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Categorization response time
with multidimensional stimuli

F. GREGORY ASHBY, GEOFFREY BOYNTON, and W. WILLIAM LEE
University of California, Santa Barbara, California

Categorization response time (RT) was examined in three separate experiments, in each of which
exemplars varied on two physical dimensions. Three different types of stimuli were used: (1)hori­
zontal and vertical line segments of varying length that were joined at an upper left corner,
(2) rectangles of varying width and height, and (3) circles or semicircles of varying size with a
radial arm of varying orientation. No evidence was found that stimulus familiarity or the cate­
gory prototypes played any special role in determining categorization RT. Instead, RT decreased
with distance from the stimulus to the categorization decision bound.

The categorization of objects is fundamental to human
information processing and is required at some level by
nearly every perceptual or cognitive task. Categorization
has long been studied, and historically the dependent vari­
able of primary interest has been response accuracy. A
few studies have examined response time (RT; see, e.g.,
Hyman & Frost, 1975), but in most of these, the exem­
plars varied on only a single physical dimension (see, e.g.,
Bomstein & Monroe, 1980; Cartwright, 1941). In this
article, we examine categorization RT when the exemplars
vary on more than one physical dimension. Including RT
with accuracy in the analysis of categorization experiments
can only increase the observability of the categorization
process as well as improve the testability of theories and
models.

Few specific hypotheses can be found in the literature
to explain how categorization RT changes with the phys­
ical characteristics of the stimuli. A notable exception is
the RT-distance hypothesis, according to which RT de­
creases with the distance in psychological space from the
stimulus representation to the decision bound that sepa­
rates the exemplars of the contrasting categories (Ashby
& Maddox, 1991, 1992b). The idea is that a stimulus that
falls near a category bound has ambiguous category mem­
bership, hence categorization is slow, whereas a stimulus
that is far from the category bound is easy to classify and
therefore its RT is short.

In addition, a number of other hypotheses have been
proposed implicitly. For example, an obvious prediction
is that RT is faster to more familiar stimuli. Also, a natu-
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ral prediction of prototype theory is that RT decreases
with the similarity between the stimulus and the category
prototype (see, e.g., Rips, Shoben, & Smith, 1973;
Rosch, 1973a). This article reports RTs from three cate­
gorization experiments in which stimuli varied on two
physical dimensions. Three different types of stimuli were
used: (1) horizontal and vertical line segments of varying
length that were joined at an upper left comer, (2) rec­
tangles of varying width and height, and (3) circles or
semicircles of varying size with a radial arm of varying
orientation. In each experiment, the RT-distance hypoth­
esis was supported. In addition, we found no evidence
that stimulus familiarity or the category prototypes played
any special role in determining categorization RT.

The RT -Distance Hypothesis
The RT-distance hypothesis is motivated by decision­

bound theories of categorization, which assume that the
perceptual effect of each presentation of a category ex­
emplar can be represented as a point in a multidimensional
perceptual space and that repeated presentations of the
same exemplar do not always lead to the same perceptual
effect (Ashby, 1992; Ashby & Gott, 1988; Ashby & Lee,
1991, 1992; Ashby & Maddox, 1990, 1992a). Decision­
bound theory assumes that a practiced subject divides the
perceptual space into regions and associates a category
label with each region. On each trial, the subject catego­
rizes an object by determining in which region the stimu­
lus representation falls. The partition between two re­
sponse regions is called the decision bound.

Decision-bound theory is a multivariate generalization
of signal detection theory, with the decision bound playing
the role of the signal detection response criterion. In sig­
nal detection theory, the most commonly made processing­
time assumption is that RT decreases with the distance
between the perceptual effect and the response criterion
(Bindra, Donderi, & Nishisato, 1968; Bindra, Williams,
& Wise, 1965; Emmerich, Gray, Watson, & Tanis, 1972;
Smith, 1968). The RT-distance hypothesis states that RT
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decreases with the distance between the perceptual effect
and the decision bound.

Another major application of the RT-distance hypoth­
esis is in the area of recognition memory, where it is
called the strength-latency hypothesis. Strength theory as­
sumes that each recognition memory decision is based on
the strength of the memory trace of the probe item (Nor­
man & Wickelgren, 1969; Wickelgren & Norman, 1966).
Old items are assumed to have greater trace strength than
do new items, and a response criterion partitions the
strength dimension into no and yes response regions. The
strength-latency hypothesis assumes that RT decreases
symmetrically on either side of the yes-no criterion. In
a comprehensive analysis, Murdock (1985) concluded that
the strength-latency hypothesis is able to account for the
major results of both the memory scanning task (Stern­
berg, 1966) and the study-test experiment (Murdock &
Anderson, 1975).

The RT-distance hypothesis predicts certain testable re­
lations between the RTs on correct and incorrect catego­
rization trials. Under the conditions of Experiments 1 and
2, the RT-distance hypothesis predicts that median correct
RT will be less than median incorrect RT (Thomas, 1971),
because stimuli that are incorrectly categorized will tend
to be closer to the decision bound than will stimuli that
are correctly categorized.

RT Hypotheses Derived From Prototype Theory
Prototype theories of categorization assume that the ex­

emplars of a category are distributed about a most typi­
cal member, called the prototype (Rosch, 1973a, 1973b;
see also Homa, Sterling, & Trepel, 1981; Posner & Keele,
1968, 1970; Reed, 1972; Rosch, Simpson, & Miller,
1976). In its simplest form, prototype theory assumes that
when asked to assign a stimulus to one of several cate­
gories, the subject responds with the category possessing
the most similar prototype. Prototype models usually as­
sume a multidimensional scaling (MDS) definition of sim­
ilarity (see, e.g., Shin & Nosofsky, 1992). Specifically,
they assume that stimuli can be represented as points in
a multidimensional space and that the similarity of a pair
of stimuli decreases with interpoint distance. Thus, given
a certain stimulus, the most similar prototype is the nearest
prototype.

Many studies have demonstrated that this simple proto­
type model provides an inadequate description of categori­
zation accuracy (Ashby & Gott, 1988; Medin & Schaffer,
1978; Shin & Nosofsky, 1992). Even so, category proto­
types are associated with a number of special properties,
and it is possible that the prototypes could play some sig­
nificant role in determining categorization RT. For ex­
ample, it has been shown that the prototypes are the first
exemplars leamed by children (Mervis, 1980; Rosch,
1973a) and that they are likely to be named first when
subjects are asked to recall all members of a category
(Mervis, Catlin, & Rosch, 1976). In addition, if subjects
are asked to verify whether a probe item is a member of
a category, the fastest yes responses are to the category

prototypes (Rips et al., 1973; Rosch, 1973a). Given these
results, a natural assumption is that RT decreases with
the similarity of the stimulus to the prototype.

A popular measure of the similarity of stimulus i to j
in models that use an MDS stimulus representation is

Sij = exp( -cdi} ), (1)

in which dij is the distance between the perceptual repre­
sentations of the two stimuli (Nosofsky, 1986; Shepard,
1957). The parameter c is a measure of the overall dis­
criminability between stimuli and is expected to increase
with exposure duration and as the subject gains experience
with the stimuli (Nosofsky, 1986). Finally, the parame­
ter a defines the nature of the similarity function. The
exponential similarity function occurs when a = 1; the
Gaussian function occurs when a = 2. The most successful
models have paired the exponential similarity function with
either the city block or Euclidean distance metrics or have
paired the Gaussian similarity function with the Euclidean
metric (Ennis, 1988; Nosofsky, 1986; Shepard, 1987).

Consider a categorization task with only one category,
say Category A, for which the subject is to decide whether
each stimulus is a member of the category. We call this
an (A, not A) categorization. In such a task, the RT­
prototype hypothesis assumes that on trials in which Stim­
ulus X is presented, RT decreases with the similarity be­
tween X and the A prototype-that is, with SXA. Now, if
RT decreases with SXA, it increases with any decreasing
function of SXA. In particular, Equation 1 implies that

(
1 )ldX A = -c log SXA a,

and thus that dX A is a strictly decreasing function of SXA.

