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The efficient computation of the cumulative
distribution and probability density functions in
the diffusion model

FRANCIS TUERLINCKX
University of Leuven, Leuven, Belgium

An algorithm is described to efficiently compute the cumulative distribution and probability density
functions of the diffusion process (Ratcliff, 1978) with trial-to-trial variability in mean drift rate, start-
ing point, and residual reaction time. Some, but not all, of the integrals appearing in the model’s equa-
tions have closed-form solutions, and thus we can avoid computationally expensive numerical ap-
proximations. Depending on the number of quadrature nodes used for the remaining numerical
integrations, the final algorithm is at least 10 times faster than a classical algorithm using only numer-
ical integration, and the accuracy is slightly higher. Next, we discuss some special cases with an alter-
native distribution for the residual reaction time or with fewer than three parameters exhibiting trial-

to-trial variability.

Sequential sampling models in general and some gen-
eralizations of the Wiener process with two absorbing
boundaries (henceforth, the diffusion process or model;
Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff, Van
Zandt, & McKoon, 1999) in particular, have proved to be
very useful tools for fitting data from two-choice deci-
sion tasks. The basic diffusion model has some unrealis-
tic features (e.g., equal error and correct reaction time
distributions), but by allowing some key quantities of the
model to vary from trial to trial, it is able to capture the
most important features of the data in a two-choice deci-
sion experiment.

A major impediment in applying the diffusion model
is its mathematical complexity. For simple versions of
the model (an unbiased process with no trial-to-trial vari-
ability), closed-form formulas are available for the choice
response probabilities, the mean response time, and the
response time variance (Wagenmakers, Grasman, & Mole-
naar, 2004). However, more useful when applying the dif-
fusion model are the probability density function and cu-
mulative distribution function. Unfortunately, even for
the most simple process, the latter two contain an infinite
sum without an analytical solution. Moreover, by assum-
ing trial-to-trial variability for some of the parameters,
nontrivial integrals are added to the equations. Some of
those integrals do not have closed-form solutions, and in
past applications all integrals have been approximated
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numerically. However, it is clear that for reasons of pre-
cision and computing speed, it is advantageous to have
easy-to-compute, closed-form solutions to at least some
of the integrals.

The main focus of this article will be the computation
of the cumulative distribution function (also called dis-
tribution function) and the probability density function
(denoted as the density function) for the diffusion model
with trial-to-trial variability in drift, starting point, and
residual reaction time. Using standard results from cal-
culus, we will present analytical solutions to some of the
integrals appearing in the distribution function. We will
concentrate our effort mainly on the distribution function
because the latter is more commonly used in the fitting
process (Ratcliff & Tuerlinckx, 2002; Ratcliff et al.,
1999), and therefore it is deemed more important. How-
ever, the case of the density function is almost identical
and in the second part of the article, we will sketch how
the same methods can be applied to the density function.

The structure of the article is as follows: In the next
section, the diffusion model with variability in three pa-
rameters (Ratcliff et al., 1999) is introduced and the clas-
sical method of calculating the distribution function is
described. Subsequently, we sketch a new algorithm for
computing the distribution function. Next, the new algo-
rithm is applied to the density function, and then some
special cases and alternatives are examined.

The Diffusion Model

The general mechanism behind the diffusion process
is simple: When confronted with a stimulus in a two-
choice decision task, the participant will sequentially
sample information, which is mapped into a single signed
accumulator, Z(f), representing the amount of accumu-
lated information at time point ¢. If the accumulator
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crosses a fixed upper or lower boundary, the response
corresponding to the crossed boundary occurs. The ac-
crual of information occurs continuously in time, and
Z(t) is continuously prone to change.

The data obtained from a single trial in a two-choice
decision task are a pair of observations consisting of the
choice response and the reaction time. Let the random
variable X represent the choice so that X takes the value
1 if absorption occurs at the upper boundary (resulting
by convention in a correct response) and 0 if absorption
occurs at the lower boundary (resulting in an error). The
random variable T refers to the time until the (correct or
incorrect) response.

First, we assume that the observed reaction time ¢ con-
sists of two components (see, e.g., Luce, 1986): (1) The
time to encode the stimulus and execute the response,
called the residual reaction time, denoted as ., and (2) the
time devoted to the decision making, which will be mod-
eled by the diffusion process. This decomposition can be
represented as follows:

T=D+1t,

where T is the random variable representing the observed
reaction time, D denotes the decision time, and ¢, is the
residual reaction time.

The amount of accumulated information at the onset of
the decision process, Z(t,,), equals z,. The starting point
z, lies between the lower and upper absorbing boundaries,
located at 0 and a, respectively. Thus, the information
accumulation process starts at z, and ends as one of the
absorbing boundaries is crossed, in which case Z(¢) equals
0 or a. The systematic component underlying the informa-
tion accumulation process is called the drift rate, param-
eterized by &, and defined as the mean rate of information
accumulation toward the upper boundary. Technically, it is
the expected change in Z(#) in a very small time interval.

Besides a systematic part, noise is present in the deci-
sion process, which makes the actual rate of information
accumulation vary around the drift rate. The amount of
variability in the actual information accumulation is rep-
resented by s (s2dt is the variance of the change in a small
time interval df; see Cox & Miller, 1970, p. 208). If s is
large, the diffusion process behaves more wildly, and if
s is small, deviations of the actual information accumu-
lation process from the drift rate are small, too. The vari-
ability parameter s is involved in a tradeoff relation with
the other parameters (multiplying it with a constant and
multiplying the other parameters with the same constant
do not change the model’s predictions), and therefore it

Pr(X =0,T <) =Gy 1(0,)

2 2,22
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serves only as a scaling constant; s will be set to an arbi-
trary value. The standard value for s in psychological ap-
plications is 0.1 (Ratcliff, 1978; Ratcliff et al., 1999),
and we will follow this convention in this article. How-
ever, we retain s2 in all equations so that one might use
another value (such as s = 1) if wished.

