
Measuring vocal response times in psychological re-
search is used in a variety of paradigms, such as word nam-
ing (e.g., Tyler, Voice, & Moss, 2000), nonword naming
(e.g., Light, Kennison, Prull, & La Voie, 1996), and pic-
ture naming (e.g., Taylor & Burke, 2002). Voice keys are
the most common means of measuring vocal response
times, although recent research has demonstrated their sus-
ceptibility to inaccuracies. Suggested causes of these in-
accuracies are biases from specific phonemes in influenc-
ing voice onsets (e.g., Kessler, Treiman, & Mullennix,
2002; Rastle & Davis, 2002) as well as inadvertent triggers
of the voice key, such as unintentional vocalizations or en-
vironmental noise (e.g., Baker, Taglialatela, & Washburn,
2001). Voice keys consist of an electronic device that in-
terfaces between a microphone and the computer. An event
such as word presentation activates the voice key, which
then monitors the sound level from the microphone. When
the sound level exceeds a user-specified threshold, the
voice key records the amount of time (in milliseconds) that
has elapsed since the voice key was enabled.

The VoiceRelay program was designed to fully imple-
ment the functionality of a traditional voice key with the
flexibility of the Visual Basic programming environment.
Visual Basic offers a graphical interface and a simpler pro-
gramming language, making it relatively easy to learn, com-
pared with other programming languages such as C/C��.1
In recent years, the development of experiment-generation
programs has enabled the use of a software-based voice

key for research with PC-compatible computers. However,
these software programs are costly (e.g., E-Prime [Psy-
chology Software Tools, 2000] costs $695 for a single
user) and usually require the purchase of additional hard-
ware to work in conjunction with the voice key. For exam-
ple, the Psychology Software Tools (PST) deluxe serial re-
sponse box is used for voice key operation in conjunction
with E-Prime and costs an additional $450 for an individ-
ual box (Psychology Software Tools, 2000). If experi-
ments are run on multiple computers, the necessary soft-
ware and hardware for all of the machines can be extremely
costly. Furthermore, unlike response boxes, Visual Basic
offers the potential for recording the actual speech input
from the microphone.

In addition to their expense, response boxes have other
problems. First and foremost, the hardware always has the
potential for failure; for example, the authors used two
button boxes in conjunction with PsyScope (Cohen, Mac-
Whinney, Flatt, & Provost, 1993), one in which the thresh-
old volume control was unreliable and another that required
the microphone input jack to be resoldered. Conversely,
most modern computers anticipate frequent use of the
hardware connections and therefore have higher structural
integrity for repeated use. A second critical issue is the ne-
cessity for accurate timing. Given that vocal response
times are used as indicators of underlying cognitive pro-
cesses, the need for resolution in milliseconds is essential
in psychological research, although lower resolutions may
be acceptable for certain tasks (see Snodgrass & Yuditsky,
1996). However, the experiment-generation program In-
quisit (Inquisit Millisecond Software, 2002) reports that
its measurement of voice input is only accurate within
�10 msec.

771 Copyright 2004 Psychonomic Society, Inc.

Correspondence concerning this article should be sent to L. Abrams,
Department of Psychology, University of Florida, P. O. Box 112250,
Gainesville, FL 32611-2250 (e-mail: abrams@ufl.edu).

VoiceRelay: Voice key operation using
Visual Basic

LISE ABRAMS
University of Florida, Gainesville, Florida

and

DAVID T. JENNINGS
Gainesville, Florida

Using a voice key is a popular method for recording vocal response times in a variety of language pro-
duction tasks. This article describes a class module called VoiceRelay that can be easily utilized in Vi-
sual Basic programs for voice key operation. This software-based voice key offers the precision of tra-
ditional voice keys (although accuracy is system dependent), as well as the flexibility of volume and
sensitivity control. However, VoiceRelay is a considerably less expensive alternative for recording
vocal response times because it operates with existing PC hardware and does not require the purchase
of external response boxes or additional experiment-generation software. A sample project demon-
strating implementation of the VoiceRelay class module may be downloaded from the Psychonomic So-
ciety Web archive, www.psychonomic.org/archive.

