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Contour-based object identification and
segmentation: Stimuli, norms and data,
and software tools

JOERI DE WINTER and JOHAN WAGEMANS
University of Leuven, Leuven, Belgium

We summarize five studies of our large-scale research program, in which we examined aspects of
contour-based object identification and segmentation, and we report on the stimuli we used, the norms
and data we collected, and the software tools we developed. The stimuli were outlines derived from
the standard set of line drawings of everyday objects by Snodgrass and Vanderwart (1980). We used
contour curvature as a major variable in all the studies. The total number of 1,500 participants pro-
duced very solid, normative identification rates of silhouettes and contours, straight-line versions, and
fragmented versions, and quite reliable benchmark data about saliency of points and object segmen-
tation into parts. We also developed several software tools to generate stimuli and to analyze the data
in nonstandard ways. Our stimuli, norms and data, and software tools have great potential for further
exploration of factors influencing contour-based object identification, and are also useful for re-
searchers in many different disciplines (including computer vision) on a wide variety of research top-
ics (e.g., priming, agnosia, perceptual organization, and picture naming). The full set of norms, data, and

stimuli may be downloaded from www.psychonomic.org/archive/.

Identifying objects in line drawings is remarkably easy
for humans. If the object is drawn from a well chosen view-
point, not much information appears to be lost in the pro-
jection of its 3-D shape onto a single 2-D image or in the
further reduction of the continuous distribution of spectral
or gray-level values to a limited number of discrete black
lines. Moreover, in many cases the outline, without the
interior features, seems to contain sufficient information
to derive the object’s shape and identity. Although this
fascinating problem has been studied for a long time
(see, e.g., Attneave, 1954), research gained renewed mo-
mentum from new theoretical proposals in the 1980s
(see, e.g., Biederman, 1987; Hoffman & Richards, 1984;
Lowe, 1987; Richards & Hoffman, 1985; Ullman, 1989).

Many of these theories attribute a special role to contour
curvature. More specifically, Attneave (1954) argued that
information about object shape is not distributed homo-
geneously along the contour but is concentrated at points
where contour curvature reaches its extreme values (i.e.,
curvature extrema) either positively (i.e., maxima, or
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M+) or negatively (i.e., minima, or m—). Hoffman and
Richards (1984) and Biederman (1987) argued that objects
are recognized on the basis of their parts and have proposed
that objects are segmented into parts at regions of deep
concavities or minima of curvature (i.e., the minima rule).
Richards and Hoffman (1985) proposed a codon theory
in which shapes are encoded as sequences of primitive
contour fragments, or codons, each of which is deter-
mined by its curvature singularities (i.e., M+, m—, and
inflections [/], where curvature passes through zero in
the transition between convex and concave regions).
These theories are interesting because they are quite
specific about the nature of the information that is im-
portant for shape and object encoding, segmentation, and
identification. These curvature singularities can be de-
fined and located with mathematical precision. However,
the empirical support has lagged behind theoretical ideas
because the ideas have usually been tested on a limited
number of shapes and objects, using small groups of ob-
servers. For example, the minima rule of segmentation
has been tested on a small number of random shapes
(eight by Braunstein, Hoffman, & Saidpour, 1989) or
contour drawings of everyday objects (seven by Siddiqi,
Tresness, & Kimia, 1996), using only 8—17 and 5-14 par-
ticipants, respectively. Attneave’s (1954) demonstration on
the role of curvature extrema for shape encoding (based
on an unpublished study using 16 random shapes and
80 participants) was replicated almost half a century later
using 12 silhouettes of sweet potatoes and 12 participants
(Norman, Phillips, & Ross, 2001). Attneave’s demon-
stration that a sleeping cat could still be recognized when
the curved lines were replaced by straight lines connect-
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ing visually salient curvature extrema awaits serious ex-
perimental confirmation on other everyday objects.

For these reasons, we have embarked upon a large-
scale research program in which we have tested several
ideas about the role of curvature singularities for object
identification and segmentation, using much larger sets
of stimuli and groups of participants. Along the road,
this research program has produced stimuli as well as
norms and data that other researchers may want to use
for their studies.! This special issue offers an excellent
opportunity to make them available to the research com-
munity (for an overview, see Tables 1 and 2, respec-
tively). We will use our research questions as a guideline
in this overview, but we concentrate on the electronic
archiving aspects and refer the reader to the separate re-
search reports for further details concerning theoretical
and empirical aspects.

Outline

Before we describe the separate studies, it is useful to
start with a brief overview providing some background
of the whole research program and some guidance in un-
derstanding the rationale behind it. The theoretical point
of departure, as has already been indicated, is the role
assigned to curvature singularities in some recent and in-
fluential theories and models of contour-based object
identification and segmentation. The historical point of
departure is Attneave’s (1954) classic paper, in which he
argued that information about shape is not distributed
uniformly along the contour but is concentrated in cur-
vature extrema. He demonstrated this by asking people
to mark salient points (SPs) along the contour of a ran-
dom shape and by creating a straight-line version of a
sleeping cat by connecting the visually salient curvature
extrema with straight lines. We saw the potential of de-
veloping special stimulus sets to test these and related
ideas more thoroughly and systematically.

The research program in which these issues are being
addressed currently consists of five major steps. First,
we developed contour stimuli derived from line drawings
of natural objects. In doing so, we have also made sil-
houette versions that may be useful in their own right.
Second, we designed a study in which we asked people
to mark SPs along the contour to test Attneave’s (1954)
intuition that they would pick curvature extrema. In ad-
dition, this saliency study allowed us to use normative
data rather than a single individual’s intuition to select
SPs to create other stimuli for other purposes, such as
straight-line versions analogous to Attneave’s sleeping
cat. So, the third step was to develop a full set of straight-
line versions derived from the same set of line drawings,
to follow up on Attneave’s demonstration in a much more
systematic way, for many more stimuli and with the ap-
propriate control conditions. Fourth, we created frag-
mented versions derived from the same set, as a way to
cross-validate the finding that salient curvature extrema
were indeed most important for identification, accord-
ing to the straight-line study. Another reason was that
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other studies with fragmented line drawings did not have
this possibility of accurate control of the location, length,
and curvature of the fragments, as we had when we started
from contour stimuli with known curvature values along
the contour. Finally, using a subset of our contour stim-
uli with known identifiability, we could examine how
people segment natural shapes derived from everyday
objects, testing the role of curvature minima while ex-
ploring other influences, such as collinearity of contour
segments, parallelism or symmetry of resulting shape
segments, and even cognitive influences derived from
object knowledge. In our own work, we have addressed
a number of questions with these stimulus sets, but there
are many more that can be asked; in addition, our custom-
made stimuli may be useful to other researchers in the
domain of object recognition, picture identification,
priming, and more, even with particular test groups such
as children or brain-damaged patients.

STUDY 1
Silhouettes, Outlines, and Contours

To obtain contours of everyday objects with continu-
ous curvature values, we started from the set of 260 line
drawings developed by Snodgrass and Vanderwart (1980).
This is undoubtedly the prime example of a standard
stimulus set with published norms of name agreement,
familiarity, complexity, and the like. It has been used
quite frequently (with about 1,500 citations in the Web of
Science database at the time of this writing) and has been
highly instrumental in comparisons across studies of re-
sults on picture naming, object identification, priming,
and so forth. Response times and developmental norms
have since been provided as well (Cycowicz, Friedman,
Rothstein, & Snodgrass, 1997; Snodgrass & Yuditsky,
1996), and other researchers have created colored ver-
sions as well as grayscale renderings of the Snodgrass
and Vanderwart set (Rossion & Pourtois, 2004).

