from the paucity of relevant Information. This is that
the transducer functions we are concerned with in the
model may correspond to a succession of physiological
transformations. Consider an input, Ai' at a point A in
the nervous system which is conveyed to a point B,
where it gives rise to an output, Bo' The overall trans
ducer function might be linear, Bo=Ai; but this could
correspond to an initial logarithmic transformation,
giving a message, log Ai' which is conveyed along the
channel, followed by a final exponential transformation,
B = elog Ai = A.. (Or we might have B = en log Ai = AP.,o 1 0 1
giving an overall transduction described by apower
function.) In this case, neurophysiological evidence
might reveal the logarithmic relation between the
message in the channel and the original input, but this
would be misleading if mistaken for the overall trans
ducer function. A related difficulty is that a physio
logical observation may refer to the "wrang" neural
coding and thus give misleading information about the
function observed, In the model we have assumed that
the sensory message consists of a number of nerve
impulses, the variance of each message, a~, being
constant, and the impulses combining additively to give
E; but, if this model applies, it might prove to be peak
firing rate, minimum inter-pulse interval or some other
aspect of the neural response that has the properties
assigned to s in the model, rather than average firing
rate. If we select the wrang neural correlate of the
message, the function describing it will be correspond
ingly misleading,

(i) Transformations in the retina, The most im-
portant neurophysiological evidence at this stage is the
observation that when the discharge from single ganglion
cells in the retina of the cat or frog is recorded, and
a constant threshold or suprathreshold discharge from
the ganglion cell is used as criterion, then Riccos
law (complcte spatial summation) is found to hold as
the area of the stimulus is varied, provided it falls
in the central excitatory region of a receptive field
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(Hartline, 1940; Barlow, 1953; Barlow, FitzHugh &
Kuffler, 1957). Thus for different stirnulus areas the
total quantity of light, Q, required to evoke a constant
response from the ganglion cell remains constant, and
this occurs at levels of illumination at which each
receptor must absorb a number of quanta. The im
plications for some possible transformations describing
the transmission from receptor to ganglion cell will
be briefly constdered,

(a) Logarithmic transduction, If we describe the out
put from a single receptor cell (as it is received at the
ganglion cell) as 0r' and assurne that this receptor
absorbs Q quanta, within a sufficiently short period
of time, then the output which reaches the ganglion
cell might be given by 0r = log10Q {Rushton, 1961).
Thus if Q =100 quanta, we would have 0r = 2, Let us
suppose that this quantity, acting on the ganglion cell,
is just sufficient to cause it to fire, Le ,; the ganglion
cell-firing threshold i s equal to 100 quanta when these
are absorbed by one receptor , If the incident quanta
are now spread evenly over n receptors (n> 1) then
the output from any one of these receptor-s would be
0r =10g(Q/n), and the total effect on the ganglion cell
will be given by ~Or=n log (Q/n). If we must have
~0r = 2 to reach threshold, what quantity of light will
be needed to evoke the constant ganglion cell response
as we vary n? Rlccöts law implies that the total
quantity of light, Qn' required when n receptors are
stimulated, is always equal to Q, the quantity required
for 1 receptor. But if we assurne that 0r = log Q and
take ~0r = 2 as the threshold input to the ganglion
cell, then we would have for n=l, Q=100; for n=2,
Q2 = 20 (since 2 log (20/2) = 2); for n =4, Q4 = 12.65;
Q5 = 12.56; QS =14.22; Q10 = 15.S5; Q20 = 25.19; Q50 =
54.S3; Q100=104.7; Q1000=1005. These figures are
meant only as an illustration, but they serve to show
that a logarithmic transduction at the retinal level
would not be compatible with Ricco's law, We see that
initially as n increases instead of simple complete
summation there is marked enhancement, Qn' the total
quantity of light required, falling to a minimum for
5 receptors. But then, as n increases further , Qn also
increases and summation soon falls to a verylow level,
with threshold intensity (Qn/n) almost constant. The
minimum appears later for .higher threshold values
but the general picture remains the same: if we
take ~°r = 6 as the critical value required to evoke
a given constant response from the ganglion cell we
have for n = I, Q =106, followed by marked enhancement
as n increases. The minimum is at n = 14, when

Q14 = 37.5. Then there is the same rapid disappearance
of summation: Q100 = 114.S, Q1000 = 1014.

It appears that a logarithmic function is difficult to
reconcile with experiment. The Initial enhancement
could well have been missed, since it covers so small
an area, but the rapid disappearance of summation
beyond this small area is inconsistent with the finding
that Ricco's law holds in the central receptive field.
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Glezer (1965) believes that "the excitation is ... di
rectly proportional to the logarithm of acting light"
and recognizes that "If this is the case, then increase
of stimulus area at constant light intensity must cause
an increase of response, i.e, an enhancement." He
suggests "Then the law of full summation ... can be
explained by the inhibitory process that arises with the
spatial gradient .... The Inhibition arising in the
whole receptive field but with different strengths at
different points . It is more strongly pronounced in the
periphery of the field." It Is possible to conceive an

'ase of inhibition as we pass from the center of
the 'ield (assuming that our stimulus is always at

center of a field) which would exactly counter
balance the enhancement produced by the logarithmic
transforrnatlon, so that the excitatory and inhibitory
effects together would produce an overall linear trans
duction from receptor to ganglion cell , But if this were
the case it would appear rather surprising that the
slopes of complete summation curves are so similar
while the slopes of partial summation curves show
considerable variation (Barlow, 1958), and since lateral
inhibition decreases during dark adaptation (Barlow,
FitzHugh, & Kuffler, 1957) we would expect dark adapta
tion to alter the balance between the two processes
and so "reveal" the underlying enhancement, which
does not happen, But the major difficulty with this
a.rgument is that it rests on the assumption that the
enhancement is shown for all values of n, which, as
we have seen, is not the case , Even if inhibition
ceased sharply outside the small area of enhancement,
the logarithmic function would still produce the rapid
disappearance of summation beyend this area, rather
than Ricco ts law, so that this suggestion gets us no
further , Nor would it explain why, if we vary the dura
tion of the stimulus, we do not observe short-term
enhancement, followed by rapid disappearance of sum
matten, which, rather than Bloch's law, thelogarithmic
transduction would produce ,

(b) 0r _= Q1.4 . lf Q = 100 quanta are absorbed by a
single receptor, this transduction would give 0r = 63!.
If we take this figure as the threshold crtterton,
and vary n, the number of receptors on which the light
falls, then at threshold 631 = ~0r =n(Qn In)1.4. It fol
lows that we would get for n = 1, Q1 = 100; Q2 = 122;

Q10=192; Q100=373. There is no area of complete
summation at all; Ricco's law should never be shown.
Similarly, if n is taken to refer to thEf temporal
parameter, Bloch's law would not be found.

(c)Or=QO.3 lf Q=100 quanta are absorbed by a
single receptor and we take 0r=1000.3=3.981 as the
threshold criterion, then, as we increase n we get, for
the threshold quantity of light, for n = 1, Q = 100;
Q2 = 19.86; Q10 = 0.46. Enhancement begins immediately
and is marked for all values of n; Ricco's law and
Bloch's law should not be shown. Transductions much
closer to linearity but with exponents still less than
one, all show a considerable degree of enhancement.
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For example, for 0r =QO.9 we would have Q1 = 100,
Q2 = 92.6, Q10 = 77.4, Q100 =60.0.

(d) The linear function; O, = Q. For any value of
n, ~0r =n(Q/n) = Q. Thus as area (or time) increases,
a constant value of Qn will give a constant summed
effect on the ganglion cell, and Ricco's law will hold
until the boundary of the central excitatory field is
reached, We see that this only occurs if weassume
a linear transduction, and since Ricco's and Bloch's
laws are such reliable experimental findings, and
occur at intensities at which each receptor must
absorb many quanta , it follows inescapably that a
plausible model must assume linear transduction from
receptor to ganglion cell , For this reason, taking the
model as we have given it above as a description of
the succession of events that might occur in a single
receptive field and its central connection, the different
transducer functions were applied not to the quanta
absorbed by each receptor but to x3' so that the
latter represents a sum of linear effects of all the
quantal absorptions occurring in the receptive fteld.

(ii) The ganglion cell output. The rate of firing in
the optic nerve fiber of the horseshoe crab is approx
imately logarithmically related to the total light energy
acting on the ommatidium (Hartline, 1934; Rushton,
1961; Ratliff', 1965), but there is Iittle evidence on the
form of the optic nerve discharge in the mammalian
retina.

However, it Is of interest to note that FitzHugh (1957)
recorded discharges from cat ganglion cells when brief
near-threshold flashes were presented against back
grounds of weak or zero intensity to which the eye
was adapted. He found that the relation between the
number of impulses recorded from an optic nerve
fiber during a crrtical period following a flash, and
the intensity of the latter , was usually described by a
power function, The range of mean exponents for
different cells examined was 0.6 -1.2.

This result would accord with a linear overall
transducer function, E =I, if we are correct in supposing
that the sensory message is coded as a number of
nerve tmpulses , In view of the diffäculties in relating
neurophysiological observations of this sort to the
model discussed above, it seemed desirable to examine
the implications of a range of possible transductions
which might relate the summed linear function of
absorptions (modifiedby adaptation) acting on the
ganglion cell to the final effect at the locus at which
the threshold response is selected.

(4) Some predictions from the model. The model
has been designed to specify all the major steps which
might lie between presentation of the stimulus and
selection of the response (assuming that the selection
process completely determines the overt response)
with sufficient precision to allow predictions to be made
about the size of the threshold. The variables of
particular interest are the background intensity, 11,
and the area (A2) and duration (t2) of the stimulus
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any of these three variables will increase g(Il +In)'
(since g = fAt) , and when this quantity is large the
correlated component of the variance of E, which arises
from the sensory noise, be comes predominant and
equation (1) approximates to

the linear generalization of Weber's law. Thus the
model predicts both the square root law found ex
perimentally at low intensities, and the continuous
transition to the traditional Weber function which is
observed at high intensities.

If we assume C adaptation, and 0< r< I, equation (2)
remains unchanged, but equation (3) becomes

increment.
We have seen that ~I=I2-I1' 12 depends on Ec'

and Ec=E1 +zaE (see Fig. 1). It follows that the
Weber function, the relation found between 1\,1 and 11
as the latter varies, depends on the overall transducer
function relating E and I, and on the relation between
a E and EI' For the linear transducer function and N
adaptation, the expected value of EI is given by
EI =sg(Il +!u), which is the product of two variables.
In general the variance of AB, where A and Bare two

independent variables, isgivenby1\2 a~ +"B2;aÄ+ al,. a~.
Since sand g(II +!u) are independent and the variance
of the latter is described by a Poisson distribution,
if we take the mean correlation between pairs of sen
sory messages to be r=+I, then the variance of EI is
given by

(3)

(4)

(6)

(5)

(7)

z AY2 / 2(1 +1 )Y2
1 1 1 n

fY2 A2 12
~I~ -----

Thus a low value of c or r will imply a low value of
~I if 11 is large, but will have little effect on the
threshold when 11 is small. One consequence is that
if ei ther c = 0, as in M adaptation, or r = 0, the term
in equation (1) which bulks large when g2(11 +!u)2 is
large, and so determines the transition to Weber's
law (equation (4» disappears, and the square root law
will now hold for the whole range of values of I.