Behavior Research Methods, Instruments, & Computers
2004, 36 (4), 771–777

772 ABRAMS AND JENNINGS

One PC-compatible experiment-generation program that
does not require an external response box is SuperLab for
Windows (Cedrus Corp., 2000). This program uses a built-
in microphone in conjunction with a software program for
voice key operation. However, in December 2000, techni-
cal support reported that the software voice key does not
work reliably under the Windows environment, leading to
inaccurate timing, and that “users are advised to avoid
using it for research” (Cedrus Corp., 2000). The Web site
also reports that Cedrus is developing new voice key hard-
ware from scratch; presently, however, the voice key has
not been re-released for SuperLab for Windows, suggest-
ing that these problems have not been easily resolved.

VoiceRelay overcomes the disadvantages of current
voice key implementations. First, VoiceRelay utilizes
standard PC hardware (sound card and microphone) and
does not require the purchase of additional hardware, such
as an external response box. Second, VoiceRelay is ideal
for existing Visual Basic programmers who already pos-
sess the necessary software and programming knowledge,
because VoiceRelay is a class module that can be used in
any Visual Basic project. VoiceRelay also has the poten-
tial, with modifications, to work within other program-
ming languages, such as C/C�� and Delphi. Third, with
further modifications, Visual Basic can provide the capa-
bility to record actual vocal responses, in addition to cap-
turing voice onset times. Last, although VoiceRelay does
not overcome the inaccuracies of voice key timing, it has
the potential to be as accurate as external response boxes,
depending on system constraints, making it a useful tool
for psychological research.

High-Resolution Timing
When the experimenter uses a voice key to determine a

parameter such as vocal response time, a primary consid-
eration is the precision and accuracy of the reaction time
measurement. Precision is concerned with the repeatabil-
ity of the time measurement; if the measurements ob-
tained with a voice key can be repeated with identical re-
sults, the timing is said to be precise. In contrast, accuracy
is the difference between the measured response time and
the “true” value of voice onset. If this difference is small,
the timing is said to be accurate.

Since vocal response times are used as indicators of
cognitive processes (e.g., Kessler et al., 2002; Rastle &
Davis, 2002), precision and accuracy are important con-
siderations. Unfortunately, the basic architecture of the PC
system can severely limit timing precision because of the
inherent “slowness” of its run-time clock. The PC run-
time clock operates at a frequency of 18.2 Hz, which means
that the smallest interval between clock “ticks” is approx-
imately 55 msec (Microsoft KB 81592, 1999). This limi-
tation implies that the precision of any timing measure-
ment obtained using the standard Visual Basic or the
standard Windows interface (i.e., GetTickCount function)
is limited to approximately �55 msec.

However, the Windows timing problem can be over-
come by accessing the high-resolution multimedia timers

that may be present in the system from sound cards, MIDI
sequencers, and so forth. To utilize these multimedia timers,
the Windows Application Programming Interface (API)
provides the QueryPerformanceCounter function, which
can be utilized to perform timing operations with a pre-
cision “on the order of a microsecond” (Microsoft KB
172338, 2003; Microsoft KB 274323, 2000).

The VoiceRelay class utilizes a code module that was
written to encapsulate the Windows QueryPerformance-
Counter function into a user-friendly format. The benefit
of using the high-precision timer is that it also improves
the accuracy of response time measurements. For exam-
ple, the extra time it takes to execute the API calls (“over-
head”) can be precisely measured and subtracted from the
response time to yield a more accurate value. In the event
the computer system does not support QueryPerformance-
Counter, the lower precision (on the order of 10 msec)
TimeGetTime function is incorporated into the timer
module to preserve overall functionality (Microsoft KB
172338, 2003).