The process from original line drawings to contours
involved three major steps: (1) obtaining digital versions
of the original line drawings, (2) creating silhouette ver-
sions, and (3) extracting the contours from the latter.

Stimuli

Photocopies of the original drawings by Snodgrass
and Vanderwart (1980), as published in their journal ar-
ticle, were scanned into the computer. Using a standard
graphics software package (Paint, which is part of Win-
dows), we removed noise spots in the background and
removed or added a few pixels here and there to enhance
the contours of the line drawings. Silhouette versions of
each line drawing were obtained by blackening the entire
area enclosed by the picture’s outline, effectively remov-
ing all interior features. The major requirement was that
the outlines had to be closed (which is why we some-
times had to improve the contours). In most cases, a line
drawing could be modified into a silhouette only by fill-
ing several smaller areas. This happened when a region
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within the whole shape also had borders that were closed
(e.g., in the grapes [No. 109]; in the pumpkin [No. 181];
and in the tiger [No. 233]).

We also filled those parts of the background that were
enclosed by the external contour of an object. This hap-
pened when an object contained concave parts or empty
areas (e.g., the wheels of the baby carriage [No. 13] or
the bicycle [No. 27] and the holes in the button [No. 41]
or the chain [No. 52]). It also occurred when one part of
an object partially occluded another (which happened
frequently with the legs of several animals—e.g., Nos.
28, 43, 49, 73, and 108). Because we realized that this
procedure would make many objects more difficult to
recognize than they would otherwise have been, we mod-
ified some of the line drawings, especially of the animals
(e.g., by placing the legs a little bit further apart). Other
changes to the original line drawings were needed when
an object part had only minimal area (e.g., the string at-
tached to the balloon [No. 15] and the thread in the spin-
ning wheel [No. 213] or the spool [No. 214]) or had a de-
tached part (e.g., the slice of bread [No. 36] and the
airflow around the top [No. 238]). Our main interest was
not in the absolute levels of recognition for the silhouettes
as such, but in a comparison with the outline contours.

Outline versions were created by extracting the exter-
nal contours from the silhouettes (i.e., after the modifi-

cations to the original line drawings had been made). For
this, we made use of software tools developed at the De-
partment of Electronics at the University of Leuven
(ESAT-PSI-VISICS), building on standard computer vi-
sion algorithms for edge detection and spline fitting.
These procedures resulted in smoothly curved, closed
contours, which were then made discrete again for pre-
sentation on standard CRT screens. As a result, all con-
tours were series of x,y coordinates with their own local
curvature values. These curvature values can be plotted
in so-called curvature graphs, and curvature singulari-
ties can then be detected and selected (a software tool for
this can be made available; see Table 3, A.1).

Some examples of these different versions are shown
in Figure 1. We have reported results in conference pre-
sentations (Ploeger, Wagemans, Beckers, & Vanroose,
1998; Wagemans, Notebaert, Beckers, & Vanroose, 1997),
and a full paper in which this study will be presented in
more detail is under way (Wagemans et al., 2004), but
we have already made these stimulus sets available on
our Web site (see Table 1, A.1 and A.2).

Overview of Other Major
Methodological Aspects

Because in most of our studies we wanted to use spe-
cific variations of the contour versions (limiting the

Line-drawing
(Snodgrass & Vanderwart, 1980)

Silhouette with some modifications

The spline-fitted outline

Helicopter
(Ne120)

Dog
(Ne73)

Top
(Ne238)

Figure 1. Examples of the original line drawings (Snodgrass & Vanderwart, 1980), the silhouette versions with some modi-
fications, and the resulting spline-fitted outlines used to derive the smoothly curved, closed contour versions.
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Table 1
Stimulus Sets

Name

Link: http://www.psy.kuleuven.ac.be/~winterj/Stimuli/...

A. Silhouettes and outlines
A.1 = Silhouettes
A.2 = Outlines

A.3 = Smoothed outlines

B. Straight-line versions
B.1 = Using singularities 1 extrema/lobe

B.2 = Using singularities nr equal to SP
B.3 = Using MP/SP marking 100%
B.4 = Using MP/SP marking 75%

B.5 = Tangent to MP

C. Fragmented versions
C.1 = Around MP/SP

C.2 = Around MP/SP from straight-line versions
C.3 = From SP from straight-line versions

C.4 = To SP from straight-line versions

... Outlines/Silhouettes BMP.zip
... Outlines/Outlines DIF.zip
... Outlines/Outlines BMP.zip
... Outlines/Smoothed DIF.zip

.. Outlines/Smoothed BMP.zip

... Straight Lines/1IELOB DIF.zip

... Straight Lines/1ELOB BMP.zip

... Straight Lines/Count DIF.zip

... Straight Lines/Count BMP.zip

... Straight Lines/Salient Points DIF.zip

... Straight Lines/Salient Points BMP.zip

... Straight Lines/Salient Points 75 DIF.zip

... Straight Lines/Salient Points 75 BMP.zip

... Straight Lines/Straight Line (M Tangent) DIF.zip
.. Straight Lines/Straight Line (M Tangent) BMP.zip

... Fragments/Fragments DIF.zip
... Fragments/Fragments BMP.zip
.. Fragments/Fragments SL Around DIF.zip
... Fragments/Fragments SL Around BMP.zip
... Fragments/Fragments SL From SP DIF.zip
... Fragments/Fragments SL From SP BMP.zip
... Fragments/Fragments SL To SP DIF.zip

. Fragments/Fragments SL To SP BMP.zip

Note—DIF is tabulated ASCII format, BMP is bitmap format.

available information even further), we needed to verify
whether the silhouette and contour versions could still
be identified. For this reason, we asked a large group of
first-year psychology students from the University of Leu-
ven (who are expected to participate as part of a course
requirement) to try to identify these stimuli, presented
for 5 sec each (at 3-sec intervals). The participants (N =
356, 74 males and 282 females) had an average age of
19.2 years. They were all native Dutch speakers, but
other studies providing naming data for the Snodgrass
and Vanderwart (1980) pictures in other language groups
can be used to support cross-validation. Norms for pic-
ture naming using the Snodgrass and Vanderwart stimuli
(sometimes combined with others) have been obtained for
several languages, including Spanish (see, e.g., Sanfeliu
& Fernandez, 1996), French (see, e.g., Alario & Ferrand,
1999), and Dutch, using participants from The Netherlands
(Van Schagen, Tamsma, Bruggemann, Jackson, & Michon,
1983) as well as from Flanders, the Dutch-speaking part
of Belgium (Martein, 1995). In general, these studies
have shown very little significant difference between
language groups (for reviews, see Dell’ Acqua, Lotto, &
Job, 2000, and Kremin et al., 2003).

The participants were tested in groups of about 90 in
a large auditorium with a central projection system. Sil-
houettes and contours were shown to different groups of
participants. The complete set of 260 pictures was di-
vided into two subsets of 130 pictures drawn randomly
from the original set. Thus, we organized four sessions:

SP, salient point; MP, midpoint.

two for the silhouettes (with 85 and 88 participants) and
two for the contours (with 94 and 89 participants). The
subsets were the same for silhouettes and contours, and
we also used the same random presentation order for
both versions to prevent any differences between them
from possibly being an accidental result of the particular
stimulus sequence. Each session, including the instruc-
tions, lasted about 35 min.