Before the diffusion model can be fitted to a data set,
its distribution or density function must be known. We
will not discuss the derivation of the bivariate distribu-
tion function for (X,7) from the first principle here, but
only the result (see Cox & Miller, 1970, for a derivation).
For the diffusion process described above, the joint dis-
tribution function G for an error and the corresponding
error reaction time read as (see Equation 1 at the bottom
of the page) for ¢ > .. and where

3ol 2
o

Hence, Gy 7(0,7) is the probability of observing an error
response (therefore, X = 0) before time . The correspond-
ing probability, Gy (1,7) (the probability of observing a
correct response before time £) can be found by replac-
ing z with a—z and & with —&. This holds true because a
process in which absorption at the upper boundary leads
to a correct response is equivalent to a process with op-
posite drift rate and an appropriately relocated starting
point in which absorption at the lower boundary leads to
a correct response. Furthermore, it can be seen from
Equation 1 that as ¢t — oo, the joint distribution function!
Gy 7(0,7) approaches Pr(X = 0; zy,&): lim, ., Gy 7(0,1) =
Pr(X = 0,7 =< ») = Pr(X = 0; z,,&).

The distribution function contains an infinite alter-
nating (due to the sine function) series with no analyti-
cal solution. Therefore, in a practical setting, the infinite
series must be approximated by a finite partial sum. This
is usually done by checking whether the last added term
is small enough (because a necessary condition for con-
vergence is that for large k, the added terms should go to
zero). However, because of the cyclical nature of the sine
function, occasionally the kth term may be zero or very
close to zero (because the sine function in the kth term
is zero or close to zero; e.g., if zo/a = 0.5 and k = 2),
whereas the next term (k + 1) may differ again from
zero. To avoid this problem, we check whether the absolute
values of the last two consecutive terms are smaller than
some constant (see also Ratcliff & Tuerlinckx, 2002). To

Pr(X =0;z,8)= ()

2 oo
=Pr(X =0;29,8) - " 3,
a k=1
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see why this works, assume sin(4k) = 0. Then sin[A4(k +
1)] = sin(4k)cos(4) + cos(4dk)sin(4) = cos(Ak)sin(4). Be-
cause cos(4k) equals 1 or —1 and 0 < A4 < 7, sin[4(k + 1)]
will differ from zero. To be on the safe side, we choose in
our applications the constant (denoted J) to be equal to
1 X 10729,

In order to get an idea of the number of terms needed in
the partial sum until convergence, we computed Gy, 7(0,7)
for a range of values for ¢ and for a different combina-
tions of parameter values and recorded the number of
summed terms at convergence. Reaction time ¢ (mea-
sured in seconds) was varied from ¢, + 0.0001 to #,. +
0.4 in steps of 0.00025, yielding 1,600 time points for
which Gy 7(0,¢) was evaluated (it was noted that after
t, + 0.4, the number of terms needed until convergence
stabilizes). The values for a were 0.08 and 0.16, for z
they were a/4, a/2, and 3a/4, and for & the values were
0.0, 0.1, 0.2, and 0.3 (given the choice of s = .1).

On average, 15 terms were included in the sum; the
median number was 11 and the first and third quantiles
were 8 and 15, respectively. In the most extreme case,
the number of summed terms was 557, which occurred
for the smallest time value #,, + 0.0001 and a = 0.16.
The closer ¢ is to £, the more terms are needed in the
partial sum. Considering the number of terms until con-
vergence as a function n(f) of time ¢, it turned out that
n(t) decreased with increasing ¢ as a power function (i.e.,
n(t) ~ t712). In 99% of the cases considered here, fewer
than 45 terms were needed.

The diffusion model as presented above usually does
not provide a satisfactory fit to the data from two-choice
decision tasks, mainly because the model is unable to ac-
count for different reaction time distributions for error
and correct responses (Ratcliff, 1978; Ratcliff & Rouder,
1998; Ratcliff et al., 1999). To remedy this shortcoming,
three parameters in the original diffusion model will be
assumed to vary randomly from one trial to another.
First, the drift rate & is considered as a random variable
whose distribution is normal with mean v and standard
deviation 1, & ~ N(v,n?). Thus, even for the same stimu-
lus, the drift rate may be different on different trials.

The second additional source of variability is brought
into the model by making the starting point of the diffu-
sion process a random variable. For each trial, the start-
ing point z,, is assumed to be a random draw from a uni-
form density:

zo~ Ulz—s4/2,z + 5,/2).

Thus, the range of the uniform density is s, (s, > 0) and
it stretches out between z — 5,/2 and z + 5,/2 with den-
sity 1/s, at all intermediate points. The location of this
uniform distribution, denoted by z, may take any posi-
tion between 0 and a, but always with the restriction that
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the end points of the density do not exceed the absorb-
ing boundaries.

As a third extension, it is assumed that #,. also shows
random trial-to-trial variability. On each trial, #,. is an in-
dependent identical draw from a uniform distribution
with mean T :

t,~ UT, — 5,02, T,y + 5,/2).

The range of the uniform density is s, (s, > 0), and it
stretches out between I, — s,/2 and T, + s,/2 with den-
sity 1/s,.

If we want to incorporate the trial-to-trial variability on
these three parameters in the diffusion model, we must
integrate the distribution function in Equation 1 with re-
spect to £,., zo, and & and their densities (see Equation 3 at
the bottom of the page). The upper limit of integration for
t,. is not simply equal to T, + s5,/2, because if ¢ is smaller
than T, + s,/2, it is impossible for . to be larger than ¢.
For a similar reason, t,, is not simply equal to ¢, because
t.. has as an upper boundary 7, + s,/2. To simplify the no-
tation in the remainder of this article, we will denote the
lower and upper limits of integration with respect to z,
and #,. by Z; and Z;; and by T; and Ty, respectively. Be-
cause the probability density functions of z, and ¢, are
rectangular, they can be replaced in the equation by the
constant density values 1/s, and 1/s,, respectively.

Before discussing the computational issues involved
in evaluating the distribution function of the diffusion
process, we will first outline how the distribution func-
tion is used in the fitting process.

Fitting the Diffusion Model With the Chi-Square
Estimation Method

Let us assume that we have collected for one person N
trials in a single two-choice decision task. A particular
trial i (i = 1, ..., N) results in a pair of observations
(x;,t;), in which x; denotes the choice response (x; = 1 if
the correct response was given, and zero otherwise), and
t; refers to the reaction time. Suppose that there are N, er-
rors and N, correct choices (i.e., N, + N; = N). Because
there are no experimental conditions, there is only one
set of parameters (i.e., a, I;, 1, 2, Sz, S, and V).