Features of VoiceRelay
The overall goal for VoiceRelay was to provide essen-

tially “plug-and-play” functionality. As such, the Voice-
Relay functions were written into a Visual Basic class
module to simplify the user interface. With this imple-
mentation scheme, the experimenter can access all of the
voice key functions and parameters simply by declaring a
variable of the VoiceRelay type.

The VoiceRelay class module is dependent upon three
other code modules, which were written to simplify the
calls to the Windows API: (1) the “modMicVolCtrl.bas”
module allows control over the PC microphone volume
level; (2) the “modWaveIn.bas” module facilitates record-
ing from the PC microphone; and (3) the “modTimer.bas”
module provides high-resolution measurement of elapsed
time. All three of these code modules must be incorpo-
rated into the main Visual Basic project in order for the
VoiceRelay class module to function. This “dependent”
configuration provides the flexibility of easily upgrading
the individual components without compromising the
overall operation of the voice key.

VoiceRelay Implementation
The core functions required for voice key operation are

initialized when a variable of the type VoiceRelay is de-
clared. This initialization process also detects whether or
not the computer has a sound card that will support the re-
quired recording capabilities. If any of the initialization
steps fail (which is unlikely for most modern computers),
the program automatically terminates and releases any al-
located memory.

The VoiceRelay class module implements voice key
operation by providing the ability to perform a variety of
functions directly from code. Using Visual Basic class
properties, which store information about the VoiceRelay
object, the experimenter can set three parameters relevant
to voice key operation. The first parameter is the volume

VOICE KEY AND VISUAL BASIC 773

level of the Windows microphone, expressed as a percent-
age. The default value for this parameter is 80%, which
can either be raised or lowered depending upon the level
of background noise in the testing environment. The sec-
ond parameter is the threshold volume level (e.g., for de-
tection of speech onset), which is expressed as a percent-
age of the microphone volume control level. The default
value for this parameter is 20%. Voice key operation is di-
rectly dependent upon these first two parameters. There-
fore, acceptable values for these parameters should be de-
termined by trial and error to ensure consistent voice key
operation. The third and final parameter is the maximum
duration for the audio search in milliseconds. This pa-
rameter allows the experimenter to control how long the
program will search for audio input before determining
that there was no response. The default value has been ar-
bitrarily set to 5,000 msec.

In addition to the properties that allow setting and re-
trieval of voice relay operational parameters, the class mod-
ule offers three additional properties to provide the exper-
imenter with information about the voice key. The first
property indicates the real-time volume level being re-
corded through the PC microphone, expressed as a per-
centage of the microphone volume setting. This property
can be used to create a “peakmeter” display, which may be
useful in assessing the appropriate threshold value. The
second property reports the elapsed time in milliseconds
between the initiation of the audio search and the receipt
of audio input that exceeds the threshold volume level.
This value is adjusted for the processing overhead required
by the voice relay and sound recording operations. The
third and final property is the value of the code-processing
overhead in milliseconds, which is useful in determining
how much impact any real-time audio displays have on the
voice relay operation.

In addition to class properties, VoiceRelay offers two
class methods, which are specific actions or procedures
that the VoiceRelay object can perform. The first method
provides the ability to reset all of the voice key parameters
to their default initialization state. The second method ini-
tiates recording from the PC microphone and begins voice
key operation.

Obtaining Audio Input
The core method in the VoiceRelay class module im-

plements the functions required to get audio input from
the PC microphone and to report the elapsed time. This
method begins by obtaining the necessary sound buffers
for audio recording, followed by resetting of the “stop-
watch” to ensure a precise elapsed time measurement. The
code then enters a loop that terminates only if either (1) the
input audio volume level exceeds the threshold volume
level or (2) the elapsed time exceeds the maximum audio
search duration. The method ends by retrieving the elapsed
time of the audio search from the high-resolution timer
and accounting for the code-processing overhead.

