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Testing models of the redundant-signals
effect: A warning concerning the
combination-rule regression analysis

J. TOBY MORDKOFF
University of California-San Diego, La Jolla, California

The redundant-signals effect is the observed RT advan-
tage for trials presenting two or more targets, as compared
with trials with only one target. Two general classes of
parallel-processing model have been proposed to explain
this effect: race models (e.g., Raab, 1962) and coactivation
models (e.g., Miller, 1982). Various distributional anal-
yses have been used in work aimed at discriminating be-
tween these two model classes. The present study reexam-
ined one of these tests—the combination-rule regression
analysis based on variable-criterion theory (Grice, Can-
ham, & Boroughs, 1984)—by applying it to the data from
two sets of simulated experiments. One set of simulations
assumed coactivation; the other set assumed an indepen-
dent race on redundant-target trials. Nearly identical
combination-rule values were observed in the two sets of
simulations. This finding shows that the combination rule
of variable-criterion theory does not discriminate between
models capable of explaining the redundant-signals ef
fect. The implications of this finding are briefly discussed.

When subjects are presented with two targets that both
call for the same response, responses are faster (and more
accurate) than when only one target is presented (e.g.,
Egeth & Mordkoff, 1991; Grice, Canham, & Boroughs,
1984; Miller, 1982; Mordkoff & Yantis, 1991; van der
Heijden, La Heij, & Boer, 1983; van der Heijden,
Schreuder, Maris, & Neerincx, 1984). This empirical
result is known as a redundancy gain or the redundant-
signals effect (RSE), because the second target in the dis-
play is redundant in the sense that it does not need to be
processed in order to determine which response is correct.

The early work examining the RSE employed mean re-
sponse time (RT) as the dependent variable (e.g., Bieder-
man & Checkosky, 1970; Egeth, 1966; Holmgren, Joula,
& Atkinson, 1974; van der Heijden, 1975). Under this
analysis, redundant-target mean RT is compared with
single-target mean RT by ¢ test. A significant RSE, when
found, is then interpreted as evidence of the parallel pro-
cessing of both targets (for technical details relating to
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mean-RT analyses, see Miller & Lopes, 1988; Mullin,
Egeth, & Mordkoff, 1988). To summarize this work: Sig-
nificant RSEs have been found in a variety of situations,
lending support to parallel-processing models.

Models of the Redundant-Signals Effect

More recent work has attempted to discriminate be-
tween two specific classes of parallel-processing models
(see Miller, 1982, or Mordkoff & Yantis, 1991, for an
introduction). Members of the first class, known as race
models, assume that the two items in each display are en-
coded and identified separately and in parallel (e.g.,
Mordkoff & Yantis, 1991; Raab, 1962; Shaw, 1982; see
also Colonius, 1990). This class explains the RSE in terms
of statistical facilitation or probability summation: If the
time required by each channel to process a target varies
stochastically across trials and the distributions of pro-
cessing times for the two channels overlap, then the mean
time required for the first of two targets to be recognized
will be less than the mean time required for either target
individually. Put loosely, mean RT is decreased on
redundant-target trials because there are two chances for
a fast target identification, as opposed to only one chance
on single-target trials.

The second class capable of explaining the RSE involves
coactivation. These models allow evidence concerning the
presence of at least one target to be ‘‘pooled’” across chan-
nels prior to decision (e.g., Fournier & Eriksen, 1990;
Grice et al., 1984; Miller, 1982; Mordkoff & Yantis,
1991; see also Diederich & Colonius, 1987). This class
explains the RSE in terms of energy or activation sum-
mation: With two targets contributing activation on
redundant-target trials, the criterion required to trigger
a response will often be reached more quickly. Recall here
the saying ‘‘many hands make light work.”’

Because both model classes are consistent with the RSE
in mean RT, more sophisticated measures have been de-
veloped to discriminate between them. These tests involve
the analysis of entire distributions of RT. Two specific
distribution-based tests have been used to examine the
RSE: (1) the race-model inequality (Miller, 1978, 1982)
and (2) the combination-rule regression analysis based on
variable-criterion theory (Grice et al., 1984).! The race-
model inequality has been discussed in detail previously
(e.g., Eriksen, 1988; Miller, 1982; Miller & Lopes, 1991;
Mordkoff & Yantis, 1991), so its application to the RSE
will not be reviewed again here. The present study was
concerned only with the combination-rule regression
analysis.