One of the most frequently used methods for estimating
the diffusion model parameters is the chi-square method
(Ratcliff & Tuerlinckx, 2002). To apply the method, the
data must be preprocessed by computing the observed
quantiles for both correct and error reaction times. For
each type of response, O quantiles will be computed, and
they are denoted as p,,, where x denotes the type of re-
sponse (i.e., 0 or 1) and g the particular quantile (¢ =
1,...,0Q).Inprevious applications, the 10%, 30%, 50%,
70%, and 90% quantiles are used successfully (such that
0O = 5) and therefore we will continue to work with them

Sy
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in this article. It is also useful to define the extreme quan-
tiles (0% and 100%) as follows: p,, = 0 and p , = +.

The five quantiles for the correct reaction times divide
the sample of observed correct response times into six
bins, and the five error quantiles do the same thing with
the error response times.

Because of the definition of the quantiles, we know that
the number of observations in each of the six bins equals:
0.1N,, 02N, 0.2N,, 0.2N,, 0.2N,, 0.1N, (withx = 0 or
x = 1). The latter six frequencies for the response x are
denoted as O,; (withj =1, ..., Q + 1). The corre-
sponding expected frequencies can be found by plugging
the observed quantiles into the distribution function. The
expected frequencies for the correct response times are
as follows: E,; = N[Fy r(1,p,;) — Fx(1,p; ;~1)]. Note
that for the extreme quantiles p,, = 0 and p,, = +°, the
distribution function equals 0 and Pr(X = 1; z,,&), re-
spectively. The expected error frequencies are defined in
an analog manner: Eq; = N[Fy 7(0,p;) — Fy 7(0,p ;- 1)]-

Next, the chi-square loss function that must be mini-
mized, given the data in order to find the optimal pa-
rameter estimates, is defined as

2
1 6 O‘C.—Ex.
)Cz(a,Te,.,n,z,sZ,st,v)z Z 2(jE,j)

x=0 j=1 xj

4

If the expected frequency is zero or very close to it, nu-
merical problems may arise during the minimization pro-
cess (division by zero). To avoid these, a small quantity
(e.g., 0.00001) can be added to the denominator. The chi-
square loss function in Equation 4 is then minimized as a
function of the parameter values using an iterative opti-
mization algorithm (e.g., the Simplex algorithm developed
by Nelder & Mead, 1965, is used for this task). Further de-
tails on the chi-square method and other estimation proce-
dures can be found in Ratcliff and Tuerlinckx (2002).

There is good reason to focus mainly on the chi-square
method for estimating the diffusion model’s parameters
in this article. As was already mentioned, the diffusion
model with random ¢, z,, and & is mathematically very
complex. Therefore, it is important to minimize the com-
putational effort. The chi-square method is very attrac-
tive from this point of view because for a given data set
with a single experimental condition, only 10 evalua-
tions of the distribution function are necessary within a
single iteration of the optimization procedure (i.e.,
two X five quantiles), no matter how many trials were
observed. On the other hand, the maximum likelihood
estimation procedure (Myung, 2003; Van Zandt, 2000)
would require the evaluation of the probability density
function at each data point, which is computationally a
much more expensive task.

The Diffusion Model Equations With Random
t,., &, and z;

In this section, we will describe a new and efficient al-
gorithm for computing quickly and accurately the distri-
bution function of the diffusion model with random drift,
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starting point, and residual reaction time. In previous ap-
plications of the diffusion model (Ratcliff & Tuerlinckx,
2002), the integration with respect to &, z,, and ¢, as
shown in Equation 3 was done numerically by approxi-
mating each integral with a finite sum. An introduction
to numerical integration can be found in almost any text-
book on numerical analysis (Acton, 1970; Burden &
Faires, 1997; Press, Flannery, Teukolsky, & Vetterling,
1989).

Approximating an integral numerically has some dis-
advantages compared with using a closed-form solution,
if the latter exists. The first and most important disad-
vantage is, of course, that the numerical integral is only
an approximation and is therefore subject to inaccura-
cies. Obviously, the accuracy can be increased by aug-
menting the number terms in the approximating sum, but
that is at the expense of computing speed and from a cer-
tain number of terms onward, the gain in precision will
become marginal. Second, integrating numerically over
a single quantity is often not such a great problem and it
can be done with accuracy and speed. But if several pa-
rameters are allowed to vary over trials (as in this case),
the number of terms that must be summed in approxi-
mating the multidimensional integral increases expo-
nentially. The only thing that can be done to limit the
computation time is to reduce the number of quadrature
nodes (i.e., the points at which the function is evaluated
to approximate the integral), but again at the expense of
accuracy. Therefore, it is worthwhile to try to solve the
integrals analytically.

However, nothing is perfect and there also may be
downsides to the use of closed-form solutions. The ana-
Iytical solution may be a very complicated expression,
which is hard to evaluate, or it may suffer from numeri-
cal problems. Especially problematic in our case is the
presence of the infinite series. The closed-form solution
of integration with respect to z,, t,,, and & will affect the
terms that are summed in the infinite series. It is not im-
possible that more terms are needed after the analytical
integration than were needed before to achieve equal ac-
curacy, such that the gain in speed resulting from per-
forming the analytical integration is offset by the in-
creased number terms in the partial sum. Hence, we need
to check the speed of computation when a new algorithm
is introduced. It will be shown that some of the integrals
appearing in the distribution function may be solved an-
alytically, but for the other ones we still have to rely on
numerical approximation.

Let us start with Equation 3, written in full as Equa-
tion 5 at the top of the next page.

Due to the structure of the distribution function, the
integration can be performed separately for the probability
equation and for the part after the minus sign containing
the infinite series. Therefore, we discuss the two cases
separately, starting with the integration of Pr(X = 0; z,,&).