We can discover what the consequence of varying the
area or duration of the increment will be by writing g
in full in equation (1). The case we have considered
so far is that in which the increment coincides with a
"sampling unit" of area ee and duration t, but if we
vary A2 or t2 other cases will arise. The simplest
assumption to make is that in order to compute the EI
distribution and so the best location of Ec' when the
background is illuminated by 11' the visual system
records the values of E given by samples whose area
and duration equal those of the increment, (t.e., it
takes AI = A2 and tl = t2) when A2~ ec and t2 ~ r , When
A2 < ce the visual system must, of course, take Al = ~,

the minimum sampling area, and similarly when
t2 < r , t1 = r .

Since Ec - EI = s [gl(11 +!u) + g2~1] - sgl(ll +!u) =
sg2~I = za E (see Fig. 1), we can write equation (1) as

This approximates to

when gl(11+!u) 1s small, and, when this quantity is large,
to

(2)

where v= as/s. This relation contains four parameters,
z, g, v, and !U, but independent procedures for esti
mating them can be designed (Treisman, 1964a).

If v2< < I, which is plausible, then for g(Il +!u)
small the function will approximate to

We can consider the first term on the right as deter
mined by the sensory noise, the second by the physical
noise.

Since E2 - EI = Ec - EI = z GE= sg(I2 +!u) - sg(Il +!u) =
sg~I, it follows that the Weber function is given by

This is the square root law which has been predicted
from the quantum fluctuations of light (Rose, 1948;
Barlow, 1957). Equation (2) shows that when the number
of quanta absorbed is small the threshold is mainly
determined by the effects of the physical variability of
light, and the "dark light" due to spontaneous firing,
but the effect of the sensory noise arising from the
variability of central transmission of messages is
negligible. This accords with the relatively elose ap
proach of brightness discrimination thresholds at low
intensities to the limits set by the physical nature of
light (Hecht, Shlaer, & Pirenne, 1942; Crouzy, 1961).

The square root law has been found to hold for low
intensities of I but not for high (Barlow, 1957). "When
the test stimulus is of long duration or large area, and
when the background intensity is high" (Barlow, 1957)
"the expertmental points deviate from the appropriate
theoretical curve and tend to obey the Weber law
instead" (Barlow, 1958). The reason for this is im
mediately apparent from equation (1); an inciease in
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Log!

Fig. 2. The Weber fraction, 1'11/11, is plotted against log 11. The
transducer function was E=log I, and r=1.0 or 0.2. The Weber tune
tion is sbown for three conditions of adaptation, N, P and C.
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then decrease from 0.5 to zeroasI1,A2 or t2 increase,
This decrease in summation is not attributed to the

classical assumption that some decline in the efficiency
with which the stimulus is processed occurs as its
duration (er area) is increased and we do not need
to suppose that the visual system fails to extract
any further information when the stimulation exceeds
an arbitrary "utilization time" (Pieron, 1965) or
limiting area, Instead we assurne that whatever the
area or duration of stimulatton maximum use is made
of all the information avaflable , Complete summation
reflects the existence of a minimum sampling time.
For intervals greater than r the exponent of t2
declines because of the limits on discrimination imposed
by the variability of the central effect of the stimulus.
Initially the Poisson fluctuation of light predominates
in determining this notse, giving a square root law;
but because positively correlated sensorynoise becomes
predominant when the total input from the stimulus is
large, as the intensity, area or duration be come high
the exponent declines from 0.5 to O.

The predicted forms of the Weber function, and of
the functions for spatial and temporal summation, agree
with many experimental findings. However, these pre
dictions are based on a limited set of assumptions,
such as that E=I and r=+1.0; the computations pre
sented below were designed to show howfar the predic
tions would be maintained when the main assumptions
of the model were varied.

Fig , 3. As Figure 2, except that E=11 .'1. The N adaptation curve
is here shifted upwards 4 units, and the P curve is shifted up 2
units.

111. The form of the Weber. function.
Values of 1'1 I were computed for different intensities

of 11, conditions of adaptation, transducer functions,
and levels of correlation. Some of the resulting Weber
functions are shown in Figs. 2, 3 and 4. In these the
Weber fraction, 1'1 I/lI' has been plotted against log 11,
as is often done in practice. In each figure Weber

.functions are shown for N, P and C adaptation, and for

Ol.
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Equations (6) and (7) become equations (2) and (3)
when Al =A2 and t1 =t2.

Let us suppose that II' Al and A2are constant and that
t2 varies. For t2< t , t1 = r , so that all terms on the
right-hand side of equation (5) will be constant except
t2, and the equation can be written tlI=k/t2, or
tlIt~=k, where k is a constant. This is Bloch's law
of complete temporal summation , It is determined by
the assumptions that there is a minimal period below
which reduction in the duration of the increment does
not reduce the duration of background noise sampled
(Brindley, 1960), and that the effects of quantal ab
sorpticns falling within the minimum period do not un
dergo any non-linear transformation before they are
summed,

For t2 > r and variable either equation (6) or equa
tion (7) may hold. Since now t1 =t2' equation (6) will

simplify to tlI=k'/t~/2, or tlIt~/2=k" where k' is

a constant. Thus for durations of the stimulus increment
which exceed the limit for complete summation the
difference threshold (or absolute threshold, 10 , ifI1 = 0)
is now inversely related to the square root of the
duration of the stimulus increment. But this relation
holds only when gl(11+In) is small , If 11 Ör Al = A2
is sufficiently large, or, if these are small, when
t1 = t2 becomes large, the relation between threshold
and duration will approximate to that described by
equation (7). As t1 =t2, aIl the terms on the right
hand side of this equation are constants, so that it
can be written tlI=k" or tlIt~=k'" where k" is a
constant: summation is no longer shown, Thus the
model predicts a transition from complete summation
to a square root law, and that the exponent of t2 will
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r = 1.0 and r = 0,2. The three transducer functions shown
are E=log I, E=I1.4 and E=IO.3. The results for
E =land E =1°. 6 were intermediate between those
shown in Figs. 3 and 4. The curves in Figs. 3 and 4,
but not in Fig. 2, are staggered, The effective zero
for each curve is shown by a dotted line.

We see that all the power functions examined give
Weber functions which appear acceptably similar to
those obtained experimentally, for all the combinations
of adaptation and correlation examined, but this is
not the case for E = log 1. For the logarithmic trans
ducer function, as for the power functions , the thresholds
fall as the degree of adaptation increases and as the
level of correlation decreases, but, unlike the power
functions, after first falling to aminimum, the Weber
fraction shows a continuous rise over the remaining
range of values of 11, A rise in the Weber fraction ,
starting at a high intensity level, has sometimes been
found experimentally (Steinhardt, 1936; Holway, 1937;
Pirenne, 1962a), but it is suppressed if precautions
are taken to ensure that light adaptation is fully main
tained when 11 is high. Adaptation was, of course,
maintained at a constant level for each curve in
Fig. 2. Aguilar and stiles (1954) found that the rod
mechanisms became saturated (Le.; AI I I rose) at high
levels of stimulation. But this was a phenomenon of
sharp onset occurring at a level of illumination at
which we can suppose discrimination would normally
be produced by the cones, and for a considerable range
of intensities below this a linear Weber function was
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shown, Although our results do not immediately ex
clude the logarithmic transducer function they suggest
that it is unlikely to give a more or less acceptable
Weber function unless a high degree of adaptation and
a very low level of correlation can be assumed,

Th3 effects of threshold size are shown more clearly
in Flgs. 5 and 6, which give AI for each transducer
function, r=1.0, 0.6 or 0.2, andN, PorCadaptation.
In Fig. 5 ßI is in each case the average for 11 =101.5,
102, 102. 5 and 103 quanta/sec. deg.2 (these all gave
similar values, at or close to the absolute threshold) ,
and in Fig. 6 11 =109 quanta/sec. deg.2.

We saw earlier that, with the linear transducer func
tion, an increase in the degree of adaptation (a fall
in c), or reduction in the level of correlation, would
give lower thresholds for 11 high (this follows from
equation (4)), but would have little effect for low values
of 11, The results in Fig. 5 accord with this: the values
of AI are very similar for the three degrees of cor'
relation and the different types of adaptation when
E=I1.0 (and when E=I1.4). However, effects ofthese
conditions are shown when the transducer function is
apower law with a small exponent (E=IO•6and E=IO•3)

or is logarithmic. Figure 6 shows that changes in the
degree of adaptation or correlation produce very much
greater differences in AI, both absolutely and relatively,
at high values of 11, These differences are shown for
all the functions but are greatest for power laws with
low exponents and the logarithmic function.

The usual plot of the Weber fraction, AI/I, against
I or log I, is not wen adapted to show a transräon
between the square root and linear segments of the
Weber function, as illustrated by Fig. 7, which gives
calculated Weber functions for E = log I, E =1°. 3 and
E=I1.0, for N adaptation and r=O. Zero correlation
will produce a square root law for all values of I,
but the Weber functions for 10.3 and 11. 0 shown in

this figure are very similar to those in Figs. 3 and 4,

600 l4 1O 06 OJ log 1'4 HJ 0-6 03 log 1'4 HJ 06 0 log.
Function

Fig. 5. Values or A I (in quanta/sec.deg. 2» averaged Ior 11=
101.5, 102, 102.5 and 103 quanta/sec.deg. 2 are shown Ior each
transducer runction, Ior N, P and C adaptatton, and tor r=1.0, 0.6
andO.2(the values or rare shown riext to the correspondtng curves).
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Fig, 6, ~ I (in units of 109 quanta/ sec.deg. 2) for I ~ 10 9 quanta/
sec.deg. 2 is shown for each transducer function, for r~l.O, 0.6 and
0.2, and for N, P and C adaptation. The values for the log tunenon
are shown separate ly.

and give the deceptive appearance of according with
Weber's law when I is high. lt is of interest that
even when r = 0 the logarithmic function shows a low
minimum followed by a continuous rise for values of
1 above the mmimum,

The relation between threshold and intensity is shown
more elearly when log ~ 1 is plotted against log 11'
This has been done in Flgs. 8 and 9, which confirm
that all the power laws examined give Weber functions
whose general form is in elose agreement with the
usual experimental results (Aguilar & stiles, 1954;
Barlow, 1957). The initial horizontal segment is mainIy
determined by In' the dark light, and is at the level
of the absolute threshold. This is followed by a zone of
transition to which a square root law can be more or
less satisfactorily fitted; as 1 increases the exponent
of the Weber function (the slope in log-log coordinates)
increases, until finally the function is linear and
Weber's law at last applies. The transitions from one
segment to the next appear fairly sharp for E =11.4
or 11.0, but are more gradual for transducer functions
with a low exponent or the log function, Low values
of rand c both prolong the square raot segrpent and
so delay the transition to Weber's law, which accounts
for their effect in reducing the threshold for high
values of 11, The transition also tends to occur earlier
if the exponent of apower function is low.