Variable-Criterion Theory and the
Combination Rule

The combination-rule regression analysis (Grice et al.,
1984) is a recent extension of variable-criterion theory
(Grice, 1968)—a quantitative model of perception and re-

Copyright 1992 Psychonomic Society, Inc.



590 MORDKOFF

sponse activation that has been applied to a variety of
RT tasks (for an introduction and summary, see Grice,
Nullmeyer, & Spiker, 1982). The general theory explicitly
assumes that response activation builds slowly (following
a deterministic function) and that the threshold required
to trigger an overt response varies across trials following
a normal distribution (see, e.g., Grice et al., 1984,
p. 455), hence the name of the theory. These assumptions
afford the possibility of calculating the mean level of re-
sponse activation—referred to as *‘excitatory strength,’’
or E, by Grice and his colleagues—at any time ¢ since
stimulus onset. This is done by finding the normal devi-
ate of the cumulative distribution function (CDF) of RT:

E(t) = &'[P(RT <1)]+3.5, (1)

where E (r) denotes excitatory strength at time 7, and &' '

is the inverse of the integral of the unit normal
distribution—in other words, the normal deviate. The con-
stant of 3.5 is added to keep E above zero for most values
of ¢, creating a realistic origin.

The combination rule is a specific application of
variable-criterion theory to redundant-target detection and
the RSE. The rule entails a simple linear regression on
the values of E found using the equation above. Three
sets of values of E are required: one set for the redundant-
target condition, and one each for the two single-target
conditions. The slope and intercept values from the re-
gression describe the growth of E on redundant-target
trials relative to single-target trials:

E(t|T'&T?) = m[E(t|T* only)+E(|T? only)]+b, (2)

where E(t|T'&T?), for example, is the value of E at time
t given redundant targets in Display Locations 1 and 2.
The values of ¢ used are the 19 RTs corresponding to the
Sth through 95th percentiles (at 5% intervals) for the
redundant-target condition. These values are selected for
each subject individually, then the values of E are aver-
aged across subjects prior to the regression. This proce-
dure is analogous to the Vincentizing performed in other
distribution-based tests (e.g., the race-model inequality;
Miller, 1982).

Interpretation of combination-rule values. Grice
et al. (1984) have given simple interpretations of the slope
(m) and intercept (b) values from the combination rule.
This is most easily shown by example. Thus, assume that
a redundant-target detection task has been analyzed using
the combination rule, producing slopes and intercepts of
0.5 each, with an r? over 0.99 for the regression. (It
should be noted that these values are typical of empirical
research.) In Grice et al.’s (1984) words: ‘‘These results
indicate, throughout the distribution, a clear summation
effect of the separate functions, each contributing about
half its strength’’ (p. 456). In other words, the 0.5 slope
is taken as evidence that each of the targets within a
redundant-target display contributes half of the excitatory
strength it would contribute on a single-target trial. This

interpretation may also seem to be bolstered by the good
fit (high r*) provided by the regression (but for a con-
trary view, see various papers by N. H. Anderson, e.g.,
Anderson, 1962; Sidowski & Anderson, 1967).

Now also assume that these particular values have been
observed in not one, but a series of experiments. Under
these conditions, the conclusion becomes much stronger:

The credibility and utility of any measurement model is
primarily based on the degree to which the results pro-
vide simple and orderly descriptions of empirical relations.
The results appear to be too precise and too general to be
the result of a fortuitous accident. Taken as a whole, the
research presents nearly conclusive evidence that redun-
dant stimuli combine on the basis of strength rather than
proportions following the rules of probability. In this
respect, the results confirm the conclusions of Miller (1982)
and provide evidence concerning the nature of the combi-
nation rule. (Grice et al., 1984, p. 461)

Because Miller (1982) concluded in favor of coactivation
models, it seems clear that one is to reject race models
given a slope value of 0.5 coupled with a large value of
r2. It is as yet unclear what combination-rule values must
be observed in order to reject coactivation models. One
purpose of the simulations reported next was to determine
what values are consistent with each class of models.?