Therefore, an alternative statement of the RT-prototype
hypothesis is that it assumes RT increases with the dis­
tance between the perceptual representations of the stim­
ulus and the category prototype. Empirical testing of the
RT-prototype hypothesis (either the distance or the simi­
larity versions) is facilitated because its validity is un­
affected by the numerical values of the a and c parameters'
of Equation 1. This is because dXA is a decreasing function
of SXA for any positive values of a and c.

Next, consider a categorization task with two categories,
A and B. The subject decides whether each stimulus is
a member ofCategory A or B. We call this an (A, B) task.
In this case, several RT hypotheses might be derived from
prototype theory. One possibility is that RT increases with
the distance between the representations of the stimulus
and the nearest prototype. The RT-nearest-prototype hy­
pothesis predicts that the two fastest responses should be
to the two category prototypes. As one moves away from
the prototypes, the stimuli become more atypical of the
categories and so more difficult to categorize. Another
possibility, however, is that the subject assigns a stimulus
to the category containing the most similar prototype and,
therefore, that RT decreases with the difference between
the similarities of the stimulus to the Category A and B
prototypes. This RT-comparative-prototype hypothesis
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where SXi is the similarity between Stimuli X and i as given
by Equation 1 and n is the number of stimuli in the en­
semble. It is important to note that the sum is computed
to all stimuli used in the experiment, without regard to
their category membership.

familiarity. Of course, to test this hypothesis one must
explicitly define stimulus familiarity.

One convenient measure of stimulus familiarity can be
derived from exemplar theory (see, e.g., Medin & Schaf­
fer, 1978; Nosofsky, 1988). In exemplar theory, the fa­
miliarity of Stimulus X is defined as the sum ofthe similar­
ities of X to every other stimulus in the ensemble-that
is, to

Empirical Tests of the RT Hypotheses
A number of studies examined categorization RT in

tasks in which the stimuli varied on only one relevant di­
mension (see, e.g., Bomstein & Monroe, 1980; Cart­
wright, 1941; Nosofsky, 1991). Bomstein and Monroe
(1980) reported the results of an (A, B) categorization of
Munsell color samples that equally supported the RT­
distance hypothesis and both forms of the RT-prototype
hypothesis. Cartwright (1941) reported the results of an
(A, not A) task in which the stimuli were two line seg­
ments radiating from a common point but varying in angle
of separation. On each trial, subjects were shown a stim­
ulus and were asked to determine whether its angle was
within a specified range. Data from trials on which the
subjects responded yes supported the RT-distance hypoth­
esis and both forms of the RT-prototype hypothesis, but
data from trials on which the subjects responded no sup­
ported only the RT-distance hypothesis.

In the case in which stimuli varied on more than one
relevant dimension, the most important study of categori­
zation RT was reported by Hyman and Frost (1975). They
created two artificial categories by varying the height and
width of an arbitrary configuration of nine dots. Their ex­
periments were all of the (A, B) variety, and they specifi­
cally tested a number of RT hypotheses, including the
RT-distance hypothesis and the RT-comparative-prototype
hypothesis. All of the hypotheses that they tested received
reasonable support, but they argued that, in one experi­
ment, the RT-comparative-prototype hypothesis was fa­
vored, whereas the RT-distance hypothesis was favored
in another experiment. There are several reasons, how­
ever, why the results of Hyman and Frost are of limited
interest. First, rather than test ordinal versions of the RT
hypotheses, they tested versions that assumed a specific
functional form relating RT to the statistic of interest. For
example, their version of the RT-distance hypothesis as­
sumed that RT decreased exponentially with distance from
the decision bound. Unfortunately, it is impossible to de­
cide whether a failure of this model is due to a failure
of the RT-distance hypothesis or whether the RT-distance
hypothesis is valid but the function relating RT and

predicts that the fastest responses will be to the stimuli
that are most discriminative with respect to the (A, B) cat­
egorization, even if these stimuli are atypical of both cat­
egories. In contrast to the RT-nearest-prototype hypoth­
esis, the RT-comparative-prototype hypothesis predicts
that, with respect to RT, the prototypes will have no fa­
vored status. In particular, they should have the same RT
as do other stimuli that are associated with the same sim­
ilarity difference.

The RT-comparative-prototype hypothesis can be for­
malized by assuming that, on trials in which the stimulus
is X, RT decreases with the absolute value of the log sim­
ilarity difference. Specifically, RT should decrease with

[log SXA - log sXBI = cldxA - dhl

or, equivalently, with the absolute difference between the
prototype distances (DP) raised to the a power

DP = c-1llog SXA - log sXBI = IdxA - dXBI. (2)

The RT-comparative-prototype hypothesis predicts that
the slowest responses will be to stimuli that are equally
similar to the two prototypes-that is, to all stimuli X for
which SXA = SXB, so that DP = O. In addition, on one
side of this isosimilarity contour, the subject always re­
sponds A (because SXA > SXB), whereas on the other side,
the subject always responds B (because SXA < SXB). Thus,
the isosimilarity contour plays the same role as a deci­
sion bound. In fact, Ashby and Maddox (1992b) showed
that any model assuming the RT-comparative prototype
hypothesis also satisfies the RT-distance hypothesis when
a is greater than 1.0 and d is Euclidean distance.

In an (A, not A) task, there is only one prototype, so
DP = IdxAI = dXA. The latter equality holds because
distances are never negative. Now, if RT increases with
dXA, it must also increase with dXA. In other words, in
an (A, not A) task, the RT-comparative-prototype hypoth­
esis predicts that RT increases with distance from the
prototype. Thus, in this case, both RT-prototype hypoth­
eses agree.

Familiarity Effects
Another factor that could possibly influence categori­

zation RT is stimulus familiarity. One would expect RT
to increase on trials when the subject is presented a stim­
ulus that is very different from those he or she has already
categorized. In fact, Nosofsky (1991) found that when
subjects were trained to make a simple size categorization
(large versus small), RT increased dramatically to the first
presentation of a stimulus that was much larger than any
of the training stimuli. Similarly, one might expect RT to
be short on trials when the stimulus is familiar, perhaps be­
cause, in such cases, the correct response is well learned.

Although Nosofsky's results indicate some effect of fa­
miliarity, the overall contribution of familiarity to cate­
gorization RT is unknown. An extreme position assumes
that there is some effect of familiarity on every trial. This
position, which we call the RT-familiarity hypothesis,
predicts that categorization RT decreases with stimulus

n

familiarity of X = ESXi,
;=1

(3)
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& Well, 1967; Shepard, 1964; however, see Ashby &
Lee, 1991; Ashby & Maddox, 1990).

The most powerful tests of the RT hypotheses require
an examination of RT throughout the perceptual space.
Such analyses are possible only in experiments in which
the stimuli vary continuously along each dimension. For
this reason, all experiments reported in this article in­
volved categories in which the exemplars were normally
distributed around a prototypical value on each stimulus
dimension (Ashby & Gott, 1988; Ashby & Maddox, 1990,
1992a). With two dimensions, each category is specified
by a bivariate normal distribution, such as the one shown
in Figure 2. Rather than draw a three-dimensional figure,
it is conventional to depict a bivariate normal distribu­
tion by a contour of equal likelihood, which is created
by taking a slice parallel to the stimulus plane at some
arbitrary height and looking down at the result from
above. The resulting figure is two-dimensional. With nor­
mal distributions, these contours are always circles or
ellipses.

Bivariate normal distributions are specified by three
kinds of parameters: (1) location (i.e., a mean on each
dimension), (2) spread (i.e., a variance on each dimen­
sion), and (3) association (i.e., a covariance or correlation
between dimensions). The contours of equal likelihood
convey information about each of these parameters. Each
contour is centered at the distribution mean. The ratio of
the x to y standard deviations equals the ratio of the hori­
zontal to vertical width of the contour, and the correla­
tion coefficient determines the slope of the major axis.

In the experiments reported below, each category is de­
fined by a specific bivariate normal distribution. Consider
an (A, B) categorization task in which the exemplars of
both categories are circular stimuli such as those shown
in Figure 1. On trials when an exemplar from Category A
is to be presented, a random sample (x, y) from the A

Figure 2. A bivariate normal distribution.