The logarithmic function gives a similar curve.
Above the absolute threshold there Is a fairly rapid
transition from the square root segment to a slope
which in this case exceeds one..For r= 1.0 these
slopes are 1.24(N) and 1.20(C), for r=0.2 they are
1.15(N) and 1.12(C). These curves are clearly dif-
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ferent from those of Aguilar and Stiles (1954).
Barlow (1957) takes as an estimate of In the value

of I which corresponds to the point of intersection
of the horizontal line through the absolute threshold
values and a straight line fitted to the Initial ascending
limb of the Weber function, plotted as log ~ I against
log I. Figures 8 and9 show that this will give satts
factory estimates for power functions not too far
removed from linearity, but would lead to constderable
underestimation if a logarithmic function or apower
transducer function with a low exponent held,

Figure 10 shows functions for E = log I, 10.3, 11.0
and 11.4 when r=O. We saw earlier that if the trans
ducer function is linear, zero correlation gives a square
raot .law for all values of I, and this is shown for E = I
and also for E =11.4. Even with zero correiation, how
ever, it appears that apower function with a low
exponent will depart from the square root law: for
E = 10.3 the exponent of the corresponding Weber func
tion is 0.84 when lis Iarge , For E = log I the slope of the
Weber function, though less than was shown with positive
correlations, is still greater than one when I is Iarge
(it is 1.05). In contrast with r = 0, computations for
r=+O.OI (N adaptation) showed that all the power
transducer functions gave linear Weber functions at
high values of I; the logarithmic transducer function
gave a slope a little greater than one,

The effects of the five different adaptation assumptions
are compared in Fig. 11 for E = I and in Fig. 12 for
E=IO.3, with r=0.6. When the transducer function is
linear N and F adaptation produce identical thresholds.
With C adaptation the linear segment of the Weber
function starts later and, as implied by equation (4),

Fig. 7. The Weber funetions for r~O and N adaptation. ~ I/I is
plotted against log I for E ~ log I (this curve is displaced 'I units
upwards), E~10.3 (dtsplaced 2 units upwards) and E=I1.0.
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Fig. 8. Log L'1 I plotted against
log I for the 5 transducer functions
and N and C adaptation, with r=1. O.
The power function exponents are
shown next to the corresponding
curves. Each successive curve
above the lowest is shifted upwards
2 log units. The three continuous
lines fitted to each curve (by eye)
have , from Ieft to right, slopes of
0, 0.5 and 1.0. In each case. the
Iirst two lines were made to inter
sect at log I = 3. The dashed liDes
fitted to the log functions have
slopes of 1.24 (N adaptation) and
1.20 (C adaptation).

it is displaced downwards, as compared with N adapta
tion, by log c (here c = 0.05 and the displacement is
therefore 1.3 log units) , It appears that the effect of
the "adaptation level" included in P adaptation is
negligible: the curves for P and C adaptation were so
similar that they could not be plotted separately.
Finally, as expected, M adaptation gives a square root
law for all values of I. The results are similar when
E = 10.3 (see Fig. 12), the main difference being that

P adaptation now falls between N and C adaptation,
tending towards the latter as 1 increases.

We have now seen how the predictions of the model
vary as we alter our assumptions about adaptation,
the transäucer functions, and levels of correlation, The
area and duration of the stimulus increment are two
further variables which affect the threshold, and in the
next section we shall examine the effects of variation
in these.

19

17

15

2 4 6 8 10 2
Log I

4 6 8 10

Fig. 9. As Ftgure 8, except that
r""o.2. The dashed lines fitted to the
log functions have slopes of 1.15
(N adaptation) and 1.12 (C adapta
tion).
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Fig. 10. Log I'>. I is plotted against log I for 4 transduc er tune
tions (E= log I; 10.3; 11.0; 11.4), for r=O and N adaptation. Each
successive curve above the lowest is shifted upwards 2 log untts.
The continuous lines were fitted by eye and have, from the left,
slopes of °and 0.5; thev were made to intersect at log I = 3. The
dashed line fitted to the curve for E~IO.3 has a slope of 0.84, and
that fitted to E~log I has a slope of 1. 05.

7~

2 3 4 5 6 7 8 9 10
log I

IV. Spatial and temporal summation.
Predictions were made earlier about the threshold

changes that would result when the duration and area
of the stimulus increment are varied. Though it is
so universally used that it could not be abandoned, the
term "summation," used to describe some of these
effects, is unfortunate, since it is often taken to refer
not only to an ooservatton, but also to an explanation
for it, Thus the transition from "complete" to "partial
summation" is sometimes understood to imply the
hypothesis that when the stimulus area or duration are
large a proportion of the quantal absorptions ar-e in
some way "lost" or not taken account of, and that
this is why the total quantity of light required to r-eacl,
threshold rtses, This is not the explanation the present
model provides. We take it that complete spatial and
temporal summation result from the existence of a
minimum sampling area, probably based on the receptive
field, and a minimum sarnpling duration, As we saw,
this led to Bloch:s law, !'>.l t~ =k (or log 1'>.1 = log k -log t2)
for t2~ T; Ricco's Iaw for spatial summation, log 1'>.1=

log k -log A2, can be i:imilarly derived. For t 2 > T the
square root law, 'I'>.It~ 2=k', and the transition to zero
summation, I'>.Itg=k", are consequences of the limits
to discrimination imposed by the positively correlated
sensory notse, and its increasing importance in deter
mining I'>. i or the absolute threshold as gl(11+ In>
increases. Thus the same reasons which explain the
change in the exponent of (1+ In) from 0.5 to 1.0 as
1 increases, when we study the Weber function, also
ac count for the decrease in the exponent of t2 (or A2'
to which an exactly similar argument applies) from
0.5 to 0, as t2 increases. For both the Weber and
summation functions the change in exponent is simi
larly expedited by an increase in 11, A2 or t2.
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Fig. 11. Log 1'>.1 is plotted against log
I for E=I1.0 and r=O.6. N represents no

adaptation (x3=x2); F represents frac
tional adaptation (x3=0.005x2); P is
partial adaptation (see text); C is com

plete adaptation (x3=x2-x1+0.05X1) and
M is adaptation to the mean (x3=x2'"'x1 ).
(Xl is the mean number of quantal ab
sorptions per trial, x2 is the actual num
ber of absorptions on a given trial, and
x3 is the number of absorptions which
contribute to determining the magnitude
of the sensory message generated after
adaptation). From left to right, the
straight lines, which have been l"itted
by eye, have slopes of 0, 0.5 and 1.0.
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Fig. 12. As Figure H, except that E=IO.3.
No Iines have been fitted to the results for
P adaptation (indicated by open trtanglesj.
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Fig. 13. Data obtained by Barlew (1958). Log ~ I (or log 1
0

) Is
plotted against log t for a small (0.011 deg. 2) and a large (27.6
deg. 2) stimulus area at live different background Intenstttes. The
straight Iines have a slone ot -1 and continue up to 0.1 sec. Inten
stties are given in quanta(507 m!') /sec.deg. 2, durations in seconds.
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increase log ~1 by about 0.96 log units, if equation (7)
appltes ,

These predicted threshold changes agree fairly well,
though not exactly, with those shown in Fig. 13, and,
as we would expect, the differences in the figure de
crease as 11 increases , We could not expect to predict
the differences very accurately, not only because we
have had to assign a somewhat arbitrary value to ",
but also because ee is not constant. A second notable

, .;;: ~0···-
• 3;65 '. "~ 0'011 \s.> -eo ~. • • •

Stimulus., " ~ •
<, ~ •••

27,6des.> • • •

Figure 13 shows temporal summation data obtained
by Barlow (1958). They appear- to be in fuH accord
with the predictions from the model. As log ~1 is
plotted against log t, a slope of -1 corresponds to
complete summation, -0.5 to the square root law
(log td =log k' - 0.5 log t2), and a zero slope indicates
that there is "no summation. 1I Examining those por
tions of the curves which lie beyend the range of com
plete summation, we see that for any value of t2
the slope tends to be flatter if 11' the background in
tensity, is high and if the stimulus area is large; and,
of course, as t2 increases the curves flatten out.
Corresponding effects are shown by spatial summation
curves (Barlow, 1958; Glezer, 1965). Two further
features of the results in Fig. 13 are worthy of note.
First, the thresholds are uniformly lower for the
large stimulus area (A2=27.6 deg.Z) than for the
small (A2=0.011deg.

2). This would be expected when
either equation (6) 01' (7) applies (the values of 11 and Az
determine whether one 01' other 01' an intermediate
form holds for a given range of t2). Equation (6) con-

tains the term A~/2/A2' When A2 is large A2=A1.

and this term is small; thusforA2=27.6deg.
2 A~/2/Az

=1/A~/2=0.19. When A2 < cc (we will take 0.1 deg. 2

as a reasonable value for ee (Barlow, 1958)) we get a
large value for AF21A2, which becomes ee

1/21A2 =
0.1 1/ 2/0.011=28.8. Thus the change from the large to
the small value of A2 would cause an increase in
log ~1 of the order of 2.18 log units, if equation (6)
applies.

Equation (7) contains the term AllAZ' When A2 is
large. AllA2 = 1. For A2 < cc this term becomes larger:

ce I Az= 0.1/0.011 = 9.09. Thus the decrease in A2 should
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Fig. 14. Log ß I (log I , when 11=0) is ploited against log t
(seeonds), for E=1og I; E=id'3; E=I1.0; and E=i1.4. For each trans
dueer funetion eurves are given for two values of A2: 0.01 deg.2 and
30 deg. 2; two levels of eorrelation, r=O and r=0.5; two values of
11: 0 and 10 8 quanta/ sec.deg. 2; and C adaptation. For tz.:S7 eontin
uous straight Iines with a slope of -1.0 (Bloeh's law) and for other
values of t2 Iines with a slope of -0.5 (the square root law) have
heen fitted by eye. The dashed line fitted to one eurve for E~10.3

and 11=0 has a slope of -1. 7. Differenee thresholds are represented
by eircles, and absolute thresholds by squares.