Simulations

Each of the simulations was based on one of two gen-
eral models: an independent race model and a coactiva-
tion model (for simple schematics of these models, see
Figure 1 of Mordkoff & Yantis, 1991, p. 521).% These
models are distinct only in terms of their decision mech-
anisms: The race model assumes separate decisions made
in parallel, while the coactivation model assumes a com-
bined decision, based on the identities of both display
items. Otherwise, the models are identical; for example,
encoding and response selection are the same, and both
models assume a sequence of nonoverlapping stages (i.e.,
no partial information is transferred between stages; cf.
Miller, 1988).

Simulated race model. Under the race model, each of
the two display items is first encoded by separate and in-
dependent channels. Next, separate decisions are made
as to whether each item is a target. If a target is found
by either channel, then a target-present code is passed for-
ward to those processes that activate responses—the first
such code triggers the response on redundant-target trials.
Identified nontarget items are assumed to have no effect
on decision or response selection. This is an independent
race model (although it also resembles the model presented
by Ulrich & Giray, 1986).

The time required by each channel to encode a display
item was simulated as a Gaussian with mean pu; and vari-
ance o. The time required by each of the decision pro-
cesses was simulated using a Poisson counting process;
decision time was the sum of N exponentials, each with
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Table 1
Summary of the Results from the Combination-Rule
Regression Analyses

Independent Race Models

Coactivation Models

Slope Intercept rt Slope Intercept r?
M 0.53 0.23 0.994 0.55 0.28 0.992
SD 0.03 0.13 0.004 0.04 0.20 0.007
Minimum value 0.47 -0.13 0.981 0.48 -0.09 0.965
Maximum value 0.61 0.47 0.999 0.62 1.00 0.999

M and SD 7. The time required for a response to be se-
lected and initiated was simulated as a Gaussian with mean
ug and variance o3 .

On this model, single-target RT was the sum of three
values, one sampled from each of these three distributions.
For a redundant-target trial, the first two distributions
were sampled twice each—with each pair representing the
time required to encode and decide about one of the two
targets—and the pair with the smaller sum (i.e., the win-
ner of the ‘‘race’’) was retained. To this value, a sample
from the distribution simulating response selection and
initiation was added.

Simulated coactivation model. The coactivation model
used for these simulations is a revised form of the super-
position mode] presented by Schwarz (1989). As under
the race model, each stimulus is encoded independently—
the difference between the two models concerns how de-
cisions are made on redundant-target trials. In this case,
both targets contribute activation to a common decision
threshold on a redundant-target trial. Once criterion has
been reached, a response is triggered.

Encoding was simulated in the same manner as under
the race model: using a Gaussian with mean pg and vari-
ance of. Also similar to the race model, decision time
for each target was simulated using a Poisson counting
process involving an exponential with M and SD 7. How-
ever, in contrast to the race model, the two processes de-
scribed by the exponentials were both contributing to the
same criterion, N, on redundant-target trials. Finally, as
above, the time required to select and activate the response
was simulated as a Gaussian with parameters ug and gp.

Parameter settings. A total of 128 different models
were simulated, each differing in terms of the five vari-
ables: (1) model type, (2) og, (3) 7, (4) N, and (5) op.
For all of the simulations, the value of u; was fixed at
80 msec, the value of uz was fixed at 200 msec (because
neither would have any effect on anything other than mean
RT), and the values of 7 and N were always equal to each
other. (Additional simulations have shown that using
values of 7 and N that differ from each other would not
cause any qualitative change in the results.) The values
of o (5, 15, 25, and 35 msec), o (5, 15, 25, and
35 msec), and 7and N (2, 4, 5, and 6 msec) were manip-
ulated in a 4 X4 X4 factorial design, creating 64 models
of each type. Other relevant parameters were fixed at
values that mimic experimental work: the number of trials
per condition per block of trials was 12, the number of
blocks per experimental session was 12, and the number
of subjects per experiment was 12.