We explained to the participants that they would be
shown silhouettes (or contours) of everyday objects that
were created by modifying original line drawings. We
also explained that this procedure would make some of
the pictures virtually impossible to recognize but that we
insisted that they do as well as they could. They were
asked to give the most common name that best described
the object presented in the picture; they were explicitly
told to avoid overly general words (such as thing or ani-
mal), words that were intended to be funny (such as
inkblot), and very lengthy descriptions. They were al-
lowed instead to indicate on their response sheets that
they had failed to recognize a picture by putting a dash
beside the picture stimulus number.

Norms

We used two criteria to score the responses as correct
or incorrect. By the more stringent one, a response was
counted as correct only when exactly the same name was
given as that listed by Snodgrass and Vanderwart (1980).
By the more liberal one, synonyms and dialect names
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that clearly indicated the same concept were also con-
sidered correct. However, slightly related names were
not allowed (e.g., “dog” was an unacceptable response to
the picture of the fox, “fly” was unacceptable for that of
the bee, etc.). The participants correctly identified about
half of the objects in the two versions using the same-
name criterion (53.3% for silhouettes and 51.9% for con-
tours; SD = 38.6% and 38.7%, respectively) and about
10% more using the same-concept criterion (64.7% and
61.8%, respectively; SD = 39.8% and 39.6%, respec-
tively). Identification rates per stimulus varied between
0% and 100%, with a large number of intermediate val-
ues (see Figure 2 for examples).

Although the naming task was performed with Dutch-
speaking participants, the norms are probably useful for
research in other languages as well, because the perceptual
aspects of these performance levels are more interest-
ing than the psycholinguistic ones. Indeed, it is interesting
to examine why certain objects can no longer be identi-
fied in silhouette or contour versions (e.g., diagnostic
texture pattern of the surface, such as that of the leopard
[No. 136] or the zebra [No. 260]; distorted 3-D structure,
as that of the ashtray [No. 10] or the train [No. 240];
filled-in background elements, as those of the button
[No. 41] or the ladder [No. 131]). We have presented these
results at conferences (see, e.g., Ploeger et al., 1998;
Wagemans et al., 1997), and since then silhouette ver-
sions have been used in a good number of other studies
too (e.g., Hayward, 1998; Hayward, Tarr, & Corderoy,
1999; Lloyd-Jones & Luckhurst, 2002). Moreover, in
priming studies, it may also be interesting to select stimuli
with intermediate recognition levels. Using the more lib-
eral criteria for scoring responses as correct, we have
listed all the names, the scoring, and the aggregated per-
centage of correct naming for both silhouette and con-
tour versions of the Snodgrass and Vanderwart (1980)
pictures (see Table 2, A.1). Our norms provide a whole

range of identification rates from which researchers can
sample according to their needs (see Figure 2).

STUDY 2
Salient Points Along Object Contours

Attneave (1954) asked his observers to mark SPs along
the contour of a random shape and noted that the most
frequently marked points were situated at locations where
positive curvature was maximal (i.e., M+) or negative
curvature was minimal (i.e., m—). Norman et al. (2001)
confirmed this observation with 16 shapes of sweet pota-
toes and 16 participants. Making use of our contour ver-
sions of the Snodgrass and Vanderwart (1980) set, we
can test this idea on more natural stimuli that partici-
pants may identify as familiar everyday objects in many
cases.

Overview of Other Major
Methodological Aspects

We presented all 260 contours to a large group of par-
ticipants (N = 161, 34 males and 127 females). The par-
ticipants were all first-year psychology undergraduates
at the University of Leuven from a different cohort in
comparison with those of the other studies (mean age =
19.1 years). They participated in partial fulfillment of a
course requirement. The stimulus set was divided into
four subsets of 65 stimuli, 1 of which was chosen ran-
domly for each participant (yielding data from about
40 participants per stimulus). The participants were in-
structed to look carefully at each stimulus and then iden-
tify and mark important or salient points along the con-
tour. Using a computer mouse, the participants could
move a blue diagonal cross on the computer screen freely
but always positioned on the outline. The blue cross fol-
lowed the mouse pointer on the screen so that the Eu-
clidean distance between the mouse pointer and the lo-

Outline
name and
number

Umbrella, Ne 245 Plug, Ne177

Tie,Ne232 ‘Whistle, Ne 255 Accordion, Ne 1

Outline

Identifica-

tion rate 100.0 %

75.3 %

50.0 % 24.5 % 0.0 %

Figure 2. Examples of contour versions with variable identification.
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Table 2
Norms and Data

Name

Link: http://www.psy.kuleuven.ac.be/~winterj/Data sets/...

A. Silhouettes and outlines: Identification rates
A.1 = Identification rates

B. Saliency study
B.1 = Marked salient points

C. Straight-line versions: Identification rates

C.1 = Selected singularities 1 extremum per lobe ...
C.2 = Selected singularities number equal to SP ...
... Straight line Versions SP&MP 100 & 75 XLS.zip
.. Straight line Versions MP Tangent XLS.zip

C.3 = Around MP/SP 100% & 75%
C.4 = Tangent to MP

.. Outlines & Silhouettes Concept Identification XLS.zip

.. Salient Points TXT.zip

Straight line Versions E&I 1ELOB XLS.zip
Straight line Versions E&I Count XLS.zip

609

D. Fragmented versions: Identification rates
D.1 = MP/SP from curved contours
D.2 = MP/SP from straight line versions
D.3 = from/to SP from straight line versions
E. Segmentation study
E.1 = Marked part cuts

... Fragment Versions Around MP&SP XLS.zip
... Fragment Versions Around MP&SP From Straight line Versions XLS.zip
.. Fragment Versions From & To SP From Straight line Versions XLS.zip

.. Parts XLS.zip

Note—SP, salient points; MP, midpoints.

cation on the contour indicated by the blue cross was
minimal. To mark a point on the contour, the participants
moved the blue cross into the desired position and then
clicked the left mouse button once. They had to mark at
least one point, so they could not inadvertently skip any
stimulus, but they could mark as many as they consid-
ered necessary. They could also correct already marked
points. They could always proceed to the next stimulus
at their own pace.

Data

Data from individual participants consist of contours
(lists of x,y coordinates) with a number of points marked
as salient. The numbers of points marked along the con-
tour differ enormously among stimuli and among partic-
ipants, with a grand average of 19.8 (SD = 7.4) points.
Some examples of this variation are shown in Figure 3.

Aggregated data consist of contours with the frequency
of marking added in each coordinate and varying be-
tween 0 (when none of the participants marked a given
point) and the number of participants for that stimulus
(when all the participants marked a given point). These
frequency values can be plotted along with the curvature
graph of each contour (see Figure 4, black and gray lines,
respectively). It appears that the participants marked
about 50% of all mathematically defined curvature ex-
trema against only about 5% of the curvature inflections.
As one can imagine in light of such data, there is con-
siderable variability, which is due partly to shape varia-
tion and partly to uncertainty or even error on the part of
the participants. To deal with this variability, we have de-
veloped several software tools that allowed us to reduce
this large number of data to reasonable proportions, to
remove unwanted variation, and to extract the major fac-
tors underlying them.

Software Tools
Selection of salient points. We have developed a tool
to aggregate marked point data, to smooth the marking

frequency, and to apply a cutoff threshold to select marked
points (see Table 3, B.1). This interactive tool allows the
user to change all the relevant parameters, and their ef-
fects are represented visually in Figure 5. The major
steps in this procedure are described in the following
paragraphs.