(2) For each of the N summation units, the actual
number of quantal absorptions on the given trial, x'2'
was taken as a variable from a Poisson distribution
with mean x'l' (For x'1>100 the normal approximation
to the Poisson distribution was used.)

(3) For each of the N summation units, the number of
absorptions which would be effective after adaptation
had operated was calculated, Since C adaptation was

assumed, this was given by x'3=x'2 -x'1 +0.05x'1'
(4) We now have N values of x'3 which can be taken

to represent the linearly summed effects of the quantal
absorptions acting on each of N ganglion cells. The
number of sensory messages generated by each ganglion
cell is determined by the transducer functlon, The
selected transducer function was applied to each of the
N values of x'3 to give N corresponding values of x'4'
the number of nerve Impulses generated by each ganglion

feature of the results in Fig. 13 is that r decreases
as A2 or 11 increase, and this parallels a similar
effect of 11 and t2 on ~, which can be treated as
constant only as a first approximation,

These changes in ~ and r (Keller, 1941; Barlow,
1958; Glezer, 1965; Pieron, 1965) do not follow from
the model which has been presented here, but require
some additional explanation. They have led Treisman
(1964a) and, in more detail, Glezer (1965) to suggest
that ec and r may be controlled by feedback processes .
These may serve to prevent the total output of a
"sampling unit," ioe., a central receptive field taken
over a single sampling duration, becoming unduly high;
the output of a sampling unit is a function of f cc ,(11 +In)
and so will fall or rise if the minimum sampling area
or duration decreases or increases. An increase in 11
or in Al might reduce ce by increasing the level of
lateral inhibition; it has been shown that this falls
during dark adaptation (Barlow, FitzHugh, & Kuffier,
1957) .

Although the predictions agree well with experi
mental spatial and temporal summation curves, they
were derived for a limited set of assumptions, such
a.s a linear transducer function and r = +1.0. Thus it
seemed of interest to compute summation curves for
different combinations of parameters, and so the
program given above was modified for this purpose,

The computer was made to calculate the absolute
or difference threshold for values of t2 from 0.01
to 3.20 sec. for two values of background intensity,
11=0 or 108 quanta/sec. deg.2, two values of A2,
0001 deg.2 or 30 deg.2, two levels of cor-relation,
r=O or 0.5, and C adaptation, We saw that r and ~.

decrease as 11 increases, not as a consequence of the
present model but for reasons requiring aseparate
explanation. However, cc was treated as constant, being
given the value ec = 0.1 deg.2 r was made equal to
0.1 sec. for 11= 0, and 0.05 sec. for 11 = 108. These
values Iie within the range found experimentally (Barlow,
1958). The program was modified so that, given a set
of stimulus parameters, the computer first deter
mined the corresponding number of "sampling units."
The number of sensory messages generated by each
sampling unit was then calculated, and the outputs were
assumed to correlate and sum as before. In detail:

(1) As before it was a.ssumed that Al = A2 or ce ,

whichever is greater, and t1 = t 2 or r, whichever is
greater. A sampling unit is an area ce taken over a
time r, and N, the number of sampling unifs cor
responding to a given value of Al and t1, was taken as
Alt1/~ t 0 (For convenience, parameters which give
integral values of N were used in the program, and it
was assumed that the onset of the stimulus increment
always coincided with the start of a sampling duration,
and that its area always projected on to the correct
number of complete sampling areas), Tue expected
number of quantal absorptions for each summation unit
was given by x'1 = f ec r (11+In)'

o
~~05

~-1

o

o 1=10',r=0·5

• I=108
Jr=O

o 1=0,r=0·5

• I=O,r:Q

o 2
log t

30 deg 2
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Table 1. Slopes of difference threshold partial summation curves

(r = 50 msec.; 11 = 108 quanta!sec.deg. 2j .

v r
- -

0.1 0 -D.5ß -D.49 -D.53 -D.51 -D.53 -D.49 -D.50 -D.49
0.1 0.01 -D.34 0.01 -D.29 -D.02 -0.39 -D.03 -D.41 -D.02
0.1 0.1 -D. 11 -0.02 -O.Oß -D.O1 -0.15 -D.02 -0.22 o
0.1 0.2 -D.06 -D.03 -D.04 -0.02 --0.11 -D.Ol -D.15 0
0.1 0.5 -D.03 0 -D.05 -D.03 -D.12 0.01

0.01 0.5 -D.15 0,01 -D.27 0 -D.47 -D.02 -D.49 -D.03
0.010.ß -D.12 -D.02 -D.24 0.01 -D.43 -D02 -D.43 0
0_01 1.0 -0.11 0 -D.19 0 -D.35 -D.Ol -0.45 -D.Ol

cell. The four transducer functions mainly used were

x'4 = log x'3' x'4 =x'~.4, x'4 =x'3' x'4 =x'g·3.
The total number of sensory messages is then given

by summing the outputs of the N ganglion cells:
N

x4 = LX'4:'

From this point on the description of the program
is identical with that given before: a value of x5' the
total central effect (E) of the stimulus on the given
trial, is computed, taking into account the variance
of the sensory messages, u~' and the level of correla
tion between sensory messages, The sequence of steps
to this point is repeated a 1000 times, to allow x6, an
estimate of Ec' the criterion which would give rise to
a 2 per cent false positive rate, to be determined,
and ~l or 10 is calculated from this, Figure 14 shows
some curves generated by this program.

This figure presents results for temporal summation
for the absolute threshold, and for a difference threshold
with a high background intensity, for a number of
combinations of parameters , Since t and A behave in
the same way in the equations describing the model ,
this figure can equally well be read as a set of pre
dictions for spatial summation, "sec." and "deg.2",

being interchanged wherever they occur , There is an
encouragtng degree of agreement between the curves
for r=0.5 and those in Fig. 13, the effects of increase
in area or background intensity, and even the order of
magnitude of the thresholds, being similar. Ta dernon
strate the effects of r and v on the slope of the partial
summation curves for high stimulus intensities we
have also calculate_d partial summation curves for
r =50 msec ,; 11 =108 quanta/sec. deg.2, E=log 1,1°.3,

1°. 7 or 11.°, and different values of rand v, and the
slopes between 0.1 and 3.2 sec, are given in Table I.
Sinee the slope of the differencethreshold partial
summation curve depends on the values of both v and r,
as either increases the slope gets flatter, The slopes
for the uppermost curves in Fig. 13 were read from
the graph as: -0.33 for A2=0.01l deg.2 and -0.03
for A2 = 27.6 deg.2• When v> .1, a large value, these
slopes would correspond to r< 0.1, depending on the

transducer function, When v= ,01, a rather low value
(Stein & Matthews, 1965), r must be high to match
the curves in Fig. 13 (for E = I a larger value of v
would also be required) ,

When r = 0 in Fig. 14, and the background intensity
is high a square root law is foundfor all values of t2 > r

(values up to 3.2 sec. were employed), Thus, whatever
the transducer function, positive correlation is neces
sary to explain the departure from the square root
law for spatial and temporal summation beyond " or
r at high background intensities. At low intenstties

the value of r has little effect on the threshold curves
except when apower transducer function with a low
exponent is assumed: when A2 is also large, E =1°.3

gives a higher absolute threshold curve for r = 0.5
than for r=O.

When 11 =108 quanta/sec. deg.2, for all combinations
of t2 and A2 the difference threshold increases as the
exponent of the power transducer funetions decreases,
and it is highest for the logarithmic function, as was
found previously (see Fig. 6). However, the similar
slight increase which was found for the absolute
threshold (see Fig. 5, C adaptation) is shown only for
the same case, that is, when the incrementis contained
within one receptive field and sampling duration
(A2~" , tz~ r ].; When either the area or durationof the
increment exceeds these limits, then, at these low levels
of stimulation, the opposite effect is seen, 10 falling
as the exponentofthepowerfunctiondecreases. We saw,
in an earlier discussion of transduction from the
receptor to the ganglion cell, that as the number of
receptors affected increases, power functions with an
exponent less than one would give an enhancement ef
feet rather than simple complete summatton, A similar
enhancement, produced as the number of samplingunits
increases, is shown here.

There are differences between the curves given by
the various transducer functions in Ftg, 14, and this
suggests that a comparison between these curves and
experimental data might give some indication of the
most acceptable form for the subject's transducer
function, and so provide a basis for a procedure for
scaling E. There is little to choose between the curves
given by the four transducer functions when the back
ground intensity is high, as a match to data like those
in Fig. 13. The sensory noise rather than the transducer
funetion has the predominant effect indeterminingtheir
form. For each transducer function a combination of
v and r could be found which would match the partial
summation curves for the experimental data. On the
other hand the absolute threshold curves are for the
most part little affected by change in r and show con
siderable differences. Thus, if we comparethe "partial
summation segments" (the curves for tZ> r) of the
absolute threshold curves for A2 = 0.01 deg.2, we see
that this adheres to the square root law when E =I,
is somewhat flatter for 11 .4 and log I, and is considerably
steeper (the slope is -1.7) for 1°. 3• On the other hand

1.0

0.01 30

0.3 0.7

0.01 30 0.01 30

Trcn sducer

function: log
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Table 2. Slopes of absolute threshold partial summatiou curves.

the absolute threshold partial summation curves for
AZ = 30 deg.Z and r = 0.5 accord with a square root law
when E =1, but are somewhat flatter for each of the
other laws, though to varying extents. In Fig. 13 the
partial summation segment of the absolute threshold
curve for AZ small and 11 = 0 has a slope somewhat
steeper than -0.5, and the corresponding segment of
the curve for AZ large is flatter than the square root
law would give. This suggests that the transducer
function for these data is not linear, but may lie some
where between E =1 and E = 10. 3, and that E =log 1 or
power functions with exponents greater than or equal
to one can be excluded,

To examine this more closely, curves for 11= 0
were computed for a number of transducer functions,
and the overall slope between log t z =1.3 and log t z =
0.5 (O.Z to 3.Z sec.) was determined for both values
of AZ' The slopes of the partial summation segments
for Barlow's (1958) data for both spatial and temporal
summation were read from his graphs, Both sets of
slopes are shown in Table II. (For AZ small the slopes
for r=O and r=0.5 were averaged together, as there
were no consistent differences between them, For AZ
large the slopes given are for r= 0.5.)