Results and Analysis. The results from all 128 simu-
lations were analyzed using the combination-rule regres-
sion analysis introduced above. Summaries of the results
appear in Table 1 and Figure 1. Most notable is the con-
sistent finding of a slope near 0.5 coupled with a very
high value of r?. This pattern held true for both types of
model. It is clear, therefore, that combination-rule slopes
and values of r* cannot be used to discriminate between
independent race and coactivation models.

According to the comments on interpretation given
above, all of the data shown in Figure 1 would be taken
as support for coactivation models as a class. Such a con-
clusion would be erroneous in half of these cases, because
only half of these data points represent the results from
a coactivation-model simulation. Thus, the finding of a
0.5 slope cannot be taken as evidence that each target
within a redundant-target display is ‘‘contributing half of
its strength’’ (Grice et al., 1984, p. 456): Under the coac-
tivation model that was simulated, each target contributed
all of its strength, while only one target (on any given
trial) contributed any activation under the race model, yet
approximately 0.5 slopes were observed in each case.

It should also be noted that, if anything, the fits to the
data provided by the combination-rule regression were
better for the independent race model (see Table 1). (A
t test—of somewhat questionable validity—was conducted
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Figure 1. Combination-rule slopes and intercepts from all 128 sim-
ulations. (Note—Many data points are superimposed.)
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on the values of r?; they were significantly higher for the
race-model simulations; p < .025.) Thus, a high 72 value
cannot be taken as support for coactivation models. In
general, the observed values of r? were extremely high
because the three distributions that are used in each re-
gression were very similar—all being monotonic, non-
decreasing functions of ¢ derived from the CDFs of RT.*

The only difference between models in the results from
the combination-rule tests concerned the intercept values.
Although the mean values were similar, the coactivation
model sometimes produced a relatively large intercept (see
Figure 1), suggesting that this test might be sensitive to
some difference between the two model classes. Further
support for this claim might be taken from the finding
of a positive correlation between the presence of signifi-
cant violations of the race-model inequality (Miller, 1982)
and the combination-rule intercept value (r = 0.51,
p < .001). However, the four extreme intercept values—
that is, those that noticeably exceed the values obtained
from race-model simulations—all came from coactivation-
model simulations with low encoding- and response-
related variance (i.e., 0% was 5 and ¢ was 5 or 15) and
high decision variance (i.e., 7 and N were 5 or 6). Such
parameter settings also produced violations of the race-
model inequality over a wider range than has ever been
observed empirically—for example, the simulation with
the largest intercept value violated the race-model inequal-
ity at all quantiles up to and including the 90th. For this
reason, the potential of using intercept values as a sign
of coactivation seems limited.

Discussion. One question raised by these findings
concerns why independent race and coactivation models—
along with several types of serial model (see Note 3)—
produce such similar results on the combination-rule
regression. In particular, why do these models produce
slope values of 0.5 so consistently?

One possibility is that the use of a Gaussian to simulate
predecisional processes, coupled with variable-criterion
theory’s use of the normal deviate to estimate excitatory
strength (E), has caused this result. To test this alterna-
tive, another set of independent race models were exam-
ined, these using a Poisson counting process to simulate
encoding time. To keep the expected value of encoding
time the same as before, pairs of 7 and N were chosen
such that their product was 80 (the specific values were
16 and 5, 10 and 8, 8 and 10, and 5 and 16); otherwise
these simulations were the same as the original race model.

The results from these simulations disconfirmed the
proposal that the use of a Gaussian within the present sim-
ulations was responsible for the consistent 0.5 slope.
Again the slopes were always approximately 0.5, and the
values of r? remained at or above 0.990.

Another possible explanation of the consistent results
would cite the use of identical encoding-time distributions
for each of the two targets. In the main simulations, both
were Gaussian; in the ancillary simulations reported
above, both were Poisson counting processes. To test this
idea, another 32 simulations were conducted (16 race

models and 16 coactivation models). For each of these,
the encoding time of one target was simulated using a
Gaussian (always with an expected mean of 80 msec), the
other using the Poisson counting process (also with an ex-
pected mean of 80 msec). Again, the results were the
same: a consistent 0.5 slope and high r? value for both
types of model.

