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Luce's choice model and Thurstone's
categorical judgment model compared:

Kornbrot's data revisited
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freely varying response bias parameters and n - 1 freely
varying stimulus scale parameters. To equalize the num­
ber of stimulus parameters used by the Thurstone model
and the choice model, Kombrot (1978, p. 196, Equa­
tion 18) introduced the following constraint equation for
the choice model similarity parameters:

T/ij = T/i,i+l, T/i+l,i+2 T/j-l,j. (2)

In this equation, the stimuli have been indexed in order
of increasing magnitude on the unidimensional continuum.
Thus, the similarity between any two stimuli Si and Sj
(i <j) is given by the product of similarities of the adja­
cent stimulus pairs that link Si and Sj. This results in n - 1
free similarity parameters, one for each pair of adjacent
stimuli. The use of this constraint equation was motivated,
in part, by a suggestion made by Luce (1963, p. 114,
Axiom 3).

In the original formulation of the choice model, Shepard
(1957, pp. 333, 337) suggested an interpretation of the
"Iij parameters in terms of distances in a psychological
space. He assumed that

where f is some monotonically decreasing function and
the dus are distances that satisfy the metric axioms (mini­
mality, symmetry, and the triangle inequality). To reduce
the number of parameters that needed to be estimated,
Shepard suggested that the stimuli be represented as points
in a multidimensional psychological space. The dijs could
then be derived by computing the distances between the
points in the space. The configuration of points that
achieved the best account of the identification data was
taken as the multidimensional scaling (MDS) solution for
the stimulus set. I will refer to Equation 1 with the as­
sumption that the similarity parameters are functionally
related to distances in a psychological space as the MDS­
choice model.

Kombrot's constraint equation (Equation 2) has a sim­
ple interpretation in terms of the multidimensional scal­
ing approach to modeling similarity. Assume that the n
stimuli can be represented as points on a unidimensional
psychological continuum and that distances on this con­
tinuum are additive. That is, assume

(3)T/ij = f(dij),

(1)

Kombrot (1978) compared Luce's (1963) choice model
and the (constant-variance) Thurstone categorical judg­
ment model (Thurstone, 1927; Torgerson, 1958) on their
ability to account for unidimensional absolute identifica­
tion performance. Two subjects were required to iden­
tify eight auditory stimuli varying in loudness in a neu­
tral and a payoff-biased condition. Kombrot concluded
that the experimental results provided strong evidence
against the choice model of category judgment, and that
the Thurstone model yielded impressive fits to the iden­
tification data. In this note, I suggest that Kombrot's con­
clusion regarding the choice model was too strong. Kom­
brot fitted a special case of Luce's choice model to the
identification data by constraining the similarity
parameters in the general model. The special-case choice
model may have provided poor fits because inappropri­
ate constraints were assumed. A choice model with
slightly modified similarity constraints yields impressive
fits to the identification data, ones that compare favora­
bly with the fits of the Thurstone model.

Assume n stimuli in an absolute identification experi­
ment. According to Luce's (1963) choice model, the prob­
ability that a subject makes response j given stimulus i,
P(Rj Iso, is given by

where 0 :s; {3j, "Iij :s; 1, Ej= 1 {3j = 1, T/ji = T/ij, and T/ii
= 1. The {3j parameters are interpreted as response bias
parametets, and the "Iij parameters are interpreted as
similarity measures on the stimuli S, and S]. The reader
may verify that there are n - 1 freely varying response
bias parameters and n(n -1)/2 freely varying stimulus
similarity parameters (one for each pair of distinct
stimuli). A constant-variance Thurstone model uses n-l

dij = di,i+l + di+l,i+2 + ... + dj-l,j, (4)

where dij is the distance between the points representing
S, and Sj. (Again, the stimuli are indexed in order of in­
creasing magnitude on the psychological continuum.)
Then the product rule introduced by Kombrot follows if
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Table 1
Chi-Square Values for Best Fitting Thurstone and Choice Models

Subject

Thurstone Choice

Logistic Gaussian Exponential Decay Gaussian
Distribution Distribution Similarity Function Similarity Function df

(30)
(21)

(23)
(20)

32.4
13.1

32.1
15.5

21.9
19.6

Neutral Condition
36.7 40.4 56.9* 35.0
29.1 31.6 52.6* 26.9

Payoff Biased Condition
289.0*
245.5*

I
2

I
2

*Measured X' > x'5%.

The MDS-choice model studied by Kombrot may have
provided poor fits to her data because an inappropriate
similarity function was used. It seemed reasonable to refit
the model to her data using a Gaussian similarity func­
tion. To apply the model, one simply represents each
stimulus as a point on a unidimensional psychological con­
tinuum. Letting Xi be the value of the point representing
stimulus Si, the distance between Si and Sj is given by
dij = 1Xi -Xj I. Applying Equation 6 and substituting the
derived 17ij values into Equation 1 generates the theoreti-

that is, if similarity is an exponential decay function of
psychological distance.