The slope assigned to a partial summation curve will
depend partlyon the range of values of log tz over
which it is taken. Nevertheless, the values in Table II
present a fairly clear picture. They show that for the
linear transducer function the predicted slope of the
temporal (apatial) partial summation curve for 10
is -0.5 whether AZ (tZ) is small or large, For E = log 1,
or for power functions with exponents greater thanone,
the partial summation curves are flatter than this for
both values of AZ(tZ)' When the exponent of apower
transducer function is less than one the slope of the
predicted partial summation curve steepens as the
exponent decreases for AZ< ee (er for tZ< f , if the

table is taken to refer to spatial summation curves);
but for AZ> > ee (tZ> > r ] the slope becomes flatter as
the exponent decreases (for r= 0.5). Barlow's (1958)

-0.22 0.00
-0.29 -0.45
-0.50 -0.512
-0.51 -0.44
-0.59 -0.42
-0.74 -0.37
-0.86 -0.20
-1.02 -0.16
-1.71 0.05

-0.59 -0.39

-0.68 -0.27

Form or exponent 01
transducer function

log
1.4
1.0
0.9
0.8
0.7
0.6
0.5
0.3

Borlow
(spotiol)

Borlow
(temporol)

220

0.01 deg.2 30 (or 27.6) deg. 2

data for temporal and spatial summation show a relation
between the slopes for AZ(tZ) small and AZ(tZ) large
which is similar to that predicted for power trans
ducer functions with exponents less than one, His spatial
partial summation slopes would suggest a transducer
function with an exponent of 0.8 (tz small) or 0.7 - 0.8
(tz large) , His temporal summation data would suggest
0.7-0.8 (AZ small) or 0.6-0.7 (AZlarge). or course,
these results should not be given too much weight since
the effects on the predicted partial summation slopes
of altering the parameters of the model require fur
ther study, Nevertheless, it is of interest that the
suggested exponents Iie within the range of values
which has been given by a newly developed method for
scaling E (Treisman, 1965), and is also within the range
found for catts optic nerve fibers by FitzHugh (1957).
The comparisons made here suggest that, with further
study, and provided the model presented here proves
acceptable, it may be possible to use the form of
partial summation curves at the absolute threshold as
guides to the form of the transducer function,

Glezer (1965) has recorded spatial summation curves
at the fovea during dark adaptation, He finds that as
it proceeds "there is a regular increase in the zone
of full summation" and partial summation increases,
He concludes from this increase in partial summation
that "it is evident, that the increase of spatial sum
mation during dark-adaptation is connected with a
gradual cessation of inhibition." But the results we
have presented show that caution is necessary in corning
to conclusions of this sort. Since the stimulus inten
sities used (and probably the retinal noise level)
~ecrease during the course of dark adaptation, this
alone should cause equation (7) to giveplace to equation
(6), with a consequent increase in partial summation.
Inhibition may weIl decrease during dark adaptation,
but, if our model is accepted, Glezer's finding is not
evidence that this and the level of partial summation
are necessarily linked.

V. Discussion.
We have presented a model for visual intensity dis

crimination in which the central effect of a stimulus
varies because of physical noise in the stimulus, the
spontaneous generation of nerve impulses {which we
have treated as retinal noise or "dark light") and
variation in. the transmission of the sensory paths
(sensory noise) , and this noisy central input is subject
to a statistical decision procedure which determines
the final response, We have shown that it is likely
that the variations constituting the sensory noise are
positively correlated, in contrast to the uncorrelated
physical noise. At low levels of stimulation the uncor
related noise predominates and tends to produce the
square root law, but as the intensity of the background,
or the a rea or duration of the stimulus increment
increase the proportion of the total variance due to the
correlated component of the sensory noise increases
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rapidly; as it becomes predominant the Weber function
departs from the square root law towards a slope of
1 (tn log-log coordinates) and the spatial and temporal
partial summation functions tend towards a slope of O.
Thus the model affords a single explanation for a num
ber of phenomena often regarded as unrelated, The
basic assumptions could be applted to other modalities
than vision, and should then account for most cases
of Weber's law; the occurrence of this law in temporal
discrimination has been explained along these lines
(Treisman, 1963). To adapt the model to apply to
visual intensity discrimination a number of particular
assumptions were added so that precise predictions
could be made which could be compared with available
data, It is encouraging that the computations given
above have shown that the ancillary assumptions could
be considerably varied without seriously disturbing the
main predictions, We have found no unavoidable con
sequences of the model which clearly conflict with
established observations.

Certain points deserve further discusston,
(1) What is the form of the transducer fimction?

This is equivalent to asking how to scale E, the central
effect of the stimulus. There has been much interest
in the question of how "sensation" or "psychological
magnitudes" can be measured or scaled (Fechner,
1860; Stevens , 1960). Fechner proposed that sensation
was logarithmically related to intensity, Stevens has
argued that the psychophysical law is apower function
with, for brightness, an exponent of 0.3. Stevens be
lieves that his law descrrbes the transducer function
for the peripheral sense organs, but this appears
unlikely. It has been argued that judgments about sen
sory magnitudes are based on stored central representa
tions or neural codings of stimulus magnitudes recorded
on a dimension which we shall refer to as the "metric
dimension," and that the so-called "direct" scaling
procedures should be regarded as relating stimulus
intensity to this "metric dimension." It has also been
shown that the evidence that the "psychophysicallaw"
is apower function is ambiguous, and that a better
case can be made for regarding the central metric
dimension as logarithmically related to stimulus inten
sity (Treisman, 1964c, 1964d, 1965). But in either case
it follows that the form of the psychophysical law
is irrelevant to the question of the proper form or the
transducer function, since there is no reason to suppose
that the form in which information about stimulus
magnitude is coded and stored centrally is necessarily
linearly related to the separate central effect of the
stimulus used to seleot discriminative responses
(Treisman, 1965). A model which appears able to
explain a number of features of temporal judgment as
sumes that information about durations is stored in
logarithmic form, but that temporal discrimination
operates on a linear representation of elapsed time
(Treisman, 1963).

Fechner's "sensation" is obviously analogous to E.
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However, Fechner's scaling procedure was based on a
model of threshold discrimination which appears in
ferior to the signal detection model assumed to hold
he re (Swets, 1964), which detracts from the weight
his law can be given, There are many obscurities
about "sensation;" this term has been avoided in the
model presented here which gives an account of dis
crimination in terms which should all be ultimately
identifiable with neural events, Thus if the form
of the transducer function can be determined be
haviorally, this information might help to guidephysio
logical observations, The model, if correct, canhelpus
to identify the transducer function if it can show that
some functions are compatible with experimental ob
servations but others not.

To some extent the results we have presented above
do allow us to narrow down the range of transducer
functlons which can be considered acceptable, The
Weber functions computed were in conformity with
experimental results for a number of parameter com
binations provided apower transducer function was
assumed. But difficulties arose with the logarithmic
function, When included in the present model it pro
duced a Weber function with an exponent greater than
unity, the computed Weber fraction increasing as I
tncreased even with zero correlation and a constant
state of light adaptation (see Figs. 7 and 9). This does
not altogether exclude E = log I from conaideration,
through it makes it appear less plausible than apower
function, since it is possible to take r = 0 or very
near it and make special assumptions to make the model
generate an acceptable Weber functlon, For example,
we could require that the degreeofadaptationincreases
as I increases at a rate just sufficient to counter
balance the rise in the Weber fraction which would
otherwise occur.

The summation functions generated by the model
provide information which further narrows down the
ränge of possibilities. For all the transducer func
tions the results in Fig. 14 showed that if r =0 then the
difference threshold curves at a high background inten
sity should follow a square root law for all values
of t 2> r (for temporal summation) or A2 > ce (spatial
summation), which does not agree with the experimental
data, In each case it is neceasary to have r> 0 if the
partial summation difference threshold curves are to
show the shift towards a zero slope which is found with
experimental data, Since r = 0 is excluded the difficulty
of finding parameters that would allow the logarithmic
transducer function to produce both acceptable Weber
functions and difference threshold summation curves
is increased, though if v is large a small value of r
may produce considerable departure from the square
root law (see Table I). However, further evidence is
provided by the absolute threshold partial summation
curves: when A2 < ee (t2 < t ) the temporal (spatial) par
tial summation curve for E =log I would be flatter
than the square root law, whereas Barlow's observa-
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tions give curves which are steeper than this. Taking
all these points into consideration it appears that
E = log I can probably be excluded,

The absolute threshold curves in Fig. 14 allow us to
go further and discriminate between the different
possible power functions. If the linear law holds all
partial summation curves should have slopes of -0.5,
but for power functions with exponents less than one the
temporal summation slope will be steeper than this for
A2 < ~, and flatter for A2 >> ee • Barlow's data followed
this pattern, matehing most closely the computed
curves for power functions with exponents in the range
0.6-0.8. They are clearly incompatible with the very
steep slope (-1.7), corresponding to marked threshold
enhancement, which was given by E =1°·3 for A2 < ~

This appears to exclude power functions with exponents
of this order.

The value of 0.6 - 0.8 found for the exponent of the
transducer function is subject to two reservations.
It is an approximation which may require modification
when we have better estimates of some of the pararri
eters involved, such as r (though for A2 < ee this does
not affect the curves calculated). But it is unlikely that
any minor change in the model would shift it as low
as 0.3, or raiseitto1.0.Secondly,it should be regarded
as applying only to Barlow's two subjects. It is quite
likely that there may be constderable individual varia
tion in the exponent of the transducer function, a prob
Iem which may repay study, However, it is of interest
that it lies within the range of values which have been
given by initial applications ofanewlydevelopedscaling
procedure which is based on the signal detection
model of the threshold (Treisman, 1965). It is a con
sequence of this model that the experimental relation
between the Crozier ratio (L',I/.,. L', I' where e Li I is the
standard deviation of the threshold) and the Weber frac
tion depends on the form of the transducer function,
and so can be used to determine the latter, Applying
this procedure to Mueller's (1951) data fortwo subjects
gave exponents of 0.5 and 0.6, and data obtained by
Blackwell and Law (1958) from four subjects gave
a mean of LI.

It might appear that the transducer function could be
simply discovered by determining the relation of d' to
L', I in experiments which allow signal detection theory
to be applied (Swets, 1964). The valueofd' correspond
ing to a stimulus 12 =11 + L', I, where 11 is the background
or "noise" and 12 is the "signal +noise," is given by
d' = (E2 - E1)/.,. E (see Fig. 1). Tanner and Swets (1954)
performed yes-no and forced-choice experiments, using
intensity increments on a 10-ft.-L background, and
found that log d' was linearly related to 10gL', I. They
concluded that "change in neural activity is apower
function of change in light intensity." They do not
give the exponent of this power function, but it can be
read from their graphs and ranges between 2.5and 3.5,
values very much greater than those we have found,
However, this relation cannot be taken as the transducer
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function, since it depends on an arbitrary origin, EI'
If E=ln, and we write Y=E2-El and X=12-ll, it
does not follow that Y = Xn: this would require that
I~ - I~ = (12- 11)n, which is only true when n = 1. Since Y =
g(X) is not simply related to E = f(l) we cannot readily
use the former to determine the latter. Conversely,
the same transducer function may give different em
pirical relations between d' and ~I as 11 varies.