D

distance-to-bound is not exponential. For this article, the
RT hypotheses were tested directly. No assumptions are
made about the specific functional form relating RT to
the statistics of interest (e.g., distance-to-bound). Second,
Hyman and Frost arbitrarily selected one category bound
for their test of the RT-distance hypothesis. Specifically,
they chose one of an infinite number of bounds that per­
fectly separated the two categories. Third, because of the
minor goodness-of-fit differences among the various RT
hypotheses, they were unable to draw strong conclusions.
Finally, they did not examine the role of stimulus famil­
iarity on categorization RT.

a

2

.:

EXPERIMENTS 1 AND 2

Experiments 1 and 2 used three different kinds of stim­
uli. Examples are shown in Figure 1. In Experiment 1,
stimuli were vertical and horizontal line segments of vary­
ing length joined at an upper left comer. In Experiment 2,
stimuli were either rectangles that varied in width and
height or else semicircles of varying size that contained
a radial line of varying orientation. The components of
rectangles are thought to be perceptually integral (Bums
& Hopkins, 1987; Dunn, 1983; Felfoldy, 1974), whereas
the components of the circular stimuli are thought to be
perceptually separable (Bums, Shepp, McDonough, &
Weiner-Ehrlich, 1978; Gamer & Felfoldy, 1970; Hyman

Figure 1. Examples of the stimuli used in the experiments reported
in this article. The full circles shown in Figure Ie were used in Ex­
periment 3, whereas the top halves were used as the semicircles in
Experiment 2.
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High Overlap Condition

Figure 3. Contours of equal likelihood from the three conditions of Experiment 1.

distribution is used to construct a circle with size (i.e.,
diameter) x and orientation y. This stimulus is shown to
the subject using high-contrast, noise-free, response­
terminated displays. The subject is instructed to respond
with the name of the category of which the exemplar is
most likely a member. Feedback is given on each trial.
Because the distributions overlap, perfect performance is
impossible. Specifically, note that every stimulus has a
nonzero likelihood of having been drawn from either cat­
egory distribution. See Ashby (1992) for a more thorough
discussion of categories as normal distributions.

In all experiments reported below, each prototype (i.e.,
the mean, median, and mode of each distribution) was
displayed alternately with its category label five times,
at the beginning of every session. This was done in an
attempt to bias subjects toward prototype decision rules
and category representations. A failure to find prototype
effects on RT under these biased conditions would repre­
sent strong evidence against prototype theory.

The contours of equal likelihood used in the three con­
ditions of Experiment I are displayed in Figure 3. Note
that the category means are identical in all three condi­
tions. In the high-overlap condition, the exemplars in each
category have values on the two dimensions that are nega­
tively correlated. In the medium-overlap condition, the
dimensional values are uncorrelated; in the low-overlap
condition, they are positively correlated. In all three con­
ditions, the optimal classifier-that is, the device that max­
imizes overall categorization accuracy-uses the decision
bound, y = x. Response A is given to any exemplar falling
above this bound, and Response B is given to any exem­
plar falling below. The optimal classifier would correctly
categorize 65 % of the stimuli in the high-overlap condi­
tion, 80% of the stimuli in the medium-overlap condition,
and 95% in the low-overlap condition. Note that this de­
sign varies overall accuracy but keeps total variation
within each category approximately constant.

The stimuli used in Experiment 1 were the line figures
of Figure lA. With these stimuli, the decision rule,

Respond A if y-x > 0; otherwise respond B

is equivalent to the rule

Respond A if the stimulus is taller
than it is wide; otherwise respond B.

Ashby and Gott (1988) showed that subjects learn such
a rule quickly and spontaneously and that they apply it
consistently and in a nearly optimal fashion. Each sub­
ject in Experiment 1 completed one experimental session
comprising 400 categorization trials. Feedback was given
on each trial.

Experiment 2 used contours of equal likelihood simi­
lar to those of the low-overlap condition of Experiment 1
(see Table 1 for the exact parameter values). In both cases,
the categories were characterized by a positive correla­
tion, and the optimal decision bound was the line y = x.
In Experiment 2, however, the optimal classifier would
correctly classify 80% of the stimuli. There were two im­
portant differences between Experiment 2 and the low­
overlap condition of Experiment 1. First, the two exper­
iments used different stimuli. Half the subjects in Exper­
iment 2 used the rectangular stimuli, and half used the
semicircular stimuli. This allows a test of whether the re­
sults of Experiment 1 generalize to other stimulus com­
ponents. Second, each subject in Experiment 2 completed
three experimental sessions, whereas each subject in Ex­
periment 1 completed only one session. This difference
allows us to examine the effects of experience on catego­
rization RT. In all other respects, the two experiments
were identical.

General Method
Subjects

All subjects in the experiments were volunteers from the UCSB
community who were paid at a base rate of $5 for each I-h ex­
perimental session. All subjects had either 20/20 vision or vision
corrected to 20/20. Twelve subjects participated in Experiment 1,
and 4 subjects participated in Experiment 2. No subject participated
in more than one experiment. Four subjects participated in each
ofthe three conditions of Experiment I (low-, medium-, and high­
overlap, all with the line stimuli). Each subject completed one ses­
sion of 400 trials. Two subjects participated in each of the two con­
ditions of Experiment 2 (medium-overlap rectangles and semi­
circles), and each subject completed three sessions of 400 trials.

Stimuli
Figure 1 presents examples of the line and rectangle stimuli. The

semicircles of Experiment 2 were identical to the top half of the
Figure 2 circles. In both experiments, the stimuli were computer
generated and displayed on a Mitsubishi Electric Color Display Mon­
itor Model No. C-9918NB in a dimly lit room. Two categories,
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Table 1
Parameter Values for the Categories of Experiments 1 and 2

Experiment 1

Parameter Low Overlap Medium Overlap lIigh Overlap Experiment 2

Category A

JLx 200 200 200 92
JLy 250 250 250 128
CTx 67 42 67 42
CTy 67 42 67 42

Pxy .896 0 -.896 .492

Category B

JLx 250 250 250 128
JLy 200 200 200 92
CTx 67 42 67 42
CTy 67 42 67 42

Pxy .896 0 -.896 .492

A and B, were devised by defining a pair of bivariate normal dis­
tributions.

The contours of equal likelihood for each of the three conditions
of Experiment 1 are shown in Figure 3. Table 1 gives the exact
parameter values describing the populations in each condition of
both experiments. The size dimensions are given in pixel units based
on a screen with a resolution of 1,024X768. There were approxi­
mately 27.8 pixels/em, and the subjects sat approximately 140 em
from the screen. In Experiment I, the average visual angle of all
stimuli was 3.3 0

, with a standard deviation of O. 8". In Experiment 2,
the average visual angle was 1.6 0

, with a standard deviation of 0.6 0
•

The orientation units of the semicircular stimuli were arbitrarily
defined so that I,OOOhr units was equal to 1.0 radian. Thus, a mean
on the orientation dimension of 250 is equivalent to 1f/4 radians
(i.e., 250 divided by I,OOO/1f), so the bound y = x equates a size
of 250 pixels (about a quarter of the screen width) with a half of
a semicircle (71"/4 radians). To use the bound y = x, the subject
must somehow compare size and orientation units. As Ashby and
Maddox (l992a, p. 57) explain, no special problems with the data
analysis arise if the subject equates 250 pixels with some orienta­
tion other than 1f/4 radians.

On each trial, stimulus generation proceeded as follows. First,
a category (A or B) was randomly selected (each with probability
0.5). Next, a random sample (x, y) was drawn from the appropriate
bivariate normal distribution. A stimulus was then constructed with
either width (for the line figures and the rectangles) or radius (for
the semicircles) equal to x and height or orientation equal to y.

Procedure
On every trial, the subject's task was to categorize the stimulus

as an exemplar of category A or B by pressing an appropriate button.
The subjects were told that RT was being recorded and that they
should respond as quickly as possible without sacrificing accuracy.
The stimulus display was terminated either by the subject's response
or after 5 sec without a response. Feedback showing the correct
response was displayed for 2 sec immediately following the subject's
response. The next trial began 1 sec after the feedback disappeared.