Integration of Pr(X = 0; z,,,&). The easiest integral
is the one with respect to ... Because ., does not appear
in the probability equation, the integral has a very sim-
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ple solution, which is already given in Equation 5. Inthe
case that 7;; = min(t,T;, + s,/2) = T, + s,/2 (1.e., t >
1., + s,/2), all parameters referring to the dlstrlbutlon of
the encoding and response distribution cancel out the
probability part of the equation, and the solution equals
the marginal probability of absorption in the lower bound-
ary under the diffusion model with random drift, starting
point, and residual reaction time. Only in the case that
t < T, + 5,/2 do parameters related to the nondecisional
time distribution affect the probability part.
Unfortunately, the integrals with respect to z, and &
for Pr(X = 0; z,,&) do not have analytical solutions, and
therefore the intractable double integral must be approx-
imated numerically. However, that is not too bad, be-
cause there corresponds only a single Pr(X = 0; z,,&) to
a given set of parameter values. Subsequently, for a set
of parameter values, the numerical approximation to the
double integral must be computed only once in a run of
an estimation algorithm or in a program for plotting
Fy 7(0,7) as a function of 7. In this article, we use common
methods for numerical integration, such as Gaussian

L Pr(X =0;2,E)dz,
74
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quadrature (for z, because it is bounded between 0 and a)
or Gauss—Hermite quadrature (for & because the normal
density appears in the integrand, and the limits of inte-
gration are — and +) to approximate the integrals.
Consider first the approximation to the integral over z,
with a Gaussian quadrature (Abramowitz & Stegun, 1974,
p. 887) (see Equation 6 at the bottom of the page), where
y; and w; are the transformed nodes and weights from a
Gaussian quadrature. The standard nodes and weights of
a Gaussian quadrature are denoted as y;and w/, and they
are suited for integrating a function between —1 and 1.
Because the limits of integration in our case are Z; and
Z,, we must transform the latter nodes and weights into

¥y = WZy=Z)21y] + (Zy+Z,)I2 = (52 + =

a

and
w; = [(ZU_ZL)/z]W; = (Sz/z)Wj',

respectively. The standard nodes and weights up to » = 96
can be found in Abramowitz and Stegun (pp. 916ff), and
an algorithm to compute the nodes and weights for any
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arbitrary » is described in Press et al. (1989). Below we
will discuss how many nodes and weights are needed for
the integration over z,,.

The integral with respect to & cannot be solved ex-
plicitly, either. Because the limits of integration with re-
spect to & are —o and < and a normal density is present
in the integrand, the numerical approximation can be done
with a Gauss—Hermite quadrature (Abramowitz & Stegun,
1974; Naylor & Smith, 1982). The structure of the inte-
gral with respect to & is the following (after integrating
already with respect to z;)) (see Equation 7 at the bottom
of the page), where N(&;v,n2) is the normal density with
mean v and variance 7> evaluated at § and g(&,),) equals

[exp(—2a&/s?) — exp(—2y,E/s?)] / [exp(—2a/s?) — 1].

Approximating the integral in the previous equation with
a Gauss—Hermite quadrature gives Equation 8 (see bot-
tom of the page), where u; and r; are the ith node and
weight from the quadrature used to integrate numerically
with respect to &. These nodes and weights are transfor-
mations of the standard nodes u} and weights »/ (i =
1, ..., m) for a Gauss—Hermite quadrature (Naylor &
Smith, 1982). The transformation of the standard nodes
u) into w; is as follows: u; = V(2)mu, + v. The standard
weights are transformed into #; by means of the follow-
ing rule: 7, = r//N7. The standard Gauss—Hermite nodes
and weights up to m = 20 can be found in Abramowitz
and Stegun (1974, p. 924), and for m > 20 they can be
found through the algorithm of Golub and Welsch (1969).

A problem with the numerical integration of q(f,yj) is
that the function is not defined for & = 0 (the denomina-
tor becomes 0 at £ = 0). Thus the numerical integration
formula may break down if one of the quadrature nodes
happens to be zero or very close to it. It is said that the
integral is improper because the integrand has an inte-
grable singularity at a known point (Press et al., 1989,
p. 115). A simple solution to this problem will be de-
scribed in a separate section on singularities below. For
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the time being, we assume that all Gauss—Hermite nodes
are sufficiently different from zero.

We have treated the integration of Pr(X = 0; z,,&), but
the integration of Pr(X = 1; z,,&) can be easily obtained
from the preceding by replacing u; with —u; and y; with
a — y; in the formulas. An easier way is to integrate
Pr(X = 0; z,,%) in the first place only with respect to z,
and & (call this integrated quantity p,) and then

(Ty=11)/s,(1 = po)
gives the desired result.

Integral of the part containing the infinite series.
Now we consider the integration of the second part of
the distribution function in Equation 5. We see that in
Equation 5, the integrals with respect to z, and ¢, appear
separately in the formula, and therefore they can be treated
independently. First, the integration with respect to ¢,
will be discussed. Let

A = 1/2[(8¥s?) + (n?k2s?/a?)],

then the integral has a particularly simple solution (see
Equation 9 at the top of the next page).

Also, the integral with respect to z, can be derived
from applying basic rules of integration. Let

B=—&/s?
and
C = rk/a,

then the structure of the integral appearing in Equation 5
is:

_[ZZU exp(Bzo) sin (Cz, )dz,.
L

To obtain an analytical solution for this integral, one
must apply twice the integration by parts formula
(Judv = uv—[vdu) and then solve for the unknown inte-
gral. For the first application of the integration by parts
formula, take u = exp(Bz,) and dv = sin(Cz;)dz,, so that

}
Lun(enrhe= LS [Caer Werre o)

wji ®)
Z j=li=1 exp [_ 2612”,-) ~1
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du = Bexp(Bz;) and v = (—1/C)cos(Cz,). The solution
then becomes

fexp(BzO) sin(Czy)dzy=— % exp(Bz,)cos(Cz,)
+ g [exp(Bzy)cos(Czo)dzg+ K,

where K is the constant of integration. Next, the integration
by parts formula is applied again with the same definitions
of u and du as before but now with dv = cos(Cz;)dz, and
v = (1/C)sin(Cz;). The original integral shows up again
at the right hand side so that we can solve for it. After
some algebra, this gives the equation at the bottom of the
page. The definite integral can then be computed as fol-
lows (see Equation 10 at the top of the next page).

Unfortunately, the integration with respect to & must
be approximated numerically. Again, the Gauss—Hermite
quadrature with the same nodes and weights as described
before for integrating Pr(X = 0; z,,&) with respect to &
can be implemented here. There are no singularities for
u; = 0.