It appears that if the model holds we can exclude
E = log land E =1°.3 as possible transducer functions
for visual intensity, and apower function with an
exponent somewhat less than one gives the best match
tothe experimental data considered. This result pro
vides us with a basis for using threshold summation
curves to determine the form' of the transducer func
tion, This suggests that it would be of interest to apply
both the scaling procedure based on summation curves,
and the procedure whieh uses the relation between the
Crozier ratio and the Weber fraction (Treisman, 1965)
to data from the same subjects; if the two procedures
converged on the same or similar functions this would
greatly strengthen the arguments for their validity.
However, it must be remernber-ed that the transducer
function with which we are concerned gives the relation
between E and I for (relatively small) variations in I
about a level to which the eye is adapted, (It also
assumes linearity of transmission from receptor to
ganglion cell, any non-linearity arising at orbeyond the
Iatter), It does not necessarily follow that the same
function holds for the portion of the central effect
contributed by the "adaptation level." As the results
for P and C adaptation have shown, this component
of 11 can produce a logarithmic central effect or no
effect and satisfactory Weber functions will still be
given. The way in which light adaptation might separate
this component from the effects of small stimulus
fluctuations and allow aseparate function to apply
to each is discussed in more detail elsewhere (Treisman,
1967).

We discussed earlier the difficulties of usingphysio
logical observations as a guide to the form of the over
all transducer function in a general model of the sort
presented here. The problem arises because there are
a number of different possible measures of the neural
response to a stimulus and no obvious criterion for
choosing between them. But the choice made deter
mines the function we record: the number of impulses
vccurrtug ina critical period may have one relation
to the intensity of the stimulus evoking them, but the
peak firing rate quite another , This is a problern we
may be able to solve by combining behavioral and
physiological observations, Thus ifpsychophysicalpro
cedures suggest that the transducer function has a
certain form, and it is found that a particular measure
of the neural response is related to stimulus intensity
by the suggested function, this agreement between the
functions might be taken as a reason for identifying
this particular neural measure as the form in which the
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stimulus information is coded, We would then hope that
if we can follow the fate in the nervous system of
the nervous messages so defined, this would agree with
the further assumptions of the model , It is of interest
as a possible Illustration of this argument that FitzHugh
(1957) recorded the discharge from cats' ganglioncells
to near-threshold flashes of light and found that the
number of impulses occurring in a critical period
following the flash was related to its intensity by a
power function with exponents ranging from 0.6 to 1.2
for different cells. This agreement with the transducer
function suggested by the psychophysical observations
above might be taken as evidence that intensity is
coded as a number of Impulses, If this work 1s con
firmed it would suggest that it might be possible to
demonstrate, at some higher level in the nervous sys
tem, some process corresponding to simple summa
tion of these impulses.

(2) The level of correlation. The assumption that
there is some degree of positive correlation between
the sensory messages set up by a flash of light is
essential for the more important predictions given
above , But it was shown that the range of possible
correlations (except if very few quanta are absorbed,
when, in any event, r does not affect the curves pre
dicted) is effectively 0 to 1, and the computed Weber
function eventually becomes linear even if the correla
tion is taken as low as +0.01. Thus any factor, however
small, which would produce some degree of positive
correlation would suffice to ac count for the form of the
Weber function. A number of physiological mechanisms
might have effects of this sort; a good example is the
ascending reticular system. It is known that sensory
inputs follow not only the classical direct paths to the
appropriate areas of cortex, but also send collateral
messages to the reticular formation which in turn
produces more or less widespread "activation" of the
cortex. This in part determines the cortical responses
to the message along the primary pathways (Magoun,
1963). There is considerable convergence in the retic
ular formation, not only between messages in a single
modality but also between signals arising in different
modaltties , so that the ascending effect whena stimulus
is given may be considered as a sort of average of the
input to the forrnation at that time, both from the
stimulus and from other sources . Since on any trial this
averagen cffect will probahly produce a Rimilar rlegrpc
of facilitation for each sensory message reaching the
cortex by the direct pathways, and since the level of
this activation should vary from trial to trial even if
the number of sensory messages were constant (both
because of noise in the reticular averaging process,
and because of variation in the components from other
modalities averaged in with the effects of the flash)
this should produce some degree of positive correla
tion between the sensory messages.

It would be of interest to know the value of r. At high
levels of stimulation the Weber function is given by
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L'.I = zcvr1/2(I1 + In) and Ure temporal partial summation
curve tends to the same value (for Al =A2)' It may be
possible to estimate c (see below) and z can be esti
mated from the false positive rate, or a psychophystcal
procedure can be used which avoids it (Treisman,
1964a). But this still leaves both v and r 1/2 to be
determined from the asymptotic value of 1'>1 in sum
mation, or the slope of the Weber function, and it is
likely that physiological evidence will be needed to
separate these two parameters. Their product is the
square root of the correlated portion of the variance
of the sensory message, expressed as aproportion of
the mean,

(3) Adaptation. Dark adaptation has not been dis
cussed but it can also be included in the model though
some difficulties remain to be : resolved (Rushton,
1965a). It has been shown that at any time after ex
posure to a bleaching light, the threshold depends on
the amount of unregenerated pigment still present; for
any proportion of bleached pigment there is an "equiv
alent background," IB, which gives the same threshold
levels under a range of conditions (Crawford, 1947;
Rushton, 1965a). It has been suggested thatthebleached
pigment produces effects similar to those resulting
from stimulation of the eye with light (Rushton, 1963,
1965aj Barlow, 1964); thus 1\1 is high after recent
exposure to a strong light because of an effective rise
in In' the retinal noise, and the threshold fall during
the Course of dark-adaptation reflects the return of
In to its resting level as the bleached pigment re
generates. A full discussion of the retinal basis of
dark and light adaptation is given elsewhere (Treisman,
1967).

A number of alternative assumptions about light
adaptation, the adjustment to the background intensity,
were tested in the model.

(i) Since light adaptation does occur N (no) adaptation
is not a satisfactory assumption but it was included as
a basis for compartson: it is clear (see Figs. 2, 3, 4,
8 and 9) that it is sufficient to allow acceptable Weber
function curves to be generated in some cases,

(ii) P adaptation was included because it seemed
possible that "compression" of the stimulus range to
match the range of response of the nerve fiber might
be achieved by transducing the main effect of 11
logarithmically with transient departures from the
"adaptation level" being transformed by some other
law, The Weber functions this assumption produced
were in generat acceptable, falling between those for
N and C adaptation (see Figs. 2, 3, 4, 11 and 12); it
appear-ed that the law applying to departures frorn the
"adaptation level" mainly determined their form.
Levelt (1965a, 1965b) found that binocular brightness
averaging of suprathreshold stimuli is linear, which
is not readily reconcilable with a logarithmic trans
forrnation of the mean stimulus level but does not ex
clude sorne non-linearity for ranges of stimulation other
or larger than those he studied.
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(iii) In C adaptation the "adaptation level" produces
no central effect. The deviation of the actual number
of quantal absorptions on a trial from the mean num
ber-, x2 - xl, plus a proportion of the mean effect,
cx1 (c was taken to be 0.05 in the program) , together
determine the number of sensory messages generated
(subject to the operation of the transducer function) .
No difficulties arise with this assumption; it appears
the most satisfactory of those made, though many
alternatives could be proposed, To the extent that
this description of light adaptation is satisfactory it
suggests a number of advantages that the process may
have for the organism: (a) We saw, in Figs. 11 and 12,
that the main effect of C adaptation is to slow down
the transition from the square root to the linear law,
thus giving lower thresholds at the higher intensities.
Information about the magnitude of the background
stimulation is preserved if the corresponding message
is always scaled down to cX1' but the amount of sensory
noise generated at the next stage is reduced. This
reduction lowers the threshold and a higher level of
background stimulation is necessary before the cor
related sensory noise can become predominant and
make the Weber function linear. (b) Light adaptation
and other factors such as the presence of receptors
with different ranges of operation (the rods and cones)
allow the large range of light intensities which the eye
can discriminate to be matched to the response capa
bilities of ganglion cells. Thus a transducer function
such as the logarithmic, which could also do this but
which would entail low differential sensitivity at high
intensities, can be avoided. (c) It may keep the firing
rate of ganglion cells near the optimal level at which
they respond best to increments 01' decrements, At
half the maximum firing rate the signals (impulse 01'

space) are equiprobable and so their mean information
is highest, but the optimal rate is most probably that
at which v is minimal , When the fiber is firing at a
high rate, and difficult to excite further, 01' is held
down to a very low rate, it is possible that v may
increase.

It seerns likely that the mochanisms producing the
initial phase of light adaptation are closely related to
01' identical with those which reduce ~ and r as g(Il + In)
increases. Treisman (1964a) and Glezer (1965) have
suggested that this reduction is due to feodback. It
may serve to prevent the ganglion cell firing rate
(which is a function of f cc r (11+ In» rising too high,
which, we have suggested, is one functiors of the
processes underlying light adaptation, It is probable
that ce is reduced by an increase in lateral inhibition,
and this, as well as other mechanisms (Treisman,
1967), mayaiso contribute to the fall in c from c = 1
(th« v.ilue before adaptation) to the resting Ievel , co'
in . a(Lt; .tation ,

\t high Ievels of stimulation the Weber fraction may
start to increase, and this increase may be prevented
by surrounding the photometric comparison field with
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a large field of a similar order of luminance (Steinhardt,
1936; Holway, 1937; Pirenne, 1962a). Possibly at these
high values of 11 inhibitory activity in the area il
luminated reaches a maximum. Then if 11 increases
further the rise in excitation is no longer countered
by a corresponding increase in inhibition, so that c rises
(see equation (4», which would increase the slope of
the Weber function. If adaptation declines the rate of
firing of the ganglion cells may rise, which might
increase v and reduce the response to increments, an
effect equivalent to a fall in the exponent of the power
transducer function. Both these changes would also
contribute to the disproportionate rise in ,',1. The addr
tion of the illuminated surround may prevent thts
departure from Weber's law by recruiting further
lateral inhibition and thus returning c to its previous
value.