The audio input routines operate by using several of the
“WaveIn” functions from the Windows API. To initiate re-

cording from the PC microphone, the following steps are
performed: (1) set up the audio recording parameters (i.e.,
wave format, sampling frequency, number of channels,
etc.); (2) allocate audio recording buffers in system mem-
ory; (3) send the recording buffers to the sound card; and
(4) open the WaveIn device for recording. Once recording
is initiated, the incoming sound data are processed until
recording is terminated. The sound processing routine is
a loop that performs the following actions: (1) wait for the
audio buffer to be marked as “full”; (2) copy the audio
data into an array to allow manipulation; (3) normalize the
data from –100% to �100% (midpoint 0%) for ease of
use; and (4) provide the normalized data in a public vari-
able. The timer is set to zero immediately before the audio
processing routine is started, and the ElapsedTime mea-
sure is taken at the instant the threshold is exceeded or
audio timeout is reached.

The GetAudioInput method of the VoiceRelay class
module contains a loop that continually retrieves the pub-
lic volume variable from the WaveIn operations. The method
then compares the volume values of the received audio
input with the threshold volume level to determine whether
or not to continue the audio search. Whenever the thresh-
old volume level is reached, the elapsed time in millisec-
onds is retrieved from the high-resolution timer, and the
code-processing overhead is updated. Once the threshold
is exceeded or a timeout has occurred, recording from the
PC microphone is terminated to free system resources.

The fundamental code for audio processing was largely
based on the examples provided in Microsoft Knowledge
Base Articles 187673 and 178456 (Microsoft, 2001). The
functionality for setting and retrieving the value of the
Windows microphone volume was taken from Microsoft
Knowledge Base Article 178456 and encapsulated into a
code module to provide a simpler user interface. Likewise,
the basic functionality for performing the wave-recording
operations was taken from Microsoft Knowledge Base
Article 187673 and encapsulated into a user-friendly code
module. However, the Knowledge Base Articles originally
published by Microsoft required that the sound card have
a peakmeter function on the recording control. It was
quickly determined that this function is not supported by
most modern sound cards. As a result, the core audio record-
ing routine was mostly rewritten to remove dependence on
the Windows mixer and to save the waveform audio data
directly into an array of bytes. The resulting code not only
corrected compatibility limitations with the VoiceRelay
class module, but also improved performance because the
audio processing is done inside of a Do . . . Loop instead of
within a high-frequency timer control object, such as the
Common Controls Replacement Project high-performance
timer objects (CCRP, 2002).

Testing of VoiceRelay’s Precision and Accuracy
Precision and accuracy of the information provided by

VoiceRelay depend on the core timing functions. Although
these timing functions are subject to various influences, we
attempted to address the three most significant ones: (1) the

774 ABRAMS AND JENNINGS

placement of the timer starts and stops, (2) code overhead,
or the amount of time to execute code without actually
recording volume information, and (3) sound card latency,
or the delay required by a sound card to get a buffer.

VoiceRelay used the Windows API QueryPerformance-
Counter function instead of the CCRP stopwatch to allow
more control over the placement of the timer starts and
stops without the increased overhead (and memory) of ad-
ditional variables. As a result, QueryPerformanceCounter
allows for better measurement of the code overhead, which
is later subtracted from the reported ElapsedTime to im-
prove accuracy. Sound card latency could not be con-
trolled but was measured with a sound card test program,
such as the one available at http://www.guitar-fxbox.com/
sctest.htm.

Four computers of varying processors, processor speeds,
and operating systems were used to test the precision and
accuracy of VoiceRelay, and the results of these tests are
displayed in Table 1. The precision was measured by the
Timer module during the initialization of the timers. Ac-
curacy was evaluated through actual use of VoiceRelay as
a voice key. Two “blips” were added to the code to indicate
the start and end of audio recording (Microsoft KB 86281,
2003). The procedure was to (1) start an external inde-
pendent tape recorder, (2) start the VoiceRelay demo pro-
gram, (3) trigger the relay using a sharp sound (a hand-
clap), and then (4) stop the external tape recorder. The
audio data from the tape recorder was then imported into
Audacity Version 1.0.0 (http://audacity.sourceforge. net/),
where the waveform was analyzed to determine the “ac-
tual” elapsed time. All of the data were then collected and
analyzed with Microsoft Excel 97 to evaluate the differ-
ence between the actual audio elapsed time (as determined
by waveform) and the measured elapsed times reported by
VoiceRelay.