At the beginning of each session, each prototype (i.e., the mean
ofeach distribution) was displayed alternately with its category label
five times. The first 100 trials of each session served as practice.
A pause separated the practice trials from the 300 experimental trials.
During the pause, the subject was allowed to ask questions about
the procedure. The experimental session consisted offour 75-block
trials. There was a 30-sec pause between blocks to allow subjects
to rest.

Results and Discussion

Accuracy Analysis
Tables 2 and 3 describe characteristics of the responses

given by the subjects in each condition. Column 3 gives
each subject's percent correct and column 4 gives the per­
cent correct to be expected from a subject who used the
optimal bound perfectly. These percentages differ some­
what from the population values (i.e., 95%, 80%, and
65% for the low-, mediurn-, and high-overlap conditions,
respectively) because of sampling variability. Table 2 in­
dicates that all but one subject in Experiment 1 (Subject 4
in the high-overlap condition) performed at close to this
optimal level. Table 3 indicates that, by Day 3, both sub­
jects in the rectangle condition were responding nearly
optimally but that both of the circle condition subjects
responded suboptimally throughout the experiment.

For each subject, we also determined the linear bound
that best separated the A and B responses, which we call
the discriminant bound. An A response is correctly pre­
dicted if it is above the bound; a B response is correctly
predicted if it is below the bound. The discriminant bound
maximizes the number of correctly predicted responses.
Tables 2 and 3 also describe the discriminant bounds,
along with the percentage of responses accounted for by
the discriminant and optimal bounds. For all subjects in
Experiment 1, the number of responses correctly pre­
dicted by the discriminant bound is less than 4 % greater
than the number correctly predicted by the optimal bound,
and for 10 of the 12 subjects, the difference is less than
2%. In Experiment 2, some of these differences are
larger, suggesting that some subjects may have used a sub­
optimal bound. Even so, in both experiments, the dis­
criminant bound slopes are all within .4 of the optimal
slope. In addition, a number of the intercepts are large,
suggesting the possibility of response biases. .

In Experiment 1, and for the rectangular stimuli in Ex­
periment 2, the discriminant bound correctly predicted at
least 89% of the responses in 17 of the 18 cases. The only
exception was Subject 4 in the high-overlap condition of
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Table 2
Characteristics of the Responses Given in Experiment 1 (Line Stimuli)

% of Responses % of Responses
% % Correct by Accounted for by Discriminant Accounted for by

Condition Subject Correct Optimal Bound Optimal Bound Bound Discriminant Bound

Low I 92.6 94.6 93.6 y = x-23 96.0
Overlap 2 94.3 94.3 94.0 y = x+4.6 95.0

3 92.6 95.3 94.0 y = x-23.8 96.0
4 93.7 96.3 96.0 y = x-4.1 97.0

Medium 1 82.7 83.3 91.3 y = 1.3x-79.7 94.7
Overlap 2 78.6 81.9 94.3 y = x+2 94.6

3 78.3 82.3 90.7 y = x-lO 92.0
4 82.3 85.0 94.0 y=x-ll.8 94.7

High 1 63.2 63.9 91.0 y = 1.4x-78.2 92.0
Overlap 2 59.2 62.2 88.0 y = .7x+65 90.0

3 62.3 63.0 93.3 y=x-1O.3 95..0
4 61.3 67.0 77.7 y = .8x+55 78.3

Table 3
Characteristics of the Reponses Given in Experiment 2 (Medium Overlap)

% of Responses % of Responses
% % Correct by Accounted for by Discriminant Accounted for by

Condition Subject Day Correct Optimal Bound Optimal Bound Bound Discriminant Bound

Rectangle 1 1 69.6 75.6 77.6 y = 1.3x-3.3 91.0
2 74.7 79.3 85.3 y = 1.2x+3.7 89.3
3 79.5 80.0 90.9 y = l.lx+6.6 95.6

2 1 76.8 79.1 85.2 y = x-12.9 90.9
2 76.3 76.3 88.6 y = .9x-6.9 92.3
3 81.0 82.7 92.3 y = l.lx-16.4 94.3

Circle 1 73.6 78.6 76.8 y = .8x+28.4 80.6
2 75.3 81.7 84.7 y = l.lx+3.4 85.7
3 73.7 82.6 87.0 y = .9x+18.4 89.3

2 1 48.1 78.8 50.5 y = .9x-3.9 51.8
2 68.0 81.3 73.8 y = x+30.5 81.6
3 74.0 83.0 81.3 y = .6x+50.4 87.7

Experiment 1. For this subject, both the discriminant and
optimal bounds incorrectly predicted many responses.
This indicates that this subject either began guessing fre­
quently or else gave up completely on the y = x decision
rule and adopted some other response strategy.

For the semicircular stimuli in Experiment 2, the dis­
criminant bound less successfully predicted responding.
Even so, in both conditions (rectangles, semicircles), the
percentage of responses correctly predicted increased with
the subject's level of experience. In fact, by the third ex­
perimental session, the performance of the discriminant
bound was almost as good as that in the other stimulus
conditions. See Ashby and Gott (1988) and Ashby and
Maddox (1990, 1992a) for a more thorough discussion
of accuracy analyses in experiments with normally dis­
tributed categories.

Response-Time Analysis
One important difficulty in testing the various RT hy­

potheses is that they all make predictions about the rela-

tion of RT to the position of stimuli within the perceptual
space-not about the position of stimuli within the stimulus
space. Unfortunately, of course, the perceptual space is
unobservable. Nevertheless, all is not lost. First, the
Stevens exponent for length is very close to 1.0 (Stevens,
1961), so the perceived size dimensions should approxi­
mately equal the physical size dimensions (although see
Krueger, 1989, on the dangers of interpreting magnitude
estimates of line length as direct measures of subjective
magnitude). Second, psychological scaling solutions that
have been derived for the semicircular stimuli have shown
that the perceptual space is very similar to the stimulus
space (Nosofsky, 1986; Nosofsky, Clark, & Shin, 1989;
Shepard, 1964). Third, the experiments use three differ­
ent kinds of stimuli. If the results generalize across the
different stimulus sets, concerns about some unexpected
transformations between the stimulus and perceptual
spaces are reduced. Fourth, virtually all of our RT anal­
yses assume only an ordinal relation between RT and po­
sition of the stimulus in the stimulus space. As such, they
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remain valid under a large class of monotonic transfor­
mations. Thus, these analyses do not require a close cor­
respondence between the stimulus and perceptual spaces.

RT -distance hypothesis. The first RT analyses are
shown in Tables 4 and 5. Median RTs for each condition
are shown separately for both correct and incorrect re­
sponses. As described above, the RT-distance hypothe­
sis predicts that in these experiments, incorrect RTs should
be slower than correct RTs and that this difference should
decrease as distributional overlap increases. In brief, this
prediction is made because, when distributional overlap
is small, most incorrectly categorized exemplars will be
close to the decisionbound and therefore will be associated
with long RTs. In the high-overlap condition of Experi­
ment 1, however, some incorrectly categorized exemplars
will be far from the decision bound and therefore should
be associated with short RTs. Table 4 indicates that these
predictions are supported for every subject in Experi­
ment 1. In Experiment 2, the correct median RTs are
faster in 11 of the 12 cases (see Table 5). The only ex­
ception occurs during the first experimental session of
Subject 2 in the rectangle condition.

An ideal test of the various RT hypotheses would be
to fit the models to estimates of the mean RT to every
stimulus and then to compare the resulting goodness-of­
fit values. Unfortunately, this cannot be done without add­
ing many extra assumptions. This is because each of the
RT hypotheses makes predictions only at the ordinal level,
whereas fitting the mean RTs requires predictions at the
ratio scale level. For example, the RT-distance hypothe­
sis predicts that RT decreases as one moves away from
the decision bound, but it says nothing about the func­
tional form that this decrease takes. One could fit a model
to the mean RT surfaces that assumes RT decreases in
an exponential fashion as one moves away from the deci­
sion bound, but a poor fit of this model is not necessarily
evidence against the RT-distance hypothesis. For exam­
ple, the RT-distance hypothesis may be correct, but RT
may falloff as a power function of distance-to-bound
rather than as an exponential function.