It would be of interest to estimate c. Baker (1949)
followed the course of light adaptation during 15 min.
exposure to an adapting light in subjects who had been
previously dark-adapted, He found that ,',I dropped to
a minimum in about 3 min., and then rose slightly to
a resting level which it reached in Lü or 15 min, Assum
ing equation (4), we can attribute these changes to a
decline in c from a value of 1 at the Iight-onset when
there is effectively no adaptation to the final resting
level, co' and the difference between the threshold at
light onset and the final resting level can be used to
give c', an estimate of co' High adapting intensities,
for which equation (4) applies, should all, if the model
is correct, give the same value for 8, since Co is con
stant. At very low light intensities equation (2) applies
and Co does not enter into the determination of the
threshold, so we should get (j = 1. Intermediate values
of 11, at which the transition from equation (2) to
equation (4) occurs, should give intermediate values of
c, Baker used foul' adapting intensities,5, 50, 500
and 5000 trolands, and the corresponding mean values of
cfor histwosubjects,asgivenbythe difference between
the initial threshold and the final level after 15 min.
adaptation, were: 0.75, 0.44,0.48,0.47. These results
show the initial high value and a fall to a more 01' less
constant level which we expected, but the actual values
are very high. However, they are certainly over
estimates: Baker's initial threshold readingwas in each
case an average of measures taken over the first
quarter minute. During this time the threshold is
falling very rapidly, so that his average must be
considerably less than the true initial threshold which
would correspond to c = 1. Crawford (1947) found that
the threshold fell about 1.5 log units in the first
0.4 sec. of exposure to a 100 c/ft.2 conditioning
stimulus. Further experiment is clearly needed to pro
vide a basis for accurate assessment of c, but Baker's
observations suggest that the relation to 11 is in generat
agreement with expectation.

(iv) In M adaptation c = 0 so that only deviations
from the mean effect of 11 produce sensory messages.
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Consequently there is no transition from equation (2)
to (4) and the former applies to al.l values of 11,
This should produce lower thresholds at the high inten
sities than any other assumption, but it would also
require a second retinal system which would respond
to absolute levels of intensity. Since the square root
law does not apply for aB values of 11' the a.ssumption
that c = 0 must be rejected.

(v) In Fractional (F) adaptation it was assumed that
the number of quantal absorptions on each trial was
reduced to a constant proportion: x3 = kx 2, 0< k< l.
As an account of light adaptation this is unsatisfactory
since it implies that adaptation is as rapid a process
as excitation, so that the reduction in response at any
moment is directly proportional to the actual Input
at that time, whereas we know that light adaptation is
a relatively slow process.However, the relationx3 =kx2
could serve as a description of the reduction in the
number of quantal absorptions effective in producing
sensory messages that would occur if the quantum
efficiency of the bleaching of visual pigment by light
were less than one, and it is of interest for this reason,
This is discussed below,

(4) Quantum efficiency. We have implicitly assumed
that each quantum absorbed bleaches the corresponding
moleeule of visual pigment, I.e., that the quantum et
ficiency, l' , defined as the ratio of the number of
chromophores dissociated to the number of quanta
absorbed, is one , but there is some evidence against
this (Dartnall, 1957). Hagins (1955) illuminated the
rabbit's retina with flashes less than about 1 msec,
in duration and found that no matter how intense the
flash was, it bleached no more than half the rhodopstn,
This seemed to imply a maximum quantum efficiency
no greater than 0.5, although the result is consistent
with much smaller values, Accordingto Williams (1965)
as the flash intensity increases the quantum efficiency
Is reduced because of the occurrence ofphoto-reversal
of bleaching: if a molecule absorbs an odd number of
quanta it bleaches, but if it absorbs an even number
within a sufficiently short period it does not bleach.
Thus 'Y depends on the intensity of the light: at low
intensities l' is one, but as intensity increases l'

tends to zero and the proportion of pigment bleached
bya short flash tends to 0.5.

The effectiveness of light in stimulating the eye does
not decline at the same rate as the quantum efficiency
of bleaching. As the intensity of light increases quanta
will be absorbed but will faH to bleach the moleeule
because their effects are immediately cancelled by ab
sorption of a second quantum. But the receptor output
which signals the absorption of a quantum of light does
not depend on the bleaching of the moleeule which has
absorbed the quantum, but more probably arises from
the isomerization of the chromophore or during the
conversion of pre-lumirhodopsin to metarhodopsin (or
their equivalents for other visual pigments). Thus on
some occasions a molecule of visual pigment may
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absorb a quantum of light, emit a light stgnal, and then
be reisomerized to the original form by absorption of
a second quantum; the two quanta absorbed would not
contribute to bleaching (and so would reduce v ) but
they would contribute to signalling the absorptton of
light. Thus if we define the "quantum efficiency of
light signal generation," 0, as the ratio of the number
of light signals produced to the number of quanta
absorbed, this will fall when multiple absorptions occur
but should not fall as much as 'Y • (However, it must be
borne in mind that some authors have discussed ...,
as though it were an index of light signal generation),

What effect would 0 have on the threshold? This
would be represented, in the model, by x3 = 0 x2' 0 < 0 < I,
where x3 now stands for the number of light signals
emitted, and x2 is the number of quanta absorbed, on
a given trial. The relation x3 = 0.005x2' which has been
presented as "F adaptation" exactly corresponds to this,
and the F curves in Ftgs , 11 and 12 can be considered
as representing the effects of a constant value of
o = 0.005. As the N curves, for which 0 = I, and the F
curves were identical, it follows that the decrease in
o as 11 increases has no effect on the threshold.

This absence of effect on intensity discrimination is
surprising. It occurs because the effect of introducing
ö into the model as we have done is merely to rescale
x2. The mean number of light signals generated becomes

s gl(11+In) and its variance is s2g1(11+In)' This makes
equation (1)

~ I ~ z., vi 82g2v2(ll+1 ) 2+82g(1
1+1 ) +82v2g(l1+1 }

8g n n n

which simplifies to equations (2) and (3) exactly as
before, ö disappeartng, However, this argument is
based on treating 0 as a constant, whereas the propor
tions of molecules absorbing different numbers of quanta
will obviously vary, even when the total number of
quanta absorbed is constant. We can neglect the slight
correlation that mast exist between ö and the fluctua
tions in the number of quanta absorbed from a constant
stimulus and allow for this variation by treating " in
the same way as f, i .e., we can take the number of
light signals generated to be a Poisson variable with
mean and variance equal to "g(11 + In) (Aguilar & Stiles,
1954). When we da this equatian (2) becomes

~ I = _z_ (1 1+1 )Yi
8Y2g!/2 n

but equation (3) remains unchanged, (Strictly 8 will
be slightly less for 12 than for 11 so that equation (3)
should really be increased by 01/ "2' but this factor
would be only negligibly greater than one and can be
ignored). But when the fraction of rhodopsin bleached
by 11 is smaB 0 (and even more so, ,,1/2) will be very
elose to one. Even if each quantum absorbed bleached
one molecule, a retinal illumination one million times
threshold (50 trolands) would bleach only one per cent
of the rhodopsin in an hour (Pirenne, 1962b) so that
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the quantum efficiency of bleaching would be negligibly
less than one (Williams, 1965), yet at this levelof
illumination the Weber function would be linear. Thus
the conclusion suggested by the F curves remains
unchanged. At low levels of stimulation {) appears in
equation (2) but is little less than one so that its effect
on the threshold is negligible. As 11 increased {) de
creases, but it also disappears from the equation de
scribing the Weber function, and thus does not affect
the difference threshold.

Of recent years the work of Rushton (1965a) and
others has obliged us to discard the notion that the
rise in threshold subsequent to exposure to a bleaching
light is wholely attributable to areduction in the amount
of pigment available to catch quanta, If the present
arguments are accepted, we can drop altogether the
hypothesis that changes in the efficiency with which
quanta are absorbed from the incident light, and used
to generate light signals, playa part in raising the dark
adaptation threshold. By elimination, this furtherfavors
the hypothesis that bleached pigment raises the threshold
in the dark by increasing the retinal noisev Immediately
after exposure to a strong light the proportion of un
bleached pigment will be low so that there will be a
reduction in the number of quanta absorbed from a given
light stimulus. The effect of this on the production of
light signals can be regarded as exactly equivalent to
the effect which would be produced if the pigment corn
plement were mamtained unchanged but {) fell. But
since the noise level will be high equation (3) will
apply (with IB suhstituting for (11+ln»and {) does not
appear in this. When most ofthe pigment has regenerated
equation (2) will come to apply, but now the reduction
in {) which would have an effect equivalent to the loss
of pigment would be small and ,,112 would be very
elose to one, (Of course if the pigment level were to
fall and no retinal noise were created, so that levels
of stimulation could remain relatively low, the threshold
would rise, to an extent depending on the value of "
equivalent in its effect to the pigment falL)

"Quantum efficiency" is sometimes used to refer to
the efficiency of the eye as a whole (really the subject)
in performing some task, as compared wtth the per
formance of an ideal device limited only by the
quantum variability of light. Barlow (1962a) defines the
overall quantum efficiency of the eye as

F~Least quantity 01 light theoretically required lor perlorming a task

Least quantity required in practice lor perlorming that 'same task

The tasks usually used are the detection of an increment
(Jones, 1959) or discrimination between two stimuli
differing in intensity. Barlow (1962b) employed the
latter task, It is possible to calculate the minimum
number of quanta that each stimulus must provide if an
ideal device limited only by the Poisson variability
of light is to discriminate between them at the same
level of performance as the subject. The ratio of
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this value to the actualmeannumberofquanta delivered
to the subject's eye (the ratio is the same for each
stimulus) is then the overall quantum efficiency, F.
Barlow found a maximum value of about 5 per cent
for this.

It is obvious that F is a complex measure, affected
by all restrictions on performance other than that
resulting from the Poisson variability of light. A major
restriction is the loss of light occurring between
arrival at the cornea and absorption by the rods; in
the model this is represented by the constant, f. Rushton
(1956) estimated that about 10 per cent of the light
incident at the cornea was absorbed by visual pigment,
If this restriction were excluded from consideration,
the quantum efficiency would be given by F/f, which
would make Barlow's maximum about 50 per cent.
Barlow considers the retinal noise, In, and 1', the
quantum efficiency of bleaching, as the remaining
restrictions on performance. However, we have seen
that y can be disregarded. Furthermore, there seems
no good reason to suppose that visual discriminations
are wholly determined at the retina, or that the brain
beyend the retina is completely noiseless. In terms of
the model presented here the two sources of biological
noise, retinal and sensory, should together account for
F/f falling short of 1. If (J ~ and In were both zero
F/f would equal one, but the bigger the proportionate
contribution of these sources of noise to (J~, the
smaller will the overall quantum efficiency be, A
number of consequences follow from the model which
it is of interest to compare with Barlow's (1962b)
results, (a) If r is positive the proportionate contribu
tion of the sensory noise to the central variance
increases as gl(11+ In) increases and this should
cause F to fall. Barlow's findings are in keeping with
this: F is maximum ne ar the absolute threshold and it
falls if the intensities of the two stimuli to be dis
criminated are made higher, even when the eye is
adapted to their order of intensity. (b) Light adaptation
allows c to fall to a resting level, co. This reduction
in the contribution of the adapting intensity to the
magnitude of the central message reduces the amount
and proportion of correlated central noise which con
tributes to (J ~. It follows that F should be greater
when the eye is adapted to the intensity of the stimuli
to be discriminated than when it is not. Barlow showed
that this is so. (c) We have suggested that there may
be an optimal firing rate for the optic nerve fiber at
which v is minim.al, and that one function of light
adaptation may be to maintain the firing rate of the
ganglion cell for stimuli in the threshold range near
this rate. In accordance with this Barlow found that as
the intensity of the two stimuli was shifted above or
below the intensity threshold for the adapting field, F
also varied, being highest near threshold and falling
off at the intensities on either side of this level. Thus
Barlow's three main results using this measure are
all in agreement with the model.
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VI. Conclusion
The model that has been presented was constructed