First, the marking frequency of each point along the
contour of each stimulus was determined by aggregating
across all participants who had received the stimulus.
These raw frequencies were then smoothed as follows.
The smoothing technique was used to calculate for each
point p the weighted average of the frequency of point p
and of points in the neighborhood of p. Points that are
further away from point p should have a smaller weight
on the saliency value of point p. We used a Gaussian func-
tion centered on each point p to reflect this decreasing
weight in the two directions away from point p because
we assume that the noise on the localization behavior of
the participants is distributed according to a Gaussian
function. The width of the Gaussian curve (the smooth-
ing parameter) is expressed by its standard deviation in
image pixels and is set to five image pixels in the given
example (see Figure 5). This technique is known as the
moving average using Gaussian weighting.

This procedure yields a smoothed saliency value for
every point on the contour. The higher this value, the
larger the number of participants that marked that point
(or points nearby) as an SP. A comparison of the saliency
plots before and after smoothing (Figures 4 and 5, re-
spectively) makes it clear that some error on the local-
ization is removed by this procedure. For instance, it is
now clear that both corner points on the bottom of the axe’s
handle (i.e., the first and last black points on the saliency
graph in Figure 5) have approximately the same saliency
(represented by gray blobs of more or less the same di-
ameter in Figure 5), which was not clear from the raw
frequencies per se (the diameter of the blob of the leftmost
corner of the axe’s handle was larger than that of the
rightmost corner in Figure 4), probably because local-
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Figure 3. Examples from the saliency study with variability across participants (left col-
umn) and across stimuli (right column). The black dots represent marked points. By partic-
ipant: The contour of the baby carriage (No. 13) with salient points marked by 7 different
participants (ranked according to percentile). By salient points: Seven examples of contours
with a variation of number of marked points (ranked according to percentile). From top to
bottom: needle (No. 154), stove (No. 219), saw (No. 196), train (No. 240), duck (No. 81), tiger
(No. 233), and fence (No. 87). The diameter of the gray circles represents the (smoothed)
saliency of each marked point (aggregated across participants).

ization was somewhat more precise for the somewhat

sharper (i.e., the left) corner.

A good way to select SPs would be to take only the
maxima of these smoothed saliency graphs. However,
because some of these maxima still had very low ab-

solute values (e.g., the small local maxima for points
along the almost straight lines of the axe’s handle), a
saliency threshold was introduced as well. This is a sim-
ple cutoff in the sense that all points below a particular
saliency value are no longer considered. This parameter
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Figure 4. Upper panel: An example contour (axe, No. 12), with starting point for the curvature graph (going counterclockwise) and
gray circles representing the frequency of saliency marking (larger radius = higher frequency). Lower panel: The solid dark trace is
frequency plotted for each point on the contour. The gray trace plots the curvature values (i.e., the curvature graph). The dotted hor-

izontal line is zero.

(represented by the dashed black line in Figure 5) is set
to 12 in our example.

As a final step, we examined where most of the selected
SPs were located along the contour. We did this by check-
ing which special point of curvature was closest to each se-
lected saliency maximum and how large the distance along
the contour was (i.e., the summed Euclidean distances be-
tween all consecutive x,y coordinates defining the contour
segment). The example in Figure 5 is typical in the sense
that most of the SPs were quite close to both M+ and m—.

By testing a whole range of parameter values for the
smoothing parameter as well as the threshold value and

by visualizing the effects as reported here (in color on
the computer monitor), we could select appropriate values
while minimizing unwanted side effects. The details of
this process and the resulting data have been presented at
a conference (De Winter, Panis, & Wagemans, 2002) and
will be reported more extensively elsewhere (De Winter
& Wagemans, 2004a). The tools will be made available
on request (see Table 3, B.1); the results are already on
the Web site (see Table 2, B.1).

Factors influencing saliency. We have also developed
two tools to examine the factors that could have influenced
the saliency of a marked point (e.g., curvature value and

Table 3
Software Tools

A. Contour stimuli

A.1 = Detecting and selecting curvature singularities

B. Saliency study

B.1 = Smoothing and thresholding the saliency data

B.2 = Displaying contour segments with different saliency criteria for the endpoints
B.3 = Calculating correlations between saliency and possible determinants

C. Segmentation study

C.1 = Transferring data from paper to computer files by drawing part cuts superimposed on the outline
C.2 = Smoothing curvature and selecting salient singularities

C.3 = Calculating the distance between a segmentation point and its closest singularity

C.4 = Smoothing and thresholding the segmentation saliency

C.5 = Calculating the spatial scale and its correlation with segmentation saliency

C.6 = Computing the description of part codons

Note—The software tools can be obtained from the authors.
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Figure 5. Upper panel: The same example contour as in Figure 4 but with smoothed saliency. The darker gray blobs have smoothed
saliency values above threshold, and the lighter ones have smoothed saliency values below threshold. Lower panel: Same as in Fig-
ure 4, but now the dotted dark line represents the saliency threshold (set at 12). In both panels, black dots represent the selected
saliency maxima; in the lower panel, the nearest mathematically determined curvature singularities are indicated. As one can see, the
most salient points are often located very close to strong extrema (high M+ or deep m—).

strength of the protrusion measured in different ways). The
results of these extensive analyses will be reported else-
where (De Winter & Wagemans, 2004a), but the tools have
already been made available (see Table 3, B.2 and B.3).

The first tool (Table 3, B.2) allows us to visualize the
local neighborhoods around the marked points. This tool
marks contour segments using different criteria, which
makes it easier to search visually for possibly important
factors for a whole range of contours. To be more specific,
a contour segment is defined by selecting three points:
the marked point itself and two neighboring points (one
at each side). Three criteria for selecting neighboring
points were tested: the nearest inflection points at each
side, the previous and next marked points, and the mid-
points (MPs) between the current and neighboring marked
points. In addition, different criteria for saliency could
be tested simultaneously.

The second tool (Table 3, B.3) allows quantification of
the hypothesized factors determining saliency (e.g., dif-
ferent parameterizations of the strength of a protrusion
or the sharpness of angles) and is used to calculate cor-
relations between these factors and the saliency values.
Again, the results of these procedures can be visualized
to support interactive usage. For example, to examine the
sharpness of a peak (protruding or intruding from the
rest of the shape) as a factor determining the saliency of

a selected point, we proceeded as follows. First, we de-
termined angle a between the two line segments starting
at the SP, one to each of both neighboring points, and we
then drew a separation line dividing angle a in two. This
separation line was then used to align and compare all
the segments of a particular saliency. In particular, the
whole range of saliency values was normalized and then
divided into six bins (i.e., from the weakest 1/6th to the
strongest 1/6th). All contour segments (defined by the
three contour points and the separation line) were now
aligned (by superimposing all the separation lines) within
each saliency bin and visually inspected. In this way, we
found that the most salient points all belonged to contour
segments with very sharp peaks (in the sense of neighbor-
ing contour segments separated by a small &), whereas the
length of the neighboring contour segments did not seem
to matter much. This tool also allows correlations to be cal-
culated in batch for a whole range of contour segments
using different selection criteria and parameter values.

STUDY 3
Straight-Line Versions

Attneave (1954) started from a line drawing of a sleep-
ing cat and then extracted the curvature extrema and con-
nected them by straight lines. His paper does not contain



any further information on how the curvature extrema
were selected or how the required number of lines was
determined. We suspect that Attneave relied on his excel-
lent visual intuitions for this selection. Starting from our
contours derived from line drawings of everyday objects,
with their known curvature values, we can use a more
principled account. This allows a better controlled, larger
scale study of the effect on identifiability of removing
curvature from the contours of everyday objects.