In previous tests of the MDS-choice model, Shepard
(1958a) found support for the assumption of an exponen­
tial decay function relating stimulus similarity to psycho­
logical distance. He noted in subsequent work (Shepard,
1958b, 1962), however, that the best fitting similarity
function might vary as a function of experimental condi­
tions. Recently, Nosofsky (1984) conducted experiments
in which subjects identified two-dimensional stimuli. The
MDS-choice model was used to account for the confu­
sion data in these experiments. It was found that a Gaus­
sian similarity function provided much better accounts of
the data than did an exponential decay similarity function.
The use of a Gaussian function was suggested by previ­
ous theoretical work conducted by Shepard (1958b), and
by the well-known success of the Gaussian distribution
in Thurstonian modeling. The Gaussian similarity func­
tion takes the form:

-<I'.17ij = e IJ. (6)

cal predictions. The parameters in the model are the lo­
cations of the points on the unidimensional continuum (x.,
. .. , xn) and a set of response bias parameters (blo ... ,
bn) l

Table 1 presents the minimum chi-square values for the
various models fitted to Kombrot's data." The first three
columns give the chi-square values reported previously
by Kombrot (1978, p. 206, Table 5). Columns 1 and 2
give the chi-square values for the Thurstone models.
(Kombrot fitted two Thurstone models to the data, one
that assumed logistic distributions and the other, Gaus­
sian distributions.) Column 3 gives the chi-square values
for the exponential MDS-choice model, that is, Luce's
choice model constrained by Equation 2. Column 4 gives
the newly computed chi-square values for the Gaussian
MDS-choice model. 3 The best fitting parameters for this
model are presented in Table 2. The Gaussian similarity
function provides far better fits than the exponential de­
cay similarity function. In fact, with the Gaussian assump­
tion, the MDS-choice model provides slightly better fits
than either Thurstone model in three of four cases,
although it is slightly worse on the fourth.

A graphical comparison of the Gaussian and exponen­
tial decay similarity functions is provided in Figure 1 for
Subject 1 in the payoff-biased condition. The following
steps were followed in developing these graphs. First,
maximum-likelihood estimates of the 1jij similarity
parameters in the full-choice model were computed. By
the jUll-choice model, I mean the choice model with the
1jij parameters unconstrained except for those initial con­
straints stated in Equation 1. Next, a set of interpoint dis­
tances was computed from the scaling solution derived

Subject

2

2

Table 2
Best Fitting Parameters for Gaussian MD8-Choice Model

2 3 4 5 6 7 8

Neutral Condition

Xi OOסס.0 0.6293 0.8970 1.3644 1.7026 2.0955 2.3196 2.8860
bi 0.7193 0.4928 0.5187 0.4765 0.4383 0.6108 0.7006 0.6895

Xi OOסס.0 0.4032 1.0004 1.4588 2.0174 2.3012 2.7980 3.3596
bi 0.9005 0.9399 0.7924 0.7182 0.8152 0.7816 0.8605 0.8283

Payoff Biased Condition

Xi OOסס.0 0.6931 1.1695 1.7094 2.1693 2.6852 3.0702 3.6002
bi 3.8728 1.8396 1.0602 0.6793 0.4127 0.2842 0.1658 0.0725

Xi OOסס.0 0.6549 1.2557 1.8009 2.3317 2.8090 3.2495 3.9689
b, 7.4980 3.0156 1.3888 0.7309 0.3987 0.2721 0.1807 0.0758
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Figure 1. Graphical comparison ofthe Gaussian and exponential
decay similarity functions on their ability to account for the similarity
structure inherent in Kornbrot's data.

by fitting the MDS-choice model to the absolute identifi­
cation data. Two such sets of interpoint distances were
computed, one from the scaling solution in which a Gaus­
sian similarity function was assumed and the other from
the scaling solution in which an exponential decay similar­
ity function was assumed. In the graphs shown in
Figure I, the maximum-likelihood unconstrained similar­
ity parameters are plotted against the corresponding dis­
tance values computed from the scaling solutions. The
solid curve in each graph is the theoretical similarity func­
tion. As is evident, the Gaussian similarity function cap­
tures the underlying similarity structure far better than
the exponential decay similarity function. It is not sur­
prising, therefore, that the modified Gaussian-similarity
MDS-choice model yielded such improved fits to the iden­
tification data.

The reanalysis reported here raises a question on which
I presently can shed little light. In addition to comparing
the choice model and the Thurstone model in terms of
overall goodness of fit, Kornbrot also used the method
of constraint equations. The constraint equation approach
suggested that the major problem with the choice model
involved the bias constraints inherent in the general
model, not the similarity constraints that were assumed
in the special-case model. This suggestion is difficult to
reconcile with the finding reported here, namely the dra­
matic improvement in overall fit achieved by using modi­
fied similarity constraints. This puzzle remains as an is­
sue for future investigation.

Another question that arises concerns the experimen­
tal conditions that determine the best fitting similarity
function. This question was studied previously by Shepard
(1958b). Shepard developed an underlying process model
that predicted an exponential decay similarity function
under conditions of continuous reinforcement and feed­
back, and a Gaussian similarity function under conditions
of infrequent feedback. In the experiments conducted by
Kornbrot (1978) and Nosofsky (1984), however, feedback
was presented on every trial. Since a Gaussian similarity
function was favored in these studies, feedback cannot
be the sole controlling factor. One possibility concerns
whether the observed behavior is asymptotic or nonasymp­
totic. The experiments reported by Shepard (1958a) (in
which an exponential decay function was favored) were
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I. The value of XI may arbitrarily be set equal to 0, meaning that there
are n-I freely varying stimulus scale parameters. The value bi is the
bias "strength" for response Rr, with {3i = bi/E~ -1 be. Only the rela­
tive strengths are relevant, meaning that there are n - 1 freely varying
response bias parameters.

2. The empirical confusion matrices to which the models were fitted
were reported by Kombrot (1978, p. 207).

3. Following Kombrot's procedure, the chi-square values were com­
puted using only those cells of the judgment matrix with frequencies
greater than 5.
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