Although no principled explanation for the consistent
0.5 slope has yet been presented, it still seems important
to explain why these results undermine the original con-
clusion of Grice et al. (1984). These researchers claimed
that the 0.5 regression slopes that they observed were due
to each target on a redundant-target trial contributing half
of the excitatory strength it would contribute on a single-
target trial. Note that they did not claim that the total
amount contributed by each target was half of the maxi-
mum; the regression is across values of time (¢), so the
conclusion was that the buildup or rate of growth of acti-
vation strength is cut in half on redundant-target trials.
However, this conclusion cannot be applied to the present
data: All of the coactivation models that were simulated
used the same growth-determining parameters (i.e., 7 and
N) on single- and redundant-target trials, and the regres-
sion still produced a slope of 0.5.°

To explore this point further, another 48 simulations
were conducted using a coactivation model that had been
modified to more closely resemble that for which Grice
et al. (1984) argued. (The same values of 0% and o}
were used as in the main simulations, while 7 and N were
raised to 3, 6, or 9 msec to give comparable RSEs.) Under
this model, single-target trials were simulated in the same
manner as under the ‘‘standard’’ coactivation model.
However, on redundant-target trials, the value of 7 was
doubled (to 6, 12, or 18 msec, to cut in half the growth
of excitatory strength for each target), and the value of
N was decreased by one third (to 2, 4, or 6 msec, to rep-
resent the baseline shift evidenced by the above-zero
intercepts).

The resuits from the combination-rule regressions on
these data were similar to those from the original coacti-
vation model: As before, the slope value was always near
0.5 with an r? of about 0.995, although the intercepts now
ranged from —0.22 to 1.60.

Analytic discussion. While it has become clear that the
combination-rule regression analysis cannot be used to dis-
criminate between independent race and coactivation
models, one may still wish to know why 0.5 slopes are
observed so consistently. To understand this, we must turn
to a more analytic approach.

As a first step, recall that for any simple linear regres-
sion, for example, '

Y=mX+ b, 3
the following rule also applies:
m = r(oylox), @

where m is the slope from the regression, r is the corre-
lation between the Y and X values, and oy and oy are the



standard deviations of the ¥ and X values, respectively.
In the case of the combination-rule regression, the X
values are the sums of the two single-target E values (see
Equation 2), but this will not cause any change in the
present analysis because a simple linear regression is still
conducted.

Next, recall that for the regressions performed on the
simulation data, the values of r? were all near 1.00 (due
to the use of CDFs; see Note 4); thus, the value of r may
be removed from Equation 4 and the slope must be equal
to the ratio of the standard deviations. If we replace the
Y in Equation 4 with the symbol ER, for E given redun-
dant targets, and the X with ES1 + ES2, for E given
Target 1 (only) plus E given Target 2 (only), then we
arrive at:

m = ogr/Ogsi 4Es2- &)

The value 6gg g5y (i.€., the standard deviation of the
sum of ES1 and ES2) may be expanded using the
following:

2 — 2 2
ofsi+Es2 = Oks1 + Oksy + 20gs1 g2 (6)

where ogg; g, is the covariance between the ES1 and
ES?2 values. From another formula involving covariance,
that is,

Ogs1,ES2 = TOES19ES2s a

and the fact that the correlation between two cumulative
distributions is necessarily very high (see also Table 2)—
which allows for the removal of the term r from Equa-
tion 7—we achieve:

m = aggl(ogs) + ofs; + 20p50p5)". ®

After some reduction in terms, we arrive at a simple for-
mula for the expected slope value:

m = oggl(ogs; + Ogs7)- )]

Equation 9 should begin to make clear why slopes near
0.5 are observed so frequently. Yet, we may clarify this
point even further. To this end, note that the standard devi-
ation of the entire distribution of ER values (i.e., ogg) is
necessarily 1.00 because the ER values are the unit nor-
mal deviates of the redundant-targets CDF plus a constant
(Equation 1). However, the only values of ER used in the
combination-rule regression are those that correspond to

Table 2
Summary Statistics (Standard Deviations, Covariance, and
Correlation) Concerning the Excitatory-Strength Functions