Collecting Equations 8, 9, and 10, and inserting them
in Equation 5, the distribution function equation becomes
(see Equation 11 at the bottom of the next page). The
corresponding distribution function for the reaction time
of a correct response can be obtained from Equation 11
by replacing z with ¢ — z (which is the same as a change
of Z, ina — Z;;and a change of Z;;in a — Z; ) and by re-
placing u; with —u;.

Although it may seem that the derived solution is sat-
isfactory, there is nevertheless a problem associated with
Equation 11. As already mentioned in the introduction,
the analytically solved integral may exert an influence
on the rate of convergence of the infinite series. For
Equation 11, the convergence of the infinite series is very
good when ¢ > T, + s,/2. However, for t < T, + s,/2,

exp[—1/2(u-2/s2 + m2k2s2/a?)(t — Tp))]

equals 1 because 7;; = min(¢,T;, + 5,/2) = t. Thus, the last
term of the last line of Equation 11 goes rapidly to zero,

9
l£+ﬂ'2k282 )
2| 2 a’

the last line in itself will become quickly equal to one,
and consequently the infinite series will be dominated
more strongly by the oscillating sine and cosine terms,
leading to a poor convergence rate. In the cases we ex-
amined, we often needed more than 5,000 terms before
the partial sum stabilized. Therefore, we advise using
Equation 11 only for ¢t > T, + s5,/2. For the other case, we
derive a solution in the next subsection.

The caset = T, + s,/2. Let us take Equation 5 again
as the starting point. For the integration of the probabil-
ity Pr(X = 0; z,,€), we can proceed in the same way as
described above. For the second part of the distribution
function (the part containing the infinite series), we
solve analytically the integral with respect to £, but leave
the integrals with respect to £ and z, untouched for the
time being. Applying Equation 9 leads to the equation
for the second part of the distribution function, Equa-
tion 12 at the top of page 10.

In Equation 12, a difference between two infinite se-
ries appears. Let us consider the second term first be-
cause it is the simplest to handle. The infinite series must
be approximated with a partial sum (see above) and the
integrals with respect to & and z,, are then numerically
evaluated with a Gauss—Hermite and Gaussian quadra-
ture, respectively. The rate of convergence of the partial
sum is very good: The magnitude of consecutive terms
diminishes quickly due to the presence of —42 in the ex-
ponent in the numerator and a term of the order £ in the
denominator.

For the first infinite series in Equation 12, a closed-
form formulation exists. The infinite series has essen-
tially the following form and solution (see Prudnikov,
Brychkov, & Maricheyv, 1986):

_ n* sinh(bx)

o Aksin(kx)
g 4b sinh?(rb)

iI5 +b2)

X cosh[(?t - x)b] '

4b  sinh(rb) (13)

[ exp(Bz,)sin(Czg)dz, = %BZOZ)[B sin(Czq) — C cos(Czy) |+ K
B*+C

2 4
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z , _ exp(BZy) exp(BZ,),, .
IZZ’ exp(Bz, )sin(Cz)dz, = o [Bsin(CZ,)-Ccos(CZ,,)]- e [Bsin(CZ, )~ Ccos(CZ, )]
s%exp (—iZUj ¢
=5 J|_>gsin (n—kZU) —”—kcos(”—kZU)
52 P e 52 a a a
s2 a*
s? exp (—é ZLJ
s {—ism(ﬂ:k ) wk cos(ﬂk H (10)
s a a a

52 zkz 2
s2 a?

Rewriting the infinite series from Equation 12 in the
form of Equation 13 yields
_ ksin (k ”ZOJ
a
Z

N ksin(ﬂl;zo) -
R S
(B I
sinh(ézoj
a s
45 & sinhz(éaj

2

N

i Cosh{s( 2%)}
+-0 S (14)
4s°ng sinh(%)
N

Again, the integration with respect to z, and & is per-
formed numerically.

Another minor problem is associated with Equation 14,
because the integration with respect to & contains a sin-

Fy 7(0,0)

u
™M

st o e o
222k2(sz+

5,8.a" k=1 =1

ool -2

gularity at £ = 0, since sinh(0) = 0. Again this singular-
ity causes a problem only if one of the Gauss—Hermite
quadrature nodes is zero or very close to zero. In the next
subsection, we will deal with the treatment of this and
the already mentioned singularity (in the integration of
the probability).

Improper integrals: Singularities at £ = 0. As we
have described, there are two situations in which inte-
grable singularities at £ = 0 occur, and in such cases the
integral is called improper. Consequently, if one of the
nodes in the numerical approximation is zero or very
close to zero, the program may break down. Both singu-
larities can be removed, but the degree of complexity of
the two solutions differ.

For the integration of the probability q(é,yj) over
N(&;v,m2) in Equation 7, a simple solution exists. The
limiting value of ¢(&,,) as & — 0 equals

9(0,y; (15)
and this result is found by taking the limit to zero and

then applying I’Hopital’s rule. This limiting value is the
probability of absorption at the lower boundary if the

(1)
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drift rate equals zero and the starting point is y; (see Cox
& Miller, 1970). Thus to remove the singularity, one may
replace the formula in Equation 7 by (a — y))/a if the
node u; equals 0 or lies in a small neighborhood of 0. To
avoid any problems, we check in practice whether the ab-
solute value of u; is smaller than 1 X 10~7 (note that this
is a heuristic and somewhat arbitrary rule).

A singularity also occursat £ = 0if ¢ =< T, + 5,/2, and
the closed-form expression in Equation 14 of the infinite
series has been used. Unfortunately, the solution is more
complicated. Instead of continuing to work with the equa-
tion that resulted in the singularity, we start again from
Equation 1 and integrate analytically with respect to z,
and ¢, and approximate numerically the integral with re-
spect to &; the result is again Equation 11. Now suppose
u; = 0 (here again, we resort to this procedure if | #;| < 1X
10-7), then some of the terms in the second part of Equa-
tion 11 (containing the infinite series) can be dropped,
yielding Equation 16 (see the bottom of the page). This
equation contains three separate infinite series. For the first
two similar ones, a closed-form solution is available; but
the last one must be approximated numerically again.