Table 4
Median RTs in Experiment 1 (Line Stimuli)

Correct Incorrect
Condition Subject Responses Responses

Low I 872 1,528
Overlap 2 629 1,088

3 871 1,537
4 591 978

Medium 1 678 911
Overlap 2 671 996

3 540 638
4 449 486

High 1 805 818
Overlap 2 853 904

3 499 519
4 386 417

Table 5
Median RTs in Experiment 2 (Medium Overlap)

Correct Incorrect
Condition Subject Day Responses Responses

Rectangle 1 I 795 824
2 672 714
3 642 725

2 I 710 688
2 457 503
3 464 520

Circle I 878 1,014
2 1,025 1,358
3 884 1,079

2 I 1,109 1,412
2 2,157 2,229
3 1,151 1,725

Fortunately, it is possible to test the RT hypotheses
directly by computing various rank-order correlations. For
example, to test the RT-distance hypothesis, one rank
orders the subject's responses by RT, then rank orders
them by distance-to-bound, and finally computes the cor­
relation between these two rankings. If the RT-distance
hypothesis is correct, the resulting correlation should be
negative, no matter what the function relating RT to
distance-from-bound. The RTs from all responses (both
correct and incorrect) should be included in these com­
putations, since trials on which the subject responds with
the incorrect category are not necessarily errors in the
traditional sense. For example, because the category dis­
tributions overlap, it is possible that a subject processes
the stimulus information optimally, makes the same re­
sponse as the optimal classifier, but is incorrect. Some
errors might be the result of mistakes in processing, but
we expect most errors are due to the overlapping nature
of the category distributions. Therefore, all RT correla­
tions reported in this article are based on all responses
made by the subject.

Tables 6 and 7 list some (Spearman) rank-order corre­
lation coefficients relevant to the RT-distance and RT­
prototype hypotheses. The first set of correlations are be­
tween the RT on each trial and the (Euclidean) distance
between the stimulus that was presented and the optimal
decision bound (i.e., the bound y = x). The second set
of correlations is identical except that instead of comput­
ing distance to the optimal bound, distance was computed
to the discriminant bound (given in Tables 2 and 3). The
RT-distance hypothesis predicts that these correlations
should be negative.

In Experiment 1, the RT-distance hypothesis is strongly
supported for every subject,' except Subject 4 in the high­
overlap condition. In general, it makes little difference
whether distance is computed to the optimal or to the
discriminant bound, probably because the discriminant
bounds were not much different from the optimal bounds
(i.e., see Table 2). The only exceptions are for Subjects
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Table 6
Spearman Rank-Order Correlations for Experiment 1 (Line Stimuli)

RT Distance
Condition Subject (Optimal Bound)

RT Distance
(Discriminant Bound) RT Prototype

Low I -0.432*
Overlap 2 -0.500*

3 -0.434*
4 -0.454*

Medium I -0.661 *
Overlap 2 -0.542*

3 -0.435*
4 -0.399*

High I -0.421 *
Overlap 2 -0.339*

3 -0.241*
4 -0.047

-0.538*
-0.507*
-0.562*
-0.436*

-0.689*
-0.544*
-0.415*
-0.379*

-0.399*
-0.329*
-0.256*
-0.037

0.Q78
0.134t
0.046
0.127t

-0.049
-0.021
-0.257
-0.072

-0.357
-0.231
-0.124

0.Qi5

*p < .001. t.OOI < P < .05.

RT Prototype

Table 7
Spearman Rank-Order Correlations for Experiment 2 (Medium Overlap)

RT Distance RT Distance
Condition Subject Day (Optimal Bound) (Discriminant Bound)

-0.020
0.162t
0.055
0.Qi1

-0.080
0.114

0.046
0.Qi5

-0.010
-0.088
-0.034

0.030

2

2

Circle

Rectangle I I 0.152 -0.006
2 -0.115t -0.270*
3 -0.311 * -0.504*
I -0.101 -0.147t
2 -0.308* -0.206*
3 -0.316* -0.352*

I -0.099 -0.185t
2 -0.369* -0.409*
3 -0.306* -0.340*
I 0.029 0.087
2 -0.211* -O.I72t
3 -0.268* -0.448*

*p < .001. t.OOI < p < .05.

1 and 3 in the low-overlap condition, in which the corre­
lations computed from the discriminant bound are substan­
tially more negative than are the correlations computed
from the optimal bound. Because decision-bound theory
predicts that the discriminant bound should be better than
the optimal bound as an estimate of the subject's true
decision bound, this result supports the RT-distance
hypothesis.

In Experiment 2, there is a substantial effect of prac­
tice. In every case the RT-distance correlations are more
extreme on Day 3 than on Day 1. In fact, by Day 3, for
every subject, the RT-distance hypothesis is supported,
and the correlations computed from the discriminant
bound are more extreme than those computed from the
optimal bound. On Day 1, however, the optimal-bound
version of the RT-distance hypothesis is not supported
by the data from any subjects. The discriminant-bound
version receives marginal support from two subjects. With
difficult categorization problems, a certain amount of in­
stability in performance is expected while the subject is
learning the appropriate decision bound. During this pe-

riod, the RT-distance hypothesis may be valid, but be­
cause of the changing nature of the decision bound, cor­
relations of the type listed in Table 7 will be unimpressive.
Recall, however, that, in Experiment 1, each subject only
completed one experimental session, and yet the data of
11 of 12 subjects supported the RT-distance hypothesis.
Thus, this hypothesis indicates that the Experiment 1 cat­
egorization task must have been easier to learn than was
the Experiment 2 task. Recall that the optimal bound was
the same in the two experiments but that the stimuli were
different. Experiment 1 used the line stimuli, and Exper­
iment 2 used rectangles and semicircles. The dimensions
of the semicircles are in different units (i.e., orientation
and size), therefore it makes sense that a task that requires
integrating information from such dimensions would be
more difficult than the same task with the line or rect­
angle stimuli (see Ashby & Maddox, 1990). It is not so
obvious, perhaps, why the rectangle stimuli should be
more difficult than the line stimuli. There is substantial
evidence, though, that the dimensions of rectangles are
integral (Bums & Hopkins, 1987; Dunn, 1983; Felfoldy,
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1974), whereas the dimensions of the line stimuli are
separable (Ashby & Gott, 1988; Ashby & Perrin, 1988;
Townsend, Hu, & Ashby, 1981). In support of this pos­
sibility, note that all 4 subjects in Experiment 2 performed
more poorly during Day 1 than did any of the medium­
overlap subjects in Experiment 1 (see Tables 2 and 3),
although in both cases optimal accuracy was 80%.

RT -comparative-prototype hypothesis. If the cate­
gory prototypes are interpreted as the category means,
medians, or modes, then in Experiments 1 and 2, the RT­
comparative-prototype hypothesis is identical to the ver­
sion of the RT-distance hypothesis that assumes the sub­
ject uses the optimal bound. A more general version of
the prototype model allows the location of the category
prototypes to be free parameters. In this case, the RT­
comparative-prototype hypothesis is identical to the
discriminant-bound version of the RT-distance hypothe­
sis (Ashby, 1992; Ashby & Maddox, 1993). Thus, the
design of Experiments 1 and 2 make it impossible to test
between the RT-distance and RT-comparative-prototype
hypotheses. Experiment 3 was designed specifically to
make such a comparison possible.

RT -nearest-prototype hypothesis. The last column
in Tables 6 and 7 lists correlations between each RT and
the distance to the nearest prototype, with the prototypes
defined as the means of the category distributions (or
equivalently as the medians or modes). The RT -nearest­
prototype hypothesis predicts that this correlation should
be positive. Only 3 of the 24 correlations listed in Tables
6 and 7 marginally support this prediction. In fact, more
than half of the correlations in Experiment 1 are nega­
tive. This result causes extreme difficulty for the RT­
nearest-prototype hypothesis.