Stimuli

Selecting curvature extrema is not a trivial issue be-
cause the curvature values sometimes yield spurious
local extrema that are not salient at all (see Figure 4). We
have dealt with this problem in two ways. In one variant
of this study, we started from the mathematically defined
curvature extrema and selected only the strongest ones to
be connected by straight lines. In another variant, we
started from the SPs (as marked by the participants in the
saliency study summarized in the previous section) and
selected the strongest ones to be connected by straight
lines. In the study with mathematically based straight-
line versions, the number of points to be selected fol-
lowed the number of lobes in the curvature graph of each
stimulus (i.e., the segment of the curve with a uniform
sign of curvature), and within each lobe the highest peak
was taken when curvature was positive and the lowest
peak was taken when curvature was negative. For com-
parison with the saliency-based straight-line versions,
we also tested a condition in which the number of se-
lected points was equated for each stimulus as much as
possible. In the saliency-based study, we selected 100%
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of the most salient points (at a certain threshold) in one
condition and only 75% in another condition.

Attneave (1954) did not have a control condition to sup-
port his conclusion about the role of curvature extrema.
Lowe (1985) and Biederman (1988) have since shown that
this is important: Connecting the points midway between
Attneave’s selected endpoints by straight lines also pro-
duces an easily recognizable sleeping cat; hence, extrema
appear not to be special at all (see also Kennedy & Do-
mander, 1985). We therefore decided to use systematically
selected control conditions for comparison. Because there
are good reasons to expect inflections to be important for
shape encoding too (Koenderink & van Doorn, 1982), we
decided to use these as starting points for comparison with
the curvature extrema. Moreover, we used MPs halfway
between the selected SPs to create control shapes, because
these points are located as far as possible from the sup-
posedly critically important points.

Finally, we created a specific version of straight-line
stimuli, starting from MPs but keeping them from be-
coming spurious corner points (which is the natural con-
sequence of their being connected by straight lines start-
ing from and ending at the MPs) by fitting a tangent line
through each of the MPs and then creating new corner
points where neighboring tangent lines intersect. These
versions are called midpoint tangents (MPTs). Some of
these MPT versions were problematic because the inter-
sections created “X” crossings or the intersection points
were sticking out too far; these were eliminated from the
stimulus set (yielding 142 remaining stimuli).

The details of this study with all the different straight-
line versions are reported elsewhere (De Winter, Panis, &
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Figure 6. Examples of straight-line variants of a horse (No. 121) generated by connecting different special points with straight lines.
In the first row, starting from extrema and salient points (from left to right), E1, E2, SP100, and SP75; in the second row, the corre-
sponding conditions starting from inflections and midpoints (MPs), 11, 12, MP100, and MP75. The final condition is MPT, where
straight lines are drawn through the tangents of all the MPs between salient points (see text). The identification rate for each version

is given below each stimulus.



614 DE WINTER AND WAGEMANS

Wagemans, 2004). Results have already been presented
at conferences (Wagemans, De Winter, & Panis, 2002).

To summarize, we have the following straight-line
versions of our complete Snodgrass and Vanderwart
(1980) contour set (see Table 1B): In the mathematically
based experiments, E1 conditions use 1 extremum per
lobe, I1 conditions use the corresponding inflections be-
tween all the selected extrema, E2 conditions use a num-
ber of extrema comparable to the number of those used
in the saliency-based study, and 12 conditions use the
corresponding inflections. In the saliency-based experi-
ments, SP100 conditions use all SPs (above a certain
threshold), MP100 conditions use the corresponding
MPs between these SPs, SP75 conditions use only 75%
of the most SPs, MP75 conditions use the corresponding
MPs between these SPs, and MPT conditions are created
by drawing a tangent line through the corresponding
MPs between these SPs. Examples are shown in Figure 6.

Overview of Other Major
Methodological Aspects

We did not present the straight-line versions derived
from the contour stimuli that were virtually impossible
to identify (<<20% correct concepts as derived from the
previously described norms). Removing some extra stim-
uli that had very little curvature change yielded a set of
184 stimuli for this study (with an average identification
rate of 83.4%; SD = 22.9%). Each stimulus was pre-
sented for a maximum of 5 sec. In all of the different
variants in which straight-line versions were used, we
asked another cohort of first-year psychology students
from the University of Leuven to participate in partial
fulfillment of a course requirement. They were tested in
groups of 20-30 participants in a computer classroom
equipped with 30 individual PCs with individual CRT
monitors. In the first version of this study (E1 vs. I1), all
56 participants (13 males and 43 females, average age
19.3 years) received all 184 stimuli, but each stimulus was
presented in only one version (either E1 or I1), so that we
had 28 participants per stimulus per condition. In the sec-
ond version (E2 vs. 12), the 50 participants (10 males and
40 females, average age 19.1 years) were given all of the
stimuli with a similar presentation and counterbalancing
procedure, which yielded 25 participants per stimulus per
condition. In the saliency-based version of this study, all
108 participants (18 males and 90 females, average age
19.0 years) received the four versions (SP100, MP100,
SP75, and MP75) and were assigned to the 184 stimuli in
a counterbalanced fashion so that there were 27 partici-
pants per stimulus per condition. The final group of 24 par-
ticipants (4 males and 20 females, average age 18.8 years)
received all MPT versions of the 184 stimuli once.

Norms and Data

As in the previous naming study, data from individual
participants consist of given names for each stimulus,
which were scored as correct or incorrect (on the basis of

concept) and then aggregated across participants and
stimuli in each of the different conditions (see Table 2C).
As we expected, identification rates varied considerably
between stimuli and conditions (see Figure 6).

The participants correctly identified about half of the
stimuli in the extrema-based conditions (for E1, 46.4%,
SD = 39.3%; for E2, 53.4%, SD = 36.4%) and clearly
fewer in the inflection-based conditions (for 11, 20.4%,
SD = 28.1%; for 12, 14.2%, SD = 23.7%). A similar
trend was present in the saliency-based conditions, in
which SP versions were much easier to recognize than
MP versions (for SP100, 68.9%, SD = 34.1% and for
SP75, 54.7%, SD = 37.8% vs. 34.4%, SD = 32.9% for
MP100 and 18.0%, SD = 25.7% for MP75). Note that
the identification rates of SP and MP versions were sig-
nificantly higher than those of the straight-line versions
connecting mathematically derived singularities (E2 and
12, respectively). Although SPs are often located near
very high M+ or very low m—, this observation suggests
that the saliency of the selected corner points is more im-
portant than the curvature value as such. The identifica-
tion rate for MPT was 60.2% (SD = 33.0%), which is
much higher than that for MP100/75 and much closer to
the identification rate of the comparable SP100 condi-
tion. This indicates that the deteriorated identification of
the MP straight-line versions in comparison with that
of the SP straight-line versions is due mainly to the fact
that the MPs have become spurious corner points; when
new corner points are introduced in locations other than
the MPs whereas the average orientation of the lines
passing through the MPs is more or less preserved, de-
teriorated recognition recovers almost completely.

These results are presented in more detail elsewhere
(De Winter et al., 2004) but they are already available on
the Web site (see Table 2B). In future studies, specific
stimuli can be used because of their specific levels of de-
teriorated recognition (e.g., in priming studies), or the
results can be examined further to find reasons for these
specific recognition rates (e.g., stimulus-specific factors
having to do with degree of contour curvature variation,
number of selected endpoints).