The accuracies assessed by waveform that are presented
in Table 1 represent 95% confidence intervals that reflect
how close the measured time was to the actual time; note
that negative values indicate an underestimation in the ac-
tual time. However, there are several potential sources of
error in these data, such as: (1) the waveforms were ana-
lyzed by hand, (2) it was unknown how much of the 10-
msec blip (audio start) should be removed from the dif-
ference calculations, and (3) the waveforms read by
VoiceRelay are likely to be different from those read by

the external tape recorder, making it impossible to pick
the exact location of the audio end. Therefore, the accura-
cies shown in Table 1 are likely to be more conservative
than the true values.

In an attempt to quantify how conservative the accuracy
measurements might be, VoiceRelay was tested with the
“timeout” function already built into the class module since
it would remove the “human” component associated with
waveform analysis. The VoiceRelay demo was started and
then allowed to timeout without receiving any audio input.
The data were then collected and analyzed with Microsoft
Excel 97 to evaluate the difference between the theoretical
timeout value and the elapsed times reported by Voice-
Relay (see Table 1 for 95% confidence intervals). The re-
sults on accuracy assessed by the timeout function do, in
fact, indicate a measure of conservatism in the waveform
accuracy data.

The results of the preceding tests indicate that the pre-
cision of VoiceRelay was more dependent on the operat-
ing system than on the processor speed, but that overall
precision was extremely high. In contrast, the accuracy of
VoiceRelay was dependent on processor/speed and oper-
ating system (see Table 1). In addition, high sound card la-
tency may cause low voice onset accuracy in VoiceRelay.
The computers running Windows 98 showed greater ac-
curacy for the Pentium II processor, which had a sound
card latency of 26 msec, relative to the Pentium III proces-
sor, which had a sound card latency of 63 msec.2

Sample Implementation
A sample Visual Basic project was created to demon-

strate the capabilities and functions of the VoiceRelay
class module. A screen of the sample program is shown in
Figure 1. The large text pane on the left provides instruc-
tions on how to use the VoiceRelay demonstration pro-
gram. The three slider bars on the right permit changing
of the three critical VoiceRelay properties: the micro-
phone volume level, the threshold volume level, and the
audio search duration. Moving the sliders back and forth
dynamically changes these parameters.

The System Info and Timer Info buttons near the bot-
tom right provide basic performance information about
the PC system, if available. The system information that
can be obtained is the operating system, processor model,
processor speed, total RAM, and free RAM (Microsoft

Table 1
Tests of VoiceRelay’s Precision and Accuracy as a Function of Computer

Processor, Processor Speed, and Operating System

Accuracy by Accuracy by
Operating System Precision Waveforms Timeout
Processor/Speed (in msec) (in msec) (in msec)

Windows 98
Pentium II/233 MHz 0.0008381 �85 to �17 26 to 53
Pentium III/450 MHz 0.0008381 129 to 190 0 to 1

Windows XP
Pentium III/600 MHz 0.0002794 2 to 59 5 to 8
Pentium IV/2.4 GHz 0.0002794 83 to 135 112 to 118

VOICE KEY AND VISUAL BASIC 775

KB 145679, 2001; Microsoft KB 147886, 2003). The timer
information indicates whether the system is using high-
resolution or low-resolution timers. In either case, the the-
oretical minimum resolution of the timer is displayed. In the

case of high-resolution timers, the overhead required to
make the API calls is also reported.

The grayed-out “Input Volume Monitor” and “Audio
Search Duration” progress bars in the lower right monitor

Figure 1. Startup screen of the VoiceRelay demonstration program.

Figure 2. Screen display of the VoiceRelay demonstration during operation.