Although these results rule out the possibility that RT
is determined by similarity to the nearest prototype, they
do not rule out the possibility that the fastest responses
were to the category prototypes-that is, they do not rule
out all possible prototype effects. To test for this weaker
type of prototype effect, we computed the RT rank of the
stimulus most similar to each category prototype (the dis­
tribution means were not necessarily presented), which
resulted in two numbers for each experimental session­
the RT rank of the stimulus most similar to the Category A
prototype and the RT rank of the stimulus most similar
to the Category B prototype. During each session, 300
stimuli were presented, therefore a stimulus selected at
random had an expected RT ranking of 150.5. In Exper­
iment 1, the mean ranking of the stimulus most similar
to the prototype was 142.7. In Experiment 2, the mean
was 140.9. Since an RT ranking of 1 was assigned to the
slowest response, these results indicate that RT to the
prototypes was somewhat greater than would be expected
from a stimulus drawn at random.

These results indicate that the prototypes have no spe­
cial role within the entire set of stimuli. An even weaker
type of effect would occur if the prototypes at least were

favored among all stimuli that were as equally discrimina­
tive as the prototype with respect to the A versus B cate­
gorization. To test this possibility, for each prototype in
every data set, we computed the distance to the discrim­
inant bound. We then found the 50 stimuli whose distance­
to-bound was most similar to the prototype distance-to­
bound. This procedure selects a set of stimuli that all fall
in a swath that covers the prototype and is parallel to the
decision bound. Within each of these sets, we rank or­
dered the stimuli by RT. A stimulus selected at random
from one of these sets had an expected mean RT rank of
25.5. In Experiment 1, the prototypes had a mean RT
ranking of28; in Experiment 2, the mean rank of the pro­
totypes was 23.8. Thus, even within the limited set of
stimuli that are approximately equally discriminative with
respect to the A versus B categorization, the prototypes
have no favored status. In short, these results fail to find
any special role for the prototypes in predicting categori­
zation RT.

The RT -familiarity hypothesis. To investigate the
role of stimulus familiarity on categorization RT, we com­
puted the rank-order correlations between each RT and
the familiarity score associated with each stimulus, with
familiarity defined by Equation 3. The RT-familiarity hy­
pothesis predicts that these correlations should be nega­
tive. Note that the validity ofthe RT-familiarity hypoth­
esis may depend on the numerical values of the c and a
parameters of Equation 1, and also on the nature of the
distance metric. Because of this, we did separate analyses
for the following three models: (1) Model EC assumed
an exponential similarity function (a = 1) and city-block
distance, (2) Model EE assumed an exponential similarity
function and Euclidean distance, and (3) Model GE as­
sumed a Gaussian similarity function (a = 2) and Eu­
clidean distance. For each model, we estimated c directly
from the RT data. Specifically, by using an iterative search
procedure, we determined the value of c that minimized
the rank-order correlation between RT and stimulus fa­
miliarity (i.e., made the correlation most negative). The
performance of the three models was very similar. Never­
theless, Model GE consistently outperformed the other
two models, so we restrict our attention to this version
of the RT-familiarity hypothesis.

Tables 8 and 9 list the estimated values of c for
Model GE, along with the resulting correlations between
RT and familiarity. For comparison purposes, the corre­
lations with distance to the discriminant bound are also
listed. None of the correlations with familiarity were sig­
nificantly less than zero. In fact, in both experiments, most
correlations were positive. These data argue strongly
against the validity of the RT-familiarity hypothesis.

In each condition of Experiment 1, the stimuli with the
lowest familiarity scores came from the tails of the cate­
gory distributions. In the medium- and high-overlap con­
ditions, the category distributions are oriented so that the
least familiar stimuli are far from the decision bound. In
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Table 8
Results of Testing for Familiarity Effects on RT in Experiment 1 (Line Stimuli)

RT-Distance Distance- Regression
RT- Correlation Familiarity Weight

Familiarity (Discriminant Regression on
Condition Subject c Correlation Bound) Model Familiarity

Low I 0.043 -0.086 -0.538* -0.544* 0.049
Overlap 2 0.268 -0.057 -0.507* -0.512* 0.131

3 0.116 -0.014 -0.562* -0.562* 0.008
4 0.047 -0.061 -0.436* -0.444* 0.074

Medium I 0.064 0.109 -0.689* -0.690* 0.006
Overlap 2 35.76 0.078 -0.544* -0.544* 0

3 2.94 0.122 -0.415* -0.415* 0
4 0.005 0.090 -0.379* -0.382* 0.060

High I 5.48 0.160 -0.399* -0.411 * 0.114
Overlap 2 14.91 0.051 -0.329* -0.330* 1.130

3 5.48 0.046 -0.256* -0.261* 0.417
4 0.014 -0.062 -0.037 -0.054 7.375

*p < .001.

Table 9
Results of Testing for Familiarity Effects on RT in Experiment 2 (Medium Overlap)

RT-Distance Distance- Regression
RT- Correlation Familiarity Weight

Familiarity (Discriminant Regression on
Condition Subject Day c Correlation Bound) Model Familiarity

Rectangle 1 1 0.014 -0.056 -0.006 -0.056 00

2 0.002 -0.112 -0.270* -0.276* 0.031
3 14.905 0.007 -0.504* -0.505* 0.006

2 1 0.002 -0.038 -0.147t -0.186t 0.374
2 3.769 0.127 -0.206* -0.206* 0
3 0.005 -0.036 -0.352* -0.354* 0.048

Circle 1 0.004 0.120 -0. 185t -0.185t 0
2 0 0.134 -0.409* -0.409* 0
3 1.080 0.097 -0.340* -0.340* 0

2 1 0.005 -0.072 0.087 -0.076 2.20
2 0.008 0.085 -O.l72t -O.l72t 0
3 45.91 0.097 -0.448* -0.450* 0

*p < .001. -.oor < p < .05.

this case, the RT-distance and RT-familiarity hypothe­
ses are in opposition. The RT-distance hypothesis predicts
that the least familiar stimuli will elicit the quickest re­
sponses, since they are furthest from the bound. Thus,
the RT-distance hypothesis predicts that correlations be­
tween RT and familiarity should be positive in these two
conditions. Table 8 indicates that seven of the eight RT­
familiarity correlations in the medium- and high-overlap
conditions are positive. In contrast, in the low-overlap
condition, the tails of the category distributions are
oriented so that the least familiar stimuli are close to the
decision bound (i.e., see Figure 3). Thus, even in the ab­
sence of familiarity effects, if the RT-distance hypothe­
sis holds, there will be a tendency for the correlations with
familiarity to be negative. Table 8 indicates that all four
RT-familiarity correlations are negative in the low­
overlap condition. Thus, the results in Table 8 are con-

sistent with the hypothesis that the RT-distance hypothe­
sis holds and that there is no effect of stimulus familiarity.

The RT-familiarity hypothesis predicts that stimulus fa­
miliarity is the primary determinant of categorization RT
on every trial. Another, less ambitious view, which is sug­
gested by Nosofsky's (1991) results, is that familiarity
influences RT only for the least familiar stimuli. To test
this hypothesis, we computed the familiarity rankings of
the stimuli associated with the 10 slowest responses. As
mentioned above, each experimental session consisted of
300 trials, so one stimulus selected at random had an ex­
pected ranking of 150.5. In Experiment 1, the stimulus
associated with the slowest response had a mean famil­
iarity ranking of 166 (averaged over subjects and condi­
tions). The 10 slowest responses had a mean ranking of
120.4. Thus, the stimuli associated with the 10 slowest
responses in Experiment 1 were somewhat more familiar
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than were 10 stimuli selected randomly. In Experiment 2,
the mean familiarity ranking of the stimuli associated with
the 10 slowest responses was 155.4, about the same as
one wouldexpect if the stimuli had been chosen randomly.
If the data of each day are examined separately, the pic­
ture looks only slightly better for this modified version
of the RT-familiarity hypothesis. The mean familiarity
rankings of the stimuli associated with the 10 slowest re­
sponses were 185.2 on Day 1, 137.9 on Day 2, and 143.0
on Day 3. Thus, on Day 1, the stimuli associated with
the 10 slowest responses are somewhat less familiar than
would beexpected by chance. Even so, the effect is slight.
The slowest response on Day 1 was to a stimulus with
a mean familiarity ranking of 204.5, meaning that there
were almost 100 stimuli that were less familiar but for
which RT was nevertheless faster. Also note that the data
from Experiment 1 did not show this marginal effect of
familiarity, even though the subjects in Experiment 1
completed only one experimental session.