STUDY 4
Fragmented Versions

In the context of object identification from line draw-
ings, picture fragmentation has long been used as a tech-
nique of stimulus degradation (see, e.g., Leeper, 1935;
Street, 1931). However, two developments have led to a
further increase of its popularity since the late 1980s and
early 1990s. First, Biederman and his co-workers have
used different types of fragmented pictures to provide
evidence for his recognition-by-components theory. To
be specific, Biederman and Blickle (1985, cited in Bie-
derman, 1987) showed that object recognition deteriorated
very much when the object’s basic components could no
longer be recovered from the fragments, whereas object



recognition was pretty well preserved when the compo-
nents could still be recovered from the fragments. Bie-
derman and Cooper (1991) tested long-term priming
with different types of fragmented pictures as primes and
targets, and showed that the visual component of the
priming effects was situated largely at the level of the
structural descriptions consisting of object components,
not at the fragment or whole-object level.

Second, in analogy with the word-fragment completion
task used to examine implicit memory with verbal mater-
ial, picture-fragment completion has been used as a tool to
study implicit memory using pictures instead of words (for
a review on implicit memory, see Tulving & Schacter,
1990). Snodgrass and Corwin (1988) made fragmented
versions of a subset of the original Snodgrass and Vander-
wart (1980) set, with eight fragmentation levels increasing
from very few and small fragments to complete pictures,
and they determined identification thresholds for the
whole series of fragmentation levels for each picture.
Since then, Snodgrass has used this stimulus set in a
large number of studies, testing conceptual priming in
fragment completion (Hirshman, Snodgrass, Mindes, &
Feenan, 1990), the perceptual closure hypothesis (Snod-
grass & Feenan, 1990), the role of stimulus similarity
(Snodgrass & Hirshman, 1994), and the sensory match
effect (Snodgrass, Hirshman, & Fan, 1996), as well as
electrophysiological correlates (Viggiano & Kutas, 2000)
and developmental trajectories (Cycowicz, Friedman,
Snodgrass, & Rothstein, 2000).

Using our contour versions of the Snodgrass and Van-
derwart (1980) set with the curvature values for all points
defining the complete contour, we can introduce differ-
ent types of fragmentation with strict control on the
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lengths and locations of the fragments. For example, we
can test Attneave’s (1954) hypothesis about the role of
curvature extrema using fragmented versions rather than
straight-line versions—namely, by having an equal per-
centage of the contour distributed differently along the
contour, located either on curvature extrema (or SPs) or
on inflections (or MPs). Because we are convinced that
the parametric control on fragment length and location
in our fragmented versions has certain advantages over
the previously developed stimulus sets, we believe it is
useful to share our stimulus sets, norms and data, and
software tools with other researchers.

Stimuli

In our earliest published study with these stimuli (Wage-
mans, Notebaert, & Boucart, 1998), we used a paradigm in
which we could measure identification rates continuously
by allowing the participants to build up the contour grad-
ually (adding a percentage of the complete contour by
pressing the space bar on the keyboard of a PC) around
the M+, m—, or I of curvature. Because this leads to a
different number of fragments in each condition, we
have compared only two fragmentation conditions in
later studies (e.g., Wagemans, Panis, De Winter, & Op de
Beeck, 2001), using fragments located around both M+
and m— in one condition and fragments located around
1 in another. Finally, relying on the data from the large-
scale saliency study described earlier, we have also de-
veloped stimulus sets in which the fragments could be
located on either highly salient points or points midway
between the SPs (i.e., at the MPs). Although we can pro-
vide stimuli using the whole range of fragmentation lev-
els from a little more than 0% to almost 100% of the con-
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Figure 7. Examples of fragmented versions of an anchor (No. 4) using 15% of the contour, generated using different special points
(SPs) and different outline versions (see text). Identification rate for each version is given in the lower right corner below each stimu-
lus. MP, midpoint; CF, contour-based fragmented versions; SF, straight-line-based fragmented versions.
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tour, we have studied the range between 15% and 30% in
most detail, because below that range identification rates
are usually too low and above that range recognition be-
comes too easy (see Figure 7 for examples). Very much
to our surprise, fragmented versions with the fragments
located at the MPs were systematically easier to identify
than fragmented versions with an equal fraction of the
contour presented but with the fragments located at the
SPs (Panis, De Winter, & Wagemans, 2002). This result
goes completely against Attneave’s (1954) hypothesis in
the sense that this time (in contrast with the results from
the study with the straight-line versions summarized
above) SPs (very often the perceptually strongest curva-
ture extrema) appear less useful for recognition than
MPs (very often quite far from salient curvature extrema).

To better understand the source of this conflicting result,
we have developed other stimulus sets too, taking frag-
ments from the straight-line versions rather than from the
curved-contour versions, thus effectively maintaining
the same average fragment locations and orientations but
removing all curvature from the fragments. More specif-
ically, in one condition we started from the SP-straight-
line versions and used 15%, 20%, and 25% of the total
line length, whereas in another condition we used simi-
lar fragmentation levels starting from the MP-straight-
line versions. To equate average length of fragments for
SP and MP conditions and to eliminate local segmenta-
tion cues in the SP conditions, we also made versions in
which the straight-line fragments started from SPs or
ended in them. The details of this complete fragmenta-
tion study is reported elsewhere (Panis, De Winter, &
Wagemans, 2004), but intermediate results have already
been presented at conferences (Panis et al., 2002).

To summarize, we have the following fragmented ver-
sions derived from our complete Snodgrass and Vander-
wart (1980) contour set (see Table 1C): Using the spline-
fitted, smoothly curved contours, CF_SPs have curved
fragments on SPs and CF_MPs have curved fragments on
the MPs between these SPs; using straight-line versions,
SF_SPs have straight-line fragments on SPs, SF_MP
have straight-line fragments on the MPs between these
SPs, SF_SP_start have straight-line fragments starting at
SPs, and SF_SP_end have straight-line fragments end-
ing in SPs. Examples are shown in Figure 7.

Overview of Other Major
Methodological Aspects

As in the study with the straight-line versions, we did
not present the fragmented versions derived from the
contour stimuli that were virtually impossible to identify
(<20% correct concept as derived from the norms from
the first study). Removal of some extra stimuli that had
very little curvature change yielded a set of 188 stimuli
for this study (with an average identification rate of
82.5%, SD = 23.7%). Each stimulus was presented for a
maximum of 5 sec. In all of the different variants in
which straight-line versions were used, we tested first-
year psychology students from the University of Leuven,
who had not participated in any of the other studies and
who participated in partial fulfillment of a course re-
quirement. They were tested in groups of 20-30, with
individual PCs. In the first version of this study, in which
contour-based fragments (CFs) were used, all 202 partic-
ipants (40 male and 162 female, average age 18.9 years)
received all 188 stimuli, but each individual stimulus
was presented only once, in only one of the eight ver-
sions (CFs with SPs or MPs, using 15%, 20%, 25%, or
30% of the contour). Stimuli were assigned to conditions
in such a way that we had data from about 25 participants
per stimulus per condition. In the second version of this
study, in which straight-line-based fragments (SFs) were
used, the 232 participants (56 males and 176 females,
average age 19.3 years) received only half of the total
stimulus set (i.e., 94 stimuli) with the stimuli assigned in
a counterbalanced fashion to the six conditions (SF_SP
and SF_MP using 15%, 20%, or 25% of the contour),
yielding about 19 participants per stimulus per condition.
The final group of 119 participants (17 males and 102 fe-
males, average age 19.4 years) also received 94 stimuli
each, divided evenly over all six conditions (SF_SP_start
and SF_SP_end, using 15%, 20%, or 25% of the con-
tour) in a counterbalanced fashion so that each stimulus
was seen by each participant only once, yielding about
10 participants per stimulus per condition.