776 ABRAMS AND JENNINGS

the process of voice relay operation when activated. The
input volume monitor will display a dynamic reading of
the microphone volume level, and the audio search dura-
tion will continuously update the elapsed time. These
monitors will be activated when the START button is
pressed. Finally, once audio recording has begun, the dis-
play will be updated with the name of the system audio
recording device.

In the initial startup screen (Figure 1), the START but-
ton initiates voice key operation and moves the program to
the second screen, where audio and timing input are col-
lected. In the second screen (Figure 2), the buttons are
grayed out while the audio search is performed. Finally, in
the third screen (Figure 3), the RE-START button returns
the program to the first screen for another round of voice
key operation. In all three of the screens, the EXIT button
terminates the program and releases any allocated mem-
ory, and the About button displays information about the
authors of the program.

System Requirements
The VoiceRelay class module requires a PC with at

least a Pentium II processor, Microsoft Windows 95, and
Microsoft Visual Basic 5.0 Service Pack 3. Initial tests
have indicated that VoiceRelay will also work with later
versions of Windows, such as 98, 2000, and XP, and faster
processors, such as Pentium III and IV. The PC must have
a sound card with a microphone input jack.

Conclusions
In sum, the VoiceRelay class module facilitates psy-

chological research using voice keys by providing an in-

expensive alternative to response boxes and experiment-
generation software without sacrificing timing precision.
Furthermore, VoiceRelay has potentially good levels of
accuracy, depending on the computer’s processor, operat-
ing system, and sound card. Although some researchers
have suggested examining on-screen audio waveforms as
an alternative to voice keys (e.g., Baker et al., 2001), ex-
amination of waveforms is undesirable because it is a
time-consuming process and is prone to human error. There-
fore, voice keys will continue to play a pivotal role in psy-
chological research, and we hope that VoiceRelay will fa-
cilitate the measurement of vocal responses.

REFERENCES

Baker, L. A., Taglialatela, J. P., & Washburn, D. A. (2001, June).
On-screen audio waveform as a viable alternative to the voice key.
Poster presented at the 13th annual convention of the American Psy-
chological Society, Toronto.

Cedrus Corp. (2000). SuperLab Pro input options [On line]. Available
at http://www.superlab.com/pro/input-options.htm.

Cohen, J. [D.], MacWhinney, B., Flatt, M., & Provost J. (1993).
PsyScope: An interactive graphic system for designing and controlling
experiments in the psychology laboratory using Macintosh computers.
Behavior Research Methods, Instruments, & Computers, 25, 257-271.

Common Controls Replacement Project (CCRP) (2002, Octo-
ber 9). CCRP high-performance timer objects for VB5 [On line].
Available at http://www.mvps.org/ccrp/controls/ccrptimer5.htm.

Inquisit Millisecond Software (2002). Inquisit features [On line].
Available at http://www.millisecond.com/features.sht.

Kessler, B., Treiman, R., & Mullennix, J. (2002). Phonetic biases in
voice key response time measurements. Journal of Memory & Lan-
guage, 47, 145-171.

Light, L. L., Kennison, R., Prull, M. W., & La Voie, D. (1996). One-
trial associative priming of nonwords in young and older adults. Psy-
chology & Aging, 11, 417-430.

Figure 3. Screen display of the VoiceRelay demonstration timing result.

VOICE KEY AND VISUAL BASIC 777

Microsoft Corporation (1999, December 26). Microsoft Knowledge
Base Article 81592. Timer2.exe—Timers and timing in Microsoft Win-
dows [On-line]. Available at http://support.microsoft.com/default.
aspx?scid�kb;en-us;81592.

Microsoft Corporation (2000, October 22). Microsoft Knowledge
Base Article 274323. PRB: Performance counter value may unex-
pectedly leap forward [On-line]. Available at http://support.microsoft.
com/default.aspx?scid�kb;en-us;274323.

Microsoft Corporation (2001, January 11). Microsoft Knowledge
Base Article 145679. HOWTO: Use the Registry API to Save and Re-
trieve Setting [On-line]. Available at http://support.microsoft.com/
support/kb/articles/Q145/6/79.asp.