So far, the results indicate that familiarity is not the
primary determinant of categorization RT in these exper­
iments, even for the least familiar stimuli. Another pos­
sibility, however, is that familiarity has some small effect
on every trial but that the primary determinant is some
other principle, such as the RT-distance hypothesis. We
tested this hypothesis with an ordinal version of multiple
regression. Specifically, on each trial, we computed the
weighted sum of distance-to-bound and familiarity (DF),

DF = (distance to discriminant bound)

+ (W x familiarity),

where W is a nonnegative constant. We then computed
the rank-order correlation of the statistic DFwith RT. An
iterative search procedure was used to find the value of
W that minimized the rank-order correlation coefficient.
To make the magnitude of the regression weight more
meaningful, the distances and familiarities were first stan­
dardized to have the same mean and variance. Thus, a
regression weight of W = 1 means that both distance and
familiarity contributed equally to the RT prediction.

The rank-order correlations predicted by this regres­
sion model are given in Tables 8 and 9, along with the
best-fitting value of the regression weight W (i.e., the
value that made the correlation most negative). The re­
gression model must always perform at least as well as
the discriminant-bound version of the RT-distance hy­
pothesis, because when W = 0, the two models are iden­
tical. In Experiment 1, the correlations predicted by the
regression model are less than .02 more extreme than the
correlations predicted by the RT-distance hypothesis in
all 12 cases and are less than .01 more extreme in 10 of
the 12 cases. Adding a familiarity component (and a free
parameter) to the RT-distance hypothesis increases the
average percent of variance accounted for by less than
1%. In Experiment 2, the regression model improves the
rank-order correlation of the RT-distance hypothesis by

no more than .006 in 9 of 12 cases. The three exceptions
are all from Day 1. In these three cases, however, the
regression model accounts for only 1.45 % of the vari­
ance in the data. Finally, note that in 8 of 24 cases in the
two experiments, the value of the regression weight that
maximized percent of variance accounted for was zero,
indicating that the RT-distance hypothesis accounted for
the data as well as did any form of the regression model.

The only evidence we obtained that indicated any ef­
fect of stimulus familiarity on categorization RT appeared
in plots that estimated mean RT as a function of the stim­
ulus coordinates. These plots were generated using the
distance-weighted least squares procedure (McLain, 1974)
provided by the statistical package, SYSTAT (Wilkinson,
1990). In general, the plots confirmed all of our other
analyses. Specifically, they all showed a dramatic ridge
hovering approximately over the discriminant bound, with
RT falling off symmetrically on either side. In addition,
there were no obvious depressions at the prototype coor­
dinates. In some plots, however, there was a pronounced
saddle in the ridge lying above the decision bound. A strict
interpretation of the RT-distance hypothesis requires this
ridge to be flat. There are several possible explanations.
First, the saddles may be due to random variation in
performance and have no real psychological meaning.
Second, they may be due to a systematic bias in the
distance-weighted least squares procedure. Third, the
peaks may be due to familiarity effects. This alternative
seemed especially likely since the low points of the sad­
dles were between the category prototypes, above regions
of the stimulus plane associated with high stimulus den­
sity (i.e., high familiarity).

In an effort to determine whether these saddles were
statistical artifact or due to some real psychological phe­
nomenon, we performed the following analysis. First, for
each data set we selected the 50 stimuli that were nearest
to the discriminant bound. This effectively isolates a swath
of stimuli lying directly under the discriminant bound.
Second, each of these stimulus sets was grouped into
deciles with respect to distance from the origin (i.e., from
the point (0,0». This procedure is equivalent to making
nine cuts perpendicular to the discriminant bound with
the property that 5 stimuli lie between each pair of cuts.
Third, mean RT was computed for the five stimuli com­
prising each decile. The resulting mean RTs are plotted/
in Figure 4.

These plots show estimated mean RT along the subject's
decision bound. If the saddles in the SYSTAT mean RT
plots are due to a familiarity effect, the Figure 4 plots
should be Ll-shaped, because the endpoints are associated
with stimuli that are less familiar than the midpoints. As
can be seen, however, there is no consistent V-shaped
trend. Although some plots show a large deviation from
the flat function predicted by the RT-distance hypothe­
sis, the single function best fitting the entire set of plots
would be very close to flat. In summary, Figure 4 indi­
cates no support for the RT-familiarity hypothesis."
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Figure 4. Estimated mean response time profiles along the discriminant decision bound.

None of our analyses found any evidence that stimulus
familiarity affects categorization RT. This does not mean
that familiarity will never affect RT. For example,
Nosofsky (1991) found long RTs to an unfamiliar stimulus
far from the decision bound. However, in Nosofsky's ex­
periment, the unfamiliar stimulus was many standard devi­
ations away from its nearest neighbor. In our experiments,
all stimuli were drawn randomly from (bivariate) normal
distributions. Thus, the density of the stimuli in the stim­
ulus space decreased continuously as one moved away
from the category prototypes. Therefore, our results do
not contradict the results of Nosofsky (1991). Taken to­
gether, the two studies suggest the following role of stim­
ulus familiarity on categorization RT: Familiarity has
negligible effects on RT except when the stimulus is so
unfamiliar that its nearest neighbor is many standard devi­
ations away.

EXPERIMENT 3

Experiments 1 and 2 falsified the RT-nearest-prototype
and RT-familiarity hypotheses, but were unable to test
between the RT-distance and RT-comparative-prototype
hypotheses, because, in both experiments, these two hy­
potheses made identical predictions. As noted above, how-

ever, in an (A, not A) task, the RT-distance and RT­
comparative-prototype hypotheses make strikingly differ­
ent predictions. On trials in which the subject responds
yes, both hypotheses predict that RT will increase with
distance from the prototype. The RT-distance hypothe­
sis makes this prediction because moving away from the
prototype is equivalent to moving toward the decision
bound. On trials in which the subject responds no, how­
ever, the two hypotheses make opposite predictions. The
RT-comparative prototype hypothesis predicts that RT
will continue to increase with distance from the proto­
type, but the RT-distance hypothesis predicts that RT will
decrease with distance from the prototype, because, now,
moving away from the prototype is equivalent to moving
away from the decision bound. Experiment 3 was run to
test these predictions.

Method
Subjects

There were 6 subjects. Three subjects participated in each of two
conditions. Each subject completed one experimental session.

Stimuli
The contour of equal likelihood describing Category A was sim­

ilar to the contours of the two categories in the medium-overlap
condition of Experiment 1. There were two conditions. In one, stim-
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uli were the rectangles of Figure IB; in the other, stimuli were the
circles of Figure I C. In the circle condition, stimuli on A trials were
drawn from a bivariate normal distribution with a mean of250 and
a standard deviation of 51.5 on each stimulus dimension. The same
parameters were used in the rectangle condition except mean width
was set to 350 (so the prototype was not square). In both condi­
tions, stimuli on not A trials were drawn from a bivariate uniform
distribution centered at the Category A mean. The uniform distri­
bution extended from 0 to 500 on both stimulus dimensions (100
to 600 on the width dimension in the rectangle condition). The de­
cision bound that maximizes categorization accuracy in this task
is circular and centered at the Category A mean. The Category A
variance was selected so that a subject using the optimal bound per­
fectly would have an overaIl accuracy rate of 90%. On average,
the Category A stimuli were 5.1 ° wide and 3.7" high. The stan­
dard deviation on both dimensions was 0.76°.

Procedure
The procedures were the same as in Experiments I and 2 except

that auditory rather than visual feedback was given. A correct re­
sponse was indicated by a high-pitched tone, and an error was in­
dicated by a low-pitched tone (both of200-msec duration). The inter­
trial interval was 1.5 sec.

Results and Discussion

Accuracy Analysis
Table 10 describes characteristics of the subjects' re­

sponses in each condition. All subjects performed well
below the 90% optimal accuracy level, which indicates
that this was a difficult task. This conclusion is supported
by a comparison of the discriminant and the optimal
bounds. The discriminant bound was constrained to be
a circle, but its location and radius were estimated from
the data. Perhaps the most striking result of Table 10 is
that the radius of the discriminant bound was significantly
larger than the radius of the optimal bound for every sub­
ject, which indicates a large bias in favor of responding
yes. There are also large discrepancies between the centers
of the optimal and discriminant bounds, but these tend
not to be systematic. The only exception is that in the rect­
angle condition, all subjects centered the discriminant
bound to the right of the optimal center. On the other hand,
given the large radii of the discriminant bounds, the dis­
crepancies between the centers of the discriminant and
optimal bounds should not be overemphasized. In almost
all cases, the optimal bound was completely contained

within the discriminant bound. Thus, the subjects almost
always agreed with the optimal classifier on yes responses.