Independent Race Models Coactivation Models

M SD M SD
Okr 0.87 0.00 0.87  0.00
gs) 0.82 0.05 0.79 0.06
Ogs 0.81 0.05 0.80  0.05
UES1+ES2 1.63 0.09 1.59 0.11
OES| ES2 0.67 0.08 0.63 0.08
rESt ES2 0.998 0.002 0.998  0.002
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the 5th-95th percentiles at 5% intervals, and these 19
values will always have a standard deviation of only 0.87,
instead (see Table 2). Similarly, the ES1 and ES2 values
are the unit normal deviates of the single-target CDFs
(plus a constant), also evaluated at only 19 points; how-
ever, the full range of these values will not enter into the
regression because ES1 and ES?2 are evaluated at the RT
points taken from the redundant-targets condition. This
will often truncate the ES1 and ES?2 distributions (in par-
ticular, the ‘‘slow tail’’ from each will be removed),
slightly reducing both oz, and ggg,. Therefore, a slope
slightly above, but quite near, 0.5 will be often observed.
Slopes below 0.5 are also possible, but should be less fre-
quent. This occurs when the truncation of the single-target
distributions actually increases the mean of ogg; and ogg,
to being above 0.87.

That the expected slope value is slightly above 0.5 has
importance with regard to the excitatory-strength origin.
Recall that 3.5 is added to all normal-deviate scores to
derive the values of E (Equation 1). On the proviso that
all values of E remain above zero, any change to the spe-
cific constant selected will have no effect on the slope
value, nor will it affect the value of r2. However, the
combination-rule intercept will be affected as follows:

Ab = (1 — 2m) Ac, (10)

where Ab is the change in intercept value, m is the slope,
and Ac is the change in the selected additive constant for
Equation 1. As can be seen, if the slope differs from 0.5,
the intercept will depend on the specific additive constant.
This point has been verified by reanalysis of the original
64 race-model simulations using a constant of 7.0 in
Equation 1 (rather than 3.5): Consistent with Equation 10
and the finding of a mean slope of 0.53, the combination-
rule intercepts now had a mean of only 0.01, as contrasted
with 0.23 (see Table 1).

Conclusion

The combination-rule regression analysis (Grice et al.,
1984) cannot be used to discriminate between the various
parallel-processing models that are capable of explaining
the redundant-signals effect. Furthermore, no arguments
concerning psychological mechanisms should be based on
the regression slope values, even when a high value of
r? is found. Nearly identical results may be produced by
members of both competing model classes; in fact, the
major finding from previous use of combination rule—a
slope near 0.5-—appears to be a tautology due to the use
of cumulative distributions.
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NOTES

1. A third test based upon the work of M. L. Shaw (e.g., Mulligan
& Shaw, 1980; Shaw, 1982, 1984) has also been used by Grice et al.
(1984) and by Mordkoff and Yantis (1991). This test is very similar
to that using the race-model inequality, although it requires additional
assumptions.

2. It is important to note that the present study concerns only the
combination-rule regression analysis and the interpretation of its results.
This work does not speak to variable-criterion theory as a whole, be-
cause the combination rule is not assumed, nor can it be directly deduced
from the theory (G. R. Grice, personal communication, March 1990).

3. Actually, three other models were also initially simulated: (1) an
‘‘unguided’’ serial-decisions model, (2) a ‘‘guided’’ serial-decisions
model, and (3) a fixed-order, serial-decisions model. The slope and r?
values from these models were very similar to those from the indepen-
dent race and coactivation models. Summaries of these results are
available from the author, as are summaries of the other simulations
referred to in the text.

4. A reviewer provided a simple demonstration of how the use of cu-
mulative distributions inflates the observed r? values. Consider the
following two distributions that have a correlation of —1.00:

X =1 X,=2 X,=3, X, =4, X;=35,

and
Y,=5 Y,=4 Y,=3 Y =2, =1
Upon cumulation, that is,
X.=1,X.,=3,X,=6, X,=10,X5. =15,

and
ch = 5! Y2c = 9v Y3c = 12' ch = 14’ YSC = 15’

the correlation becomes 0.92.

5. Grice et al. (1984) also asserted that the redundant-signals effect
is due to the additive constant that raises the value of E on redundant-
target trials—that is, the combination-rule intercept. However, in the
present simulations, the magnitude of the RSE was uncorrelated with
the observed intercept value for both independent race (r = 0.13) and
coactivation models (r = —0.05).
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