Microsoft Corporation (2001, January 11). Microsoft Knowledge
Base Article 178456. SAMPLE: Volume.exe: Set volume control lev-
els using Visual Basic [On-line]. Available at http://support.microsoft.
com/default.aspx?scid � kb;en-us;178456.

Microsoft Corporation (2001, January 12). Microsoft Knowledge
Base Article 187673. SAMPLE: AUDIOLVL.EXE—Monitor input
and output audio [On-line]. Available at http://support.microsoft.com/
default.aspx?scid�kb;en-us;187673.

Microsoft Corporation (2003, January 8). Microsoft Knowledge
Base Article 172338. HOWTO: Use QueryPerformanceCounter to
time code [On-line]. Available at http://support.microsoft.com/
default.aspx?scid�kb;en-us;172338.

Microsoft Corporation (2003, May 7). Microsoft Knowledge Base
Article 147886. HOWTO: How VB Can Get Windows Status Infor-
mation via API Calls [On-line]. Available at http://support.microsoft.
com/support/kb/articles/Q147/8/86.asp.

Microsoft Corporation (2003, December 12). Microsoft Knowledge
Base Article 86281. HOWTO: Play a Waveform (.WAV) Sound File in
Visual Basic [On-line]. Available at http://support.microsoft.com/
support/kb/articles/Q86/2/81.asp.

Psychology Software Tools (2000). PST serial response box [On-
line]. Available at http://www.pstnet.com/srbox/srb.htm.

Rastle, K., & Davis, M. H. (2002). On the complexities of measuring
naming. Journal of Experimental Psychology: Human Perception &
Performance, 28, 307-314.

Snodgrass, J. G., & Yuditsky, T. (1996). Naming times for the Snod-
grass and Vanderwart pictures. Behavior Research Methods, Instru-
ments, & Computers, 28, 516-536.

Taylor, J. K., & Burke, D. M. (2002). Asymmetric aging effects on se-
mantic and phonological processes: Naming in the picture-word in-
terference task. Psychology & Aging, 17, 662-676.

Tyler, L. K., Voice, J. K., & Moss, H. E. (2000). The interaction of
meaning and sound in spoken word recognition. Psychonomic Bul-
letin & Review, 7, 320-326.

NOTES

1. The first author taught a graduate-level Visual Basic programming
class in the University of Florida’s Department of Psychology, and all stu-
dents, most of whom had no prior programming experience, were able to
use the language to program experiments within their areas of psychology.

2. This sound card test program did not work on computers operating
with Windows XP.

ARCHIVED MATERIALS

The following materials and links may be accessed through the Psy-
chonomic Society’s Norms, Stimuli, and Data archive, http://www.
psychonomic.org/archive/.

To access these files or links, search the archive for this article using
the journal (Behavior Research Methods, Instruments, & Computers),
the first author’s name (Abrams) and the publication year (2004).

To obtain a copy of an executable version of the demonstration presented
here, e-mail your request to the first author at abrams@ufl.edu. The
VoiceRelay program is provided as unsupported freeware for noncom-
mercial academic use.

file: Abrams-BRMIC-2004.zip.
description: The compressed archive file contains ten files that com-

prise the sample Visual Basic Project discussed in the article. The spe-
cific files included in the compressed archive are

VRDemo.vbp & VRDemo.vbw, Visual Basic project file.
Form1.frm & Form1.frx, form object for the sample project.
microphone.ico, icon file for the sample project.
clsVoiceRelay.cls, class module that implements the VoiceRelay

Functions.
modMicVolCtrl.bas, Module for control of the Windows Microphone

Volume.
modWaveIn.bas, module that performs waveform-audio recording.
modTimer.bas, module that implements high-resolution timing.
modSysInfo.bas, module that retrieves information about the current

PC system.

Author’s e-mail address: abrams@ufl.edu.
Author’s Web site: http://www.psych.ufl.edu/~abrams/.

(Manuscript received April 10, 2003;
revision accepted for publication May 8, 2004.)