Response Time Analysis
Four different sets of Spearman rank-order correlations

were computed separately for yes and for no responses."
These included two versions of the RT-distance hypoth­
esis and two versions of the RT-prototype hypothesis. Re­
sponse times were correlated with two distance-to-bound
measures and two distance-to-prototype measures: (1) dis­
tance to the optimal bound, (2) distance to the discriminant
bound, (3) distance to the center of the optimal yes region
(the optimal prototype), and (4) distance to the center of
the best-fitting yes region (i.e., as defined by the dis­
criminant bound; the resulting point is therefore called the
discriminant prototype). Results are shown in Table 11.

For both yes and no responses, the RT-distance hypoth­
esis predicts negative correlations for the two distance­
to-bound measures and the RT-comparative-prototype hy­
pothesis predicts positive correlations for the two distance­
to-prototype measures. As Table 11 indicates, both of these
predictions were supported on yes trials. Note also that
for both hypotheses, correlations on yes trials were gener­
ally more extreme when computed with respect to the dis­
criminant bound than when computed with respect to the
optimal bound. A comparison of the discriminant bound
correlations favors the RT-prototype hypothesis, but only
slightly.

On no trials, the correlations with the two distance-to­
bound measures were again negative, as predicted by the
RT-distance hypothesis, but the correlations with the two
distance-to-prototype measures were also negative, in con­
tradiction of the RT-prototype hypothesis. The fastest no
responses were to those stimuli furthest from the bound
that separates the yes and no responses, not to those stimuli
nearest to the category prototype.

These results clearly indicate that RT is not controlled
by the category prototype. Specifically, knowledge of the
prototype location is insufficient to allow one to predict
which stimuli will be associated with the slowest RTs.
On the other hand, if the decision bound is known, the
stimuli associated with both the fastest and slowest RTs
can be identified a priori. This does not mean that the pro-

Table 10
Characteristics of the Responses Given in Experiment 3

Optimal Bound Discriminant Bound

% of % of
Responses Responses

% x y Accounted x y Accounted
Condition Subject Correct Radius Center Center For Radius Center Center For

Rectangles I 77 84.8 350 250 73 160.5 419.2 261.7 88
2 74 84.8 350 250 75 135.4 411.6 204.8 80
3 65 84.8 350 250 66 151.3 383.4 185.8 84

Circles 1 77 84.8 250 250 79 117.9 227.7 249.2 87
2 79 84.8 250 250 74 139.4 227.9 268.9 88
3 82 84.8 250 250 84 144.0 216.4 268.6 90
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Table 11
Spearman Rank-order Correlations for Experiment 3

RT-Distance RT-Distance RT-Prototype RT-Prototype
(Optimal (Discriminant (Optimal (Discriminant

Condition Subject Bound) Bound) Prototype) Prototype)

Yes Responses

Rectangles I .054 -.170* .036 .187*
2 - .143t -.124 .160t .191t
3 .060 -.148t .090 .158t

Circles I -.174t -.230t .21Ot .221t
2 .015 -.108 .190t .184t
3 -.002 .074 .075 -.048

No Responses

Rectangles I - .462* -.415* -.465 -.477
2 -.363* -.282* -.397 -.349
3 .095 -.045 .080 -.029

Circles I -.467* - .424* -.432 -.382
2 -.249* -.242* -.239 -.174
3 - .345* -.309* -.340 -.306

*p < .001. t.OOI < p < .05.

totype played no role in the decision processes used by
subjects in this experiment. In fact, both the optimal bound
and the discriminant bound are compatible with the fol­
lowing rule: Compute the similarity ofthe stimulus to the
prototype. If this similarity exceeds a criterion value re­
spond yes; if not, respond no. However, with this rule,
RT is controlled by the criterion value (i.e., the decision
bound), not by the prototype. For example, consider
another experiment in which task instructions and/or
payoffs are used to induce subjects to adopt a higher crite­
rion for responding yes. We expect such a manipulation
to have no effect on the prototype location but a pronounced
effect on the decision bound. Specifically, if the criterion
for responding yes is increased, the diameter of the circu­
lar decision bound will decrease. The RT-distance hypoth­
esis and the results of Experiment 3 suggest that decreasing
the diameter of the decision bound would have a pro­
nounced effect on RT. In contrast, the RT-comparative­
prototype hypothesis predicts no effect on RT, since the
prototype is unchanged.

GENERAL DISCUSSION

Although the RT-distance hypothesis received general
support in all three experiments, other RT hypotheses may
have been equally successful. For example, a general tack
for deriving hypotheses relating RT to characteristics of
the stimuli is to assume that RT increases with task diffi­
culty. In a task with Categories A and B, a statistic that
measures the ease of categorizing Stimulus X is D =
!p(AIX) - 0.51. If Stimulus X is easy to categorize, the
subject will assign it consistently to the same category,
and D will be large. If it is a difficult decision, the sub­
ject will sometimes assign it to one category and some­
times to the other, and D will be small. Therefore, RT
hypotheses can be generated by assuming that RT is nega­
tively correlated with the statistic D.

One example of a popular categorization theory for
which no RT hypotheses have been derived is exemplar

theory (Estes, 1986; Medin & Schaffer, 1978; Nosofsky,
1986). Exemplar theory assumes that in the absence of
response bias, p(AIX) increases monotonically with the
sum of the similarities between Stimulus X and all exem­
plars of Category A divided by the sum of the similarities
between X and all exemplars of Category B. By incorpor­
ating this fact with the statistic D, a plausible R'I'-exem­
plar hypothesis could be derived from exemplar theory.

Unfortunately, the present data are not appropriate for
testing between such an RT-exemplar hypothesis and the
RT-distance hypothesis. The results of Ashby and Maddox
(1993; see also Nosofsky, 1990) suggest that when the
optimal decision bound is linear, decision-bound and ex­
emplar models make predictions that are so similar that
no ordinal tests could discriminate between them. Because
the RT tests reported here are ordinal, the RT-exemplar
hypothesis would fare as well as the RT-distance hypoth­
esis with our data. A test between these two hypotheses
requires complex nonlinear decision bounds and/or RT
predictions at either the interval or ratio scale level.

In summary, no evidence was found that stimulus fa­
miliarity or the category prototypes play any special role
in determining categorization RT. Even the slowest re­
sponses showed little or no familiarity effect, and the
prototypes showed no RT advantage. In contrast, the
RT-distance hypothesis was well supported by all data
except those for Day 1 of Experiment 2. All of the RT
hypotheses failed badly in this case.
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NOTES

I. At first, these correlations may seem unimpressive, but it should be
recalled that, on every trial, the subject saw a different stimulus. During
a session of 300 trials, there were 300 different RTs and 300 different
distances to the decision bound. Therefore, even if the RT-distance hy­
pothesis were exactly correct, variability in response execution time (i.e.,
motor time) would severely depress the RT-distance correlations.

2. Because of the small sample sizes in each decile (i.e., 5), the data
were smoothed with a moving window. Let RTk represent the mean RT
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in decile k. Then, this procedure replaces each RTk with (RTk-. + RTk
+ RTk+,)/3, for 2 ~ k ~ 9. RT. is replaced with (RT, + RT,)/2, and
RTIO is replaced with (RT. + RT,o)/2.

3. On the basis of these results and some more extensive investiga­
tions, we believe that the distance-weighted least squares procedure
(McLain, 1974) is biased, or at lease misleading, in the periphery. The
problem is that the procedure extrapolates a function to a set of prede­
fined endpoints, even in the absence of any data.

4. Median RTs are not reported because the RT-distance hypothesis
makes no definite predictions about the relation of correct to incorrect
median RT when the optimal decision bound is not linear.
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