Norms and Data

As in the previous naming studies, data from individual
participants consist of given names for each stimulus,
which were scored as correct or incorrect (on the basis of

Table 4
Identification Rates (% Correct) and Standard Deviations
in the Study With the Fragmented Versions

Type of
Fragmented 15% 20% 25% 30%
Version % Correct SD % Correct SD % Correct SD % Correct SD
CF_SP 453 33.7 52.3 354 58.1 34.8 62.8 342
CF_MP 52.7 34.8 59.9 342 64.7 343 67.4 33.6
SF_SP 48.9 34.6 54.2 35.0 59.8 35.6
SF_MP 50.3 35.6 57.0 34.6 61.2 35.1
SF_SP_start 41.5 35.1 48.6 35.4 51.6 35.5
SF_SP_end 43.7 352 49.7 36.2 53.5 35.6

Note—SP, salient points; MP, midpoints; CF, curved fragmented versions; SF, straight-line fragmented ver-

sions.



concept) and then aggregated across participants and
stimuli in each of the different conditions (see Table 2D).
As we expected, identification rates varied considerably
between stimuli and conditions (see Figure 7).

The variation across conditions is summarized in
Table 4. As can be seen in the table, fragmented versions
derived from smoothly curved contours (CFs) were sys-
tematically more difficult to identify when the fragments
were located at SPs than when they were located at MPs
(at all levels of fragmentation). This is a surprising find-
ing in light of Attneave’s (1954) hypothesis and the ro-
bust findings from the study with straight-line versions.
However, this difference (of about 4.5% to about 7.5%)
disappears almost completely (to about 1%—3%) when the
curvature is removed from the fragments, as in the frag-
mented versions derived from straight-line versions (SFs).
Finally, the fragmented versions in which the SFs start
from or end at SPs are the most difficult to identify. It is
clear that fragment curvature and perceptual grouping
problems play a role in these effects. We are still doing
extra analyses, for example, by correlating these recog-
nition differences with systematic stimulus differences
in factors such as number, length, and curvature of frag-
ments, with distribution along the contour either being
more or less random or creating locally parallel pairs,
and so on (see Panis et al., 2004), but the stimuli and cor-
responding results can be made available on the Web site
already (see Tables 1C and 2D).

STUDY 5
Segmentation Points Along Object Contours

Since Hoffman and Richards (1984) introduced their
minima rule of segmentation as a cornerstone of their
theory of object recognition on the basis of parts, the
topic of object segmentation has received renewed at-
tention. For example, Biederman (1987) strongly devel-
oped two aspects in his recognition-by-components the-
ory: the role of nonaccidental properties to support the
recovery of 3-D object characteristics from 2-D image
regularities and the idea that basic-level object identifi-
cation can be achieved when each segmented part can be
classified as one of 36 categorically distinct building
blocks. Biederman (1987) did not specifically address
the issue of how the parts arise perceptually in the first
place; he simply relied on Hoffman and Richards’s min-
ima rule of segmentation to solve this problem. However,
this theory is often insufficient to solve the segmentation
problem completely. For example, it gives segmentation
points but does not yield part cuts consisting of matched
pairs of segmentation points. Pairs of minima are seldom
defined in a unique fashion, and choices must be made
when the neighborhood around a negative minimum con-
tains multiple negative minima (and, thus, one of them
must be chosen to yield a unique pair of minima) or no
other minima at all (and, thus, another point must be
chosen to yield a pair of segmentation points).
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As a result, Hoffman and colleagues have comple-
mented the minima rule with other factors (e.g., saliency;
see Hoffman & Singh, 1997) and rules (e.g., the shortest-
cut rule; see Singh, Seyranian, & Hoffman, 1999). Rather
than start from specific segmentation points, other re-
searchers have proposed rules that yield specific types
of parts, such as the largest convex patches (see Vaina &
Zlateva, 1990) or limbs and necks (see Siddiqi & Kimia,
1995). In light of this wealth of theoretical proposals for
segmentation and part-finding rules, it is rather disap-
pointing to see that the empirical support is generally
based on small numbers of test stimuli (line drawings of
everyday objects or simple geometric drawings) and par-
ticipants. Using our contour versions of the Snodgrass
and Vanderwart (1980) set, we can provide solid bench-
mark data to test segmentation models on a much larger
scale.

Stimuli and Other Major
Methodological Aspects

We presented 88 of our contour stimuli to 201 first-
year psychology undergraduates at the University of
Leuven who had not participated in any of the other stud-
ies (41 male and 160 female, average age 19.4 years).
We asked them first to try to identify each object and
then to segment it into its parts by drawing lines that in-
tersect the contours in two places (i.e., defining part cuts
rather than marking individual segmentation points as
such). We also asked other participants to mark individ-
ual segmentation points (in fact performing 1-D contour
segmentation rather than 2-D shape segmentation), but
we will not dwell on that condition here (see De Winter
& Wagemans, 1999). The stimuli consisted of two lists
of 44 contours, one with easy-to-recognize objects (i.e.,
>70% correct concept naming according to the norma-
tive study described earlier) and one with difficult-to-
recognize objects (i.e., <30% correct), but matched for
visual complexity (i.e., operationalized by the number of
inflections). This was done to allow us to examine the
role of top-down influences on object segmentation.
Each participant received only a subset of 11 easy-to-
recognize and 11 difficult-to-recognize stimuli. With
some data trimming (because of obvious sloppiness in
some participants’ records), this yielded segmentations
by about 40 participants per stimulus per condition.

Data and Software Tools

Data from individual participants consist of object
names (which can then be classified as correct or incorrect
according to the criteria described earlier) and marked
part cuts for each stimulus. Across all contours, 10,773
part cuts were made, with somewhat more in the easy
condition than in the difficult condition (6,085 vs. 4,688,
or 56.5% vs. 43.5%, respectively). Across all participants,
each stimulus received an average number of 122.4 part
cuts (SD = 80.13) and across all stimuli each participant
drew 68.6 part cuts (SD = 19.47), which means that each



618 DE WINTER AND WAGEMANS

contour was segmented in three or four parts on average
(i.e., 2 or 3 cuts). This large database of part cuts was an-
alyzed extensively in an attempt to test the existing seg-
mentation models and, perhaps, to discover new principles
as well. While doing so, we developed a large number of
software tools that other researchers may also find useful
(see Table 3C for an overview). The results of this large-
scale segmentation study have been presented at a couple
of conferences already (De Winter & Wagemans, 2001,
2003) and will be reported in full detail elsewhere
(De Winter & Wagemans, 2004b). In the context of this
paper, a brief overview of the database and the tools should
be sufficient to assess their potential value for the larger
research community. Five major steps can be distinguished.

First, the paper-and-pencil data from the participants
had to be transferred onto the computer. The tool that
supported this transfer procedure (see Table 3, C.1) pre-
sented a selected contour on the computer screen and al-
lowed the user to draw a line superimposed on the contour.
The locations along the contour that were intersected by

Segmentation popularity

D

this line were marked by two blue dots. When the user
agreed that these corresponded nicely with the paper-
and-pencil markings to be entered, he or she could click
the right mouse button and the x,y coordinates of these
segmentation points were then saved as pairs constitut-
ing a part cut. These “raw” data are made available on
the Web site (see Table 2E).