The two similar infinite series appearing in the last
equation have the same structure, and a closed-form so-
lution (Prudnikov et al., 1986) exists:

ol
Zk cos(kx)——— X

7[)(3 X4

12 48

(17)

4 & 272 2\
_mt sz(n Es j nk[cos(nkZL
$,8.a” k=1 a a a

4
—_ 2a 5 {Zk"“ cos(”k ZLj

848, 7'C4S

—kz_lk“[cos(’zkzL) —cos (%szﬂ exp{ . (

Applying the latter identity to the first infinite series
from Equation 16 is straightforward and results in

4 ghp? 473 o4
zk—4 COS(nk ZL) o ZL _ T ZL ZL (18)
pam 90 124> 124 484
Replacing Z, with Z;, gives the solution for the second
infinite series. The third infinite series in Equation 16
must be approximated numerically with a partial sum,
but again, this series converges very quickly.

Summary of the computational strategy. The algo-
rithm to compute the distribution function Fy 7 (x,?) of the
diffusion model with random drift, starting point, and
residual time component has been programmed in For-
tran and Matlab (the Matlab code is a literal translation
of the Fortran code). The Fortran and Matlab codes can
be found in the Web-based archive of Behavior Research
Methods, Instruments, & Computers (see the Archived
Materials section at the end of this article).

The global structure of the program is as follows.
First, it is tested whether ¢ is larger than the lowest theo-
retical possible value T, — s,/2. To avoid possible numer-
ical problems, ¢ should be 0.001 s larger than 7. — s,/2
(given that s = 0.1 and the reaction time is measured in
seconds). If that is not the case, the distribution function
value is set to zero and the program ends. If t > T, —
s,/2 + 0.001, the probability of an error response will be
computed. In most situations, all Gauss—Hermite quad-
rature nodes will be sufficiently different from zero so

e 252

3 k™ cos (%kau

Joo 375

(16)
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that Equation 8 can be used. As said above, the latter
equation is not valid for |u;| < e (where e =1 X 1077),
in which case we resort to the simple formula described
in Equation 15. Then, we compute the second part of the
distribution function, containing the infinite series. If ¢ is
larger than 7, + s5,/2, we rely on Equation 11 for our
computations. However, if the opposite is true (t = T, +
s5,/2), then we use Equations 12 and 14 for the Gauss—
Hermite quadratures that are larger than e. If t = T, +
s,/2 and a Gauss—Hermite quadrature node is less than €,
we apply Equations 16 and 18. Both programs use 10
nodes and weights for the Gaussian and Gauss—Hermite
quadratures (the values for the nodes and weights are
supplied with the program code).

Accuracy and the choice of number of quadrature
nodes. The quality of numerical methods can be com-
pared with respect to speed and accuracy, and both as-
pects are very often involved in a tradeoff relation with
each other. The importance of a fast method is obvious:
Given two equally accurate methods, we prefer the method
that results in the fastest evaluation of the distribution
function. Concerning accuracy and holding speed con-
stant, we prefer the method for which the computed so-
lution has the smallest deviations from the truth. Be-
cause we give priority to the accuracy of the method, we
will assess that aspect first, and in the next subsection
the computational speed of our method is evaluated.

When evaluating the accuracy, in an ideal situation,
we should be able to compare the results from numerical
methods with the true values. However, in our case (and
many others) the true distribution function is unknown.
First, there are common roundoff and cancelation errors,
and second, two other kinds of approximations occur in
both the classical algorithm and our new algorithm for
computing the distribution function that may affect the
numerical accuracy: The infinite series is replaced by a
partial sum, and some or all integrals are replaced by fi-
nite sums. However, we expect the new algorithm to have
a higher degree of accuracy than the classical method be-
cause in the latter method all integrals must be approxi-
mated numerically, while in the former at least some
closed-form solutions are available.

If we want to increase the numerical accuracy, there is
little we can do on the side of the partial sum because the
maximal accuracy is already achieved by requiring the two
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last terms added to the sum to be smaller than 1 X 1029,
On the other hand, the number of quadrature points of
the finite sums that approximate the integrals can be in-
creased and in the following, the effect of such an oper-
ation will be examined.

Using the Matlab program, we computed for a variety
of parameter values and reaction times the distribution
function with the classical algorithm and with our new
algorithm. The number of quadrature nodes varied from
5to 10 to 20 for all numerically approximated integrals.
The range of parameter values was the following: a =
0.08 or 0.16; n = 0.08; I,, = 0.3; z = a/4 or a/2; s, =
0.01 ifa = 0.08 and z = 0.02, 0.03 ifa = 0.16 and z =
0.04,0.05ifa = 0.08 and z = 0.05, 0.10 if a = 0.16 and
z=0.08; 5, = 0.2; v = 0.0, 0.15, or 0.30. The reaction
time was varied from 0.2 to 2.5 sec in steps of 0.05 sec,
and the distribution function was always computed for a
correct response (hence, X = 1). Next, we calculated for
all possible parameter and reaction time values the max-
imum absolute difference between the distribution func-
tion values for each method and the number of quadra-
ture nodes. The results can be found in Table 1 (the last
column can be ignored for the moment).

A first observation is that the maximum absolute differ-
ences between the distribution functions evaluated with
different methods and a different number of nodes are
very small to moderately small (ranging from 2 X 10~7
to 3 X 10~4). This shows that both methods give almost
identical results under a variety of circumstances (dif-
ferent parameter values, different reaction times, differ-
ent number of nodes). A second observation is that for
both methods, with an increasing number of nodes, the
maximum absolute differences between them become
smaller; hence, they seem to converge to the same value.
If we use 20 nodes for the classical and for the new method,
the maximum absolute difference attains its minimum
values (2 X 10~7). Third, it seems that 10 nodes for ap-
proximating the integrals with respect to the three random
parameters is sufficient when using the classical methods
because the maximum absolute difference with the dis-
tribution function when using 20 nodes is only 2 X 10-5.
Also, the agreement is good with the classical method
with 20 nodes for each dimension. Doubling the nodes in
the new algorithm from 10 to 20 does not add much to
the precision. Therefore, we conclude that the accuracy

Table 1
Maximum Absolute Difference Between the Computed Distribution Function Using the Classical
Method and New Method With a Different Number of Quadrature Points

Method .
; Avg. Time/
Number New Classical Function Call
Method of Nodes 5Nodes 10Nodes 20Nodes 5Nodes 10Nodes 20 Nodes (sec)
New 5 0 2X10~4  2X1074 3x10-4 2x10~4 2X10~* 0.002
10 0 1X1076  3X10=4 2X10~5 1X10-6 0.004
20 0 3X10-4 2X10-5 2X10-7 0.012
Classical 5 0 3X1074  3X10~4 0.023
10 0 2X10-5 0.184
2 0 1.500
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of the new method is satisfactory and comparable to
using an algorithm with only numerical integrations.