in the belief that any adequate account of sensory dis
crimination must make minimum assumptions about
every stage between the impingement of the stimulus
on the receptors and the choice of the final response ,
and that we must attempt 00 make the assumptions
precise at all stages , lt is dangerous 00 assume that
because more is known about the retina than about the
brain beyend it, the latter can be assumed 00 have no
effect on dtscrtminatory performance and safely ig
nored; or that references 00 "conscious sensation"
allow us tacitly 00 assurne linearity and noiselessness
beyend the periphery. We have also tried throughout
00 maintain a distinction between explanations and
descriptions, important when using terms such as
"adaptation" or "summation." The model is somewhat
schematic: it was desired 00 test its general usefulness
as a framework 00 which further assumptions could be
added if particular problerns required them, Many of the
assumptions employed have already given useful sec
vice elsewhere; the number used seemed the minimum
which would allow the construction of an adequate
model , Thus no attempt was rnade 00 take account of
the shift from rod 00 cone vision, though this could
readily be included by assuming an appropriate change
in parameters, We have not considered the effects of
overlap between receptive fields though it is likely
that this occurs and is important; it might be related
00 some of the differences that may be found between
spatial and temporal summation, We have dealt only
with incremental thresholds determined by the
method of constant stimuli, but our arguments
could be extended without difficulty 00 the other
psychophysical procedures for measuring thresholds
(Treisman, 1964a).

The model appears 00 be able 00 explain a number
of features of discrimination and leads 00some results,
such as the irrelevance of 8 00 the increment or dark
adaptation threshold, which might not otherwise have
been suspected. It demonstrates that observed changes
in a complex system do not necessarily imply that
corresponding changes are occurring in underlying
causal factors which have a simple one-to-one relation
00 the observed phenomena. An under'lying "summation
process" does not become less efficient as the param
eters of the increment increase: noise is sampled as
be fore but its description changes. The lesser degree
of light adaptation shown when the adapting light is
weak does not imply that c is larger than at high
intensities: the finding is sufficiently explained by the
shift from equation (4) 00 equation (2) which reduces
the weight of c in determining the threshold. The
increase in partial spatial summation that occurs during
the course of dark adaptation (Glezer, 1965) does not
need 00 be explained by a corresponding decrease in
lateral inhibition; it would follow from the shift from
equation (3) 00 equation (2) as the retinal output (IB)
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falls, even if lateral inhibition did not decrease,
The model may prove useful in suggestingpredictfons

and expertments. Thus it will be of interest 00 attempt
00 estimate all the constants in the model , Procedures
can be suggested for estimating z, c, f, and In (Treisman,
1964a; Rushton, 1956; Gregory, 1956; Barlow, 1957), and
it maybe possible 00obtain separate estimates of v and r
by combining behavioral andphysiologicalobservations.
In determining the transducer function it may be
possible 00 compare two separate scaling procedures,
one based on the Weber function (Treisman, 1965),
the other on the absolute threshold partial summation
curve, and examine whether they converge on the same
result. As well as allowing individual variation 00 be
studied, determination of the transducer function by
behavioral means may facilitate the interpretation of
physiological observattons, as was discussed above,

It may prove possible 00 derive results from the
model which otherwise might have seemed to require
special aasumptlons, A possible case in point is the
observation that "at high intensities the Weberfraction
Cl. I/I of the cone system as a whole ..• becomes constant
(Weber's Iaw) and has about the same value for light
of all spectral compositions" (Pirenne, 1962a). A pos
sible explanation for this is that tnere are a number
of cone systems (Stfles , 1959) and that at high intensities
the incremental threshold is determined by the most
sensitive of them, However, let us consider what the
present model would predict. We will suppose that the
wave-Iength ofCl.l, A2' may differ from that of 11, Al'
Since the capture of quanta of light by the receptors is
a function of wave-Iength it follows that we will have
different values of f in each case. Thus 00 include
variation in wavelength among the determinants of the
Weber function at high intensities we can generalize
equation (4) 00

(8)

(If f1 changes than In, the "dark light" corresponding
00 the rate of spontaneous generation of impulses in
the visual system, should change 000. But at high
intensities this can be Ignored.) It follows that for
Al =A2~ ~ the resulting Weber function is independent
of A2' for t1 =t2~ r it is independent of t 2, and for
f1 =f2 the Weber function is the same whatever the
actual spectral composition of the light, provided the
level of stimulation is high. A prediction which follows
from equation (8) is that when f1 < f2 ßI will be lower,
and when f1 >f2 it will be higher than when f1 = f2, and
the effect on the threshold is given by f1/f2. It follows
that interchanging the wave-Iengths used as background
and increment may have a marked effect on ßI. The
hypothesis that the single most sensitive mechanism
determines all thresholds when the level of stimulation
is high is quite compatible with the present model,
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but we see that if the model is accepted the observa
tion quoted above does not require this hypothesis to
explain it but follows simply from equation (8).

Summary
A model for visual intensity discrimination is

described. The main assumptions are: (i) The absorption
of quanta from a light-flash by the zetinal receptors is
subject to fluctuations due to the physical variability
of light; (ii) absorbed quanta may give rise to neural
messages; (iii) retinal noise also gives rise to neural
messages: (iv) the number of neural messages depends
on the "overall transducer function" relating the central
nervous effect (E) of the stimulus to its physical
intensity (1): E = f(I), and on (v) the state of light adapta
tion; (vi) sensory noise affects the magnitude of the
neural messages; (vii) the magnitudes of the sensory
messages generated by a given light-flash are positively
correlated; (viii) the sensory messages sum to give
the final central effect, E, and the response selected
is determined by a statistical decision procedure,

Many of these assumptions are already accepted or
are plausible. To examine their predictions when taken
together, and the effects of variation in the parameters
and functions assumed, the model was simulated on a
digital computer, It appears that it correctly predicts
the relation between the difference threshold, L'11 'and
the intensity of the background stimulus, 1 (the Weber
function), found experimentally, and it also predicts
a number of the features of retinal summation, including
the effects of increase in background intensity, and
stimulus area and duration, on partial temporal or
spatial summation. Evidence is provided that the overall
transducer function is not a logarithmic function or a
power function with a small exponent, and a new basis
for scaling the sensory effect of a stimulus is suggested,
It is shown that Weber's law arises if there is any
degree of positive correlation between sensory mes
sages, but not if there is zero correlation, and possible
mechanisms of light adaptation are considered.

The assumpttons which aIlow Weber's law to be
derived for vision are sufficiently general to be capable
of being applied to other sensory systems.
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Glossary of Symbols
ce : the limiting area below which complete spatial summation

occurs; the minimum sampling area. 2
Al : area of the background stimulus in deg.
A2 : area of the stirnulus increment in deg. 2

C adaptation : Complete adaptatlo n: x3=x2-kxl = xZ-xl + cXl
c : the proportiori of the mean number of molecular decompositions

effective in setting up sen sory messages after C adaptation (for
N adaptation c = 1; for M adaptation, c = 0).

t!. I : the difference threshold, the brightness increment detected on
50 per cent. of trials.

E : the surn of the sensory messages arriving centrally on a given
trial; the decision axis for the determination of the response.
Corresponds to x5 in the programnie.

EI : the mean value of E for stimulus 11
E 2 : the mean value of E for stimulus 12
E c : the criterion determining the response.
F : overall quantum efficiency of the eye. The ratio of the least

quantity of light theoretically required for performing a task to
the least quantity required in practice.

F adaptation: Fractlonal adaptatron, x3=hx2'
f : the proportio n of the quanta incident at the cornea which is

absorbed by visual pigment.
f1 : the value of f for the background intensity, 11
f2 : the value of f for the stimulus increment, tl.I
y = number of chromophores dissociated; the quantum efficiency

number of quanta absorbed
g = fAt
gl = fA1t 1
g2 = fA2t2
h : the proportion of the molecular decompositions on a gi ven trial

effective in setting up sensory messages, See F adaptation 2
11 : the intensity of the background stImulation 10 quanta/ sec.deg.
12 : the intensity of the Increrne nt plus background.
IB: the equivalent background having the same effect as the retinal

noise after exposure to a bleaching light.
In : the "dark light", the intensity whlch would produce quantal

absorptioris at the same rate as the retinal noise produces events
confusable with them.

k : the proportion of the mean number of molecular decompositions
constituting the 'adaptation level' in P and C adaptation.

A = the wavelength of light
Al = the wavelength of 11
A2 = the wavelength of t!. I
M adaptation: Adaptation to the mean; x3=x 2-x l·
N : The number of summation units contained in a given sampling

area and duration.

N adaptation: No adaptation; x3=x 2
0r : the output of a single receptor cell
P adaptation: Partial adaptation; x:i=x2-kx1, and x':i =kx 1·
P(Y) : the probability of the response 'Yes' on trials on which a

stimulus is presented.

229



P(Y/I I) : the value of P(Y) for trials on which stimulus I1 is pre
sented,

Q : the total number of quanta absorbed from a given sttmulus,
Qn ; the total number of quanta absorbed to reach threshold when

light from the stirnulus is distributed over n receptors.
r : the mean level of correlation between the sensory messages

arising at a given time.
a~ : the variance of the centr al effects produced by repeated pre

sentations of a given stimulus.a; :the variance or a sensory massage
s : the mean nurnber of nerve Impulses constituting a sensory mes

sage; s=1 in the programme

r : the Iimiting duration below which complete temporal summation
occurs.

t l : the duration of the background stimulus in sec.
t2 : the duration of the stimulus increment in sec.
v : the coefficient of variation of the sensory message; v=us/ s
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XI : the expected number of molecular breakdowns when a flash
is gi ven including quantal ab sorpticns and the effects of the
"dark light": XI = gl(II+ln)·

x2 : the actual number of molecular breakdow ns on a given trial;
a variable from a Po isson distribution with mean = Xl'

x3 : the number ormolecular breakdowns contributing to determining
the neural message , after light adaptatio n has operared.

x4 : the number of sensory neural messages set up by a given
stimulus Input,

Xs : the total number of nerve impulses arrivi ng cent rally on a
give n trial; this corresponds to E.

x6 : the value exceeded by 2 per cent. of the como uted values of
Xs for a given set of conditions; an estimate of E c'

z : a standardized normal deviate.
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