Computational speed. After having concluded that
the accuracy of our new method is excellent, we should
examine its speed of computation and compare it with
the classical method. Here, the main advantage of our
new algorithm is revealed because it is very fast com-
pared with the classical approach in which all integrals
are approximated numerically. To support this conclu-
sion, we carried out the same computations as described
above to evaluate the accuracy of the methods and then
we used Matlab’s profile function to assess how much
CPU time is spent on computing the distribution func-
tions with a different number of quadrature nodes.

The last column of Table 1 shows the average time per
function call for the two algorithms and different number
of quadrature nodes. First, the classical algorithm always
takes much more computing time than the new algorithm
(10 times more for 5 nodes, 46 times more for 10 nodes,
and 125 times more for 20 nodes). Second, doubling the
number of quadrature nodes (for all three dimensions)
multiplies the average time per function call for the new
algorithm with a factor of 2 to 3, while for the classical
algorithm with a factor of 8 (= 203/103). (Note that the
average times per function call are less in absolute value
when running Fortran.)

In conclusion, it seems that using 10 quadrature nodes
for all three random parameters in the new algorithm leads
to an accurate result within a very reasonable computing
time.

The Density Function and Some Special Cases

The final section of this article outlines how the ap-
proach taken for the distribution function can be carried
over to the density function with only a few changes.
Moreover, an alternative distribution function for the

Sxr(0,0) =
o m( 2 2,22
- TS U ks
= ZkZ[ R
§,8,a° k=1 i=I\_S§ a
x{exp(—;ZUj —u—ésin(”k
S a

5] ksin (”kZO
k=1

1

|

2

2
2, i
a2

(19)
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residual response time is proposed. Next, we elaborate
the analytical solution of the integral of the density func-
tion with respect to the drift rate. Finally, a simplification
of the infinite series in the case of an unbiased diffusion
process is given.

The density function. Calculating the distribution
function is necessary when one wants to use the chi-
square method for estimating the model parameters. An
alternative for the chi-square method is the maximum
likelihood estimation method (Myung, 2003; Van Zandt,
2000), and then the probability density function is needed.
The joint density function of (X,7) (evaluated at X = 0
and 7 = ) is obtained from Equation 1 by differentiating
Gy 7(0,1) with respect to 7 (see Equation 19 at the top of
the page). This equation does not integrate to 1 (over ¢)
but to Pr(X = 0; z,,¢) [i.e., [ gx.7(0,¢) dt = Pr(X = 0;
20,&)], the probability of an error. Again, the corre-
sponding formulas for X = 1 can be found by changing
ztoa — zand {to —&. Likewise, gy 7(1,7) integrates to
Pr(X = 1; 20,8): [§ gy r(1,0) dt = Pr(X = 1; z,,).

If we assume again that a single two-choice decision
task with N trials has been carried out, the data of a par-
ticular trial i (. = 1, ..., N) are a pair of observations
(x;,t;), with x; being the choice response (x; = 1 if the cor-
rect response was given and zero otherwise) and ¢; being
the reaction time. The likelihood L is then defined as the
product of the individual density functions:

a s2

N
L(a,Tusm252.5v) = [1exr(xt)  (20)
i=1
Before maximizing L as a function of the unknown pa-
rameters, the logarithm is usually taken (which does not
affect the location of the maximum), and the log likelihood
is maximized. It is obvious that a likelihood analysis is
computationally more burdensome than the chi-square
method, because for the former method the density must

2,22
ks " 1)
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be evaluated at every data point, while for the latter
method the distribution function only has to be evaluated
for the selected quantiles.

Returning to the computation of the density function, it
appears that the formulas of the density function are sim-
pler than for the distribution function because Pr(X = 1;
2,,) is not present in the equation. The same basic inte-
grals as the ones applied to the distribution function can
be used in this case, and the density function becomes as
shown in Equation 21 (at the bottom of the previous
page), where the same definitions apply for the limits of
integration and the nodes and weights of the quadrature
as in Equation 11. The latter formula works fine if ¢ >
1., + s,/2, but the convergence of the infinite series is
again very slow for the opposite case. However, calcula-
tions similar to those of the distribution function case
lead to a numerically stable algorithm. The main differ-
ence is that an infinite series of the form

g ksin(kx) _ g sinh[(7 —x)b]

G(k2+p?) b sinh@d) @)
appears instead of Equation 13, and

= 2 2

Nk cos(hx)=T- - TX L X (23)

6 2 4

replaces the infinite series in Equation 17. The two sets
of equations (one set for the distribution function and the
other for the density function) differ slightly because in
the distribution function case, the terms in the infinite
series are divided by an additional factor containing k2.

An alternative distribution for #,.. Next, we consider
the normal distribution for ¢, instead of a rectangular
one. No closed-form solution will be available for the
convolution integral but it will be shown that the numer-
ical approximation comes down to finding a way to cal-

k=1

detail because it does not add anything new. Also be-
cause of simplicity, we present in the following only the
results concerning the density function. The results for
the distribution function are analog and can be derived
readily from the following material.

At first, it may seem unrealistic to assume a normal dis-
tribution because positive mass is assigned to values for ¢,
that are smaller than zero, which is physically impossible.
However, it is quite likely that after fitting the normal dis-
tribution, the estimated values for the mean and variance
will lead to a distribution that predicts negative values
only with a very small probability (note also that the same
problem occurs with the ex-Gaussian distribution).

The convolution of the diffusion density with the nor-
mal density for ¢, is (where the mean of 7, is 7;, and the
standard deviation is s,) is as shown in Equation 24 (see
the top of the page). Completing the squares in the ex-
ponent and writing the standard normal cumulative dis-
tribution function as ®(-) yields the following expression
(see Equation 25 at the bottom of the page). In this case,
there is no analytical solution for the convolution inte-
gral, but most software packages have built-in functions
to evaluate the cumulative standard normal integral (or
the related error function?) quickly and with very little
error. Therefore, for most cases one can rely on the built-
in routines to evaluate ®(+).

A problem with Equation 25 arises if the counter in
the infinite sum, k, becomes large, so that the value in the
exp(+) becomes very large and the value in the standard
normal cumulative distribution function ®(-) approaches
zero. In this case, the standard numerical approximations
may fail. However, as noted by Schwarz (2001), one can
use an approximation formula given by Derenzo (1977) to
circumvent the computational problem. Derenzo (1977)
shows that if y = 5.5,

culate cumulative standard normal probabilities. More- 1 2 0.94
over, it is still possible to integrate analytically with D(-y)=1-D(y)= T, &XP —7—'72 . (20)
respect to z, although we do not describe the solution in 2w y
2 ENVS, . (mkz
hy +(0,1) = mexp(—z ) ksm(oj
o a*N2ms, ’ 5 kz=:1 a
2
2 2 2,22 2( g2 2,22
XexpstTer t(€+ﬂk5‘]+st[é+ﬂks]
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The relative error of this approximation is smaller than
0.04% for y = 5.5. Thus, given that

t— T s, — s,/2(E2/s? + m2k2s2/a?) =< —5.5,
er, t t

Equation 25 can be approximated as follows (see Equa-
tion 27 at the top of the page). The main advantage of
this approximation is that the standard normal cumula-
tive distribution is approximated with an exponential
function, and therefore the large negative terms previ-
ously in the ®(-) function and the large positive terms in
the exp(+) function can now be taken together in a single
exp(+) function. This will lead to a less extreme value in
the exponent.

One advantage of assuming that the distribution of 7.,
is Gaussian can be seen if one looks at Equation 11. The
formula for the distribution function contains the upper
limit of integration over f,, Ty, which was equal to
min(z, T, + s,/2). The latter upper limit is a discontinu-
ous function of ¢, but also of 7, and s,. This may result in
discontinuity points in the objective functions that are
minimized in order to find parameter estimates (chi-
square distances, log likelihoods, etc.). Such discontinu-
ities may cause problems if the minimization routine
makes use of (numerical) derivatives. In contrast, when
the distribution of £, is assumed to be Gaussian, this dis-
continuity does not arise.

Trial-to-trial variability for & but not for z,and 7,,.
In some situations, a researcher may want to make & ran-
dom but leave z; and ¢, fixed over trials. Of course,

whether it is feasible to restrict some parameters to zero
is in the first place an empirical issue (i.e., if the esti-
mates for s, and s, happen to be close to zero, there is no
harm in restricting them effectively to zero). However, it
is possible to give some general guidelines. For instance,
if there are no fast errors, that may be an indication of the
lack of variability in z,. Also, small variability over con-
ditions in the leading edge of the reaction time distribu-
tion points to the nonexistence of variability in #,. Fur-
ther information can be found in Ratcliff and Rouder
(1998) and Ratcliff et al. (1999).

If there is no variability in z, and ¢, the integration
with respect to £ has a closed-form solution for the den-
sity function (but not for the distribution function). To
explain this solution, we start with the integral with re-
spect to & (see Equation 28 at the bottom of the page).
The squares in the exponent can be completed, such that
a function proportional to the normal density appears
(called the kernel of a normal density). After some alge-
braic manipulations, one can find the normalizing factor
of the normal density kernel, and the integral can be re-
placed by the following quantity:

2
FE——
expl n2 s ‘\‘ 2n .
2 [r—th+1j [t—ter +1]
2 2 | 2 2
s n \ s n

2 w0 t—t 1 z
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The formula for £y +(0,f) now becomes as follows (see
Equation 29 at the top of the page). Again the density
hy r(1,1) follows by replacing z, by a — z, and v by —v.

There are some numerical problems associated with
Equation 29 because an overflow may occur for small val-
ues of 7 (typically for 1 smaller than 0.03 given that s =
0.1). This is due to the fact that in one of the exponents in
Equation 29, there is a division by a factor of order 74,
which may result in a very large value that must be expo-
nentiated if 17 is small. However, by expanding the squares
in the exponent, a numerically much more stable formula
is obtained (see Equation 30 at the top of the page).

Unfortunately, this derivation is only valid for the den-
sity function, and there is no analog closed-form solu-
tion for the integral over £ in the distribution function.
Moreover, if one wants to integrate afterward with re-
spect to ., or z,, this must be done numerically because
there are no closed-form solutions available.

The unbiased diffusion model. If there is no inte-
gration with respect to z,, a useful simplification in the
density and distribution function formulas can be ob-
tained for the unbiased diffusion model (with z, = a/2).
In that case, the sine term in the infinite series from
Equation 1 reduces to sin(mk/2). Next, we may use the
following equalities:

1 ifk=1+4d
m{%f): 0 ifk=2d
1 ifk=3+4d

where d is a nonnegative integer. Then, the original den-
sity formula in Equation 19 reduces to (see Equation 31

above). With this simplification, fewer terms have to be
calculated than when the sine is left in the formula. For
an unbiased diffusion process, the infinite sum in the dis-
tribution function can also be simplified in this way.

CONCLUSION

In this article, we have presented several explicit so-
lutions for the integration of the distribution and density
function of the diffusion process with respect to param-
eters that are allowed to vary from trial to trial. These ex-
plicit solutions will be helpful if one wants to fit the dif-
fusion model to data. It is shown for the most important
case that the new algorithm is sufficiently accurate and
fast. It is also illustrated that closed-form solutions for
integrals are in general better than numerical approxi-
mations but that it is important to check for new compu-
tational problems when closed-form solutions are used.
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NOTES

1. We use the term distribution function, although that is, strictly
speaking, not entirely correct. The function is only a distribution func-
tion with respect to the reaction time; it gives the probability mass for the
choice response.

2. For instance, in Matlab (without the statistics toolbox) only the
error function is available. The error function is defined as erf(z) = 2Wn
fg e~t*dt. From the error function, the cumulative normal probability
can be computed as follows: ®(a) = 0.5 + 0.5 X erf(a/\/Z).
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