Second, to examine whether the segmentation points
were closer to negative minima as predicted by Hoffman
and Richards’s (1984) minima rule, two extra tools were
needed. One tool (see Table 3, C.2) extracted the curva-
ture singularities for all the contours and applied certain
selection filters to prevent visually nonimportant singu-
larities from affecting the subsequent analyses. For ex-
ample, the absolute curvature value had to be larger than
a certain threshold value, and consecutive singularities
of the same type had to have sufficiently different cur-
vature values. As before, these thresholds could be cho-
sen appropriately by a visual inspection of their effects.
Because we realized that this procedure introduces some
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Figure 8. (A) The outline of a wineglass (No. 258) as segmented by subjects (gray lines). (B) The gray blobs represent
the segmentation saliency (larger radius = higher saliency). The squares represent local saliency maxima and are con-
sidered as the (anchor) segmentation points. (C) The thick dark lines represent the summarized part cuts (with a thin
black line at the center). The thickness of the dark lines represents the consistency of the part cut across participants
(thicker is higher). (A, B, and C) The black dot on each outline represents the starting point to trace the contour of the
stimulus (counterclockwise) and plot the corresponding segmentation saliency and curvature graph (D). (D) The black
line represents the saliency of segmentation points along the outline. The dark sections have a saliency above the thresh-
old (10). The curvature graph (gray) is superimposed. Note that the anchor points (open squares) are all located near

m— points (small triangles).



arbitrariness, we decided to perform the saliency study
described above. Another tool (see Table 3, C.3) is used to
find which curvature singularity (from the selected sub-
set) is closest to each segmentation point in the database
and calculates the distance along the contour (summed
Euclidean distances between consecutive contour coor-
dinates). It also allowed us to aggregate the results for all
the segmentation points in the database. On the basis of
these analyses, it was clear that m — are indeed most pop-
ular as segmentation points. For example, they were the
nearest neighbor in 63.3% and 68.4% of the cases in the
difficult and easy conditions, respectively; / and M+
were clearly less popular (between 12% and 19%, re-
spectively). These differences became even larger when
one considers only the singularities at a maximal dis-
tance of 10 pixels from the segmentation points. The seg-
mentation points that were very close to m— also turned
out to be the most popular ones (i.e., chosen by the largest
number of participants).

Third, we developed a tool to apply smoothing and
thresholding to the current set of marked segmentation
points (see Table 3, C.4) in analogy to similar procedures
for the marked points in the saliency study summarized
above. Consider the example of the wineglass (No. 258)
shown in Figure 8, as segmented by our participants
(gray lines in Figure 8A). Saliency of individual seg-
mentation points was determined by smoothing each
point in each cut with its immediate neighbors (yielding
the gray blobs shown in Figure 8B). The local maxima of
this smoothed segmentation saliency were then considered
as the intended segmentation points or anchor points (in-
dicated by open squares in Figures 8B and 8C), provided
that their value was over a certain threshold (again de-
termined after visual exploration). Then, all similar part
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cuts were aligned on the same pair of anchor points if
their segmentation points were within a certain distance
along the contour. In this way, the “raw” part cuts could
be aggregated to determine the saliency of part cuts (vi-
sualized by the thickness of the gray lines in Figure 8C),
provided again that this part cut saliency was also above
a certain threshold value. By comparing the location of
the open squares to the location of the small triangles in
the curvature graph in Figure 8D, it becomes clear that
the most salient segmentation points were very close to
negative minima. Considering the level of the part cuts
rather than the individual points, the majority of the cuts
(about 65%) had at least one negative minimum, with
about one third of these being even m—/m— pairs (an-
other third used M+ or / as the second point, and another
third used just another point, not a singularity). These re-
sults thus support the minima rule of segmentation, but
they also illustrate very well that other factors are play-
ing a role too.

To deal with the important fact that structure exists on
different spatial scales, Witkin (1986) developed the
concept of scale space (i.e., the extraction and represen-
tation of image features such as edges and corners at a
whole range of spatial scales). The fourth tool (see Table 3,
C.5) allows us to examine similar ideas for our segmen-
tation data and curvature values. More specifically, it
calculates how long a particular curvature singularity
survives over increasingly larger spatial scales, from the
finest spatial scales, with all sorts of tiny changes from
one point to the next, to the very large scale at which cur-
vature changes only very gradually. Figure 9 shows some
of the versions of the wineglass at increasingly larger
spatial scales (correcting for size changes using a proce-
dure developed by Lowe, 1989). Differently smoothed

Figure 9. The outline of a wineglass (No. 258) smoothed at different spatial scales (using correction for shrink-
age; Lowe, 1989). The upper left outline is the original nonsmoothed outline with the segmentation data super-
imposed; the others are gradually smoothed more and more. Sigma value starts at 1 and is then multiplied by v2
for each subsequent smoothed outline. The thick black lines are the summarized part cuts (see Figure 8C) su-

perimposed on the smoothed outline.
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versions of many of our outline stimuli are made avail-
able on the Web site too (see Table 1, A.3). The impor-
tant idea in the context of this study is that the so-called
scale of a singularity (i.e., how long it survives in scale
space going from fine to large spatial scales) determines
its visual saliency. For the negative minima, there was a
significant positive correlation between their popularity
as segmentation points and their scale, as was expected
(0.35 and 0.36 for easy- and difficult-to-recognize stim-
uli, respectively). For the other singularities, the correla-
tion was negative (—0.19 and —0.20, respectively, for
M+) or negligible (0.01 and 0.08, respectively, for 7).

Fifth, a separate tool (see Table 3, C.6) was developed
to describe the contour segments between the two points
of the strongest part cuts in terms of their codon config-
uration (according to the codon theory developed by
Richards & Hoffman, 1985). Many different codon con-
figurations existed in our large data set, but m— M+ m—
was clearly the most dominant sequence, especially at
the larger spatial scales.

In summary, by visually representing segmentation
points and part cuts, we were able to find many instances
of known part cuts from the literature (minima rule,
shortest cuts, necks, limbs, etc.), but we also discovered
new factors that seem to have an influence on the selec-
tion of part cuts as well (e.g., collinearity, curvilinearity,
elongation, quasisymmetry, and even cognitive influ-
ences). We also realized that local factors (at the level of
contour curvature) interact with more global factors (at
the level of the whole shape or the shape of the resulting
part) so that the previously proposed models from the lit-
erature could, in fact, be integrated into one coherent
theoretical framework, along with the newly discovered
factors. We are convinced that only a detailed investiga-
tion of such a large data set, which was made possible by
all the different tools described above, could have pro-
duced this progress in our understanding of object seg-
mentation into parts.

GENERAL DISCUSSION
AND CONCLUSION

We have summarized the most important aspects of
the stimuli, norms and data, and software tools of five
studies in which aspects of contour-based object identi-
fication and segmentation have been examined. Stimuli
were always derived from the very popular standard set
of line drawings of everyday objects by Snodgrass and
Vanderwart (1980), in the sense that we extracted the
contours of the outline shapes and used contour curva-
ture as a major variable in all of our studies. In the set of
all five studies, a total of over 1,500 participants were
used, producing very solid, normative identification
rates of silhouettes and contours (N = 356), straight-line
versions (N = 238), and fragmented versions (N = 553)
and quite reliable benchmark data about saliency of points
(N = 161) and object segmentation into parts (N = 201).

In addition, the identification rates for several different
conditions within the studies in which fragmented and
straight-line versions were used are based on a substan-
tial number of participants per stimulus per condition
(usually around 25). These data also have great potential
for further exploration of factors influencing contour-
based object identification. In this large-scale research
program, we have also developed several software tools
to generate stimuli and to analyze the data in nonstan-
dard ways (doing a great deal of image processing, with
which most experimental psychologists are not familiar).
We can share our expertise in this area by providing as-
sistance to other researchers who want to use similar
tools in their own research (using their own stimuli and
results, or ours if they wish).

Let us give some examples of recent topics of research
that could benefit from our stimuli, norms and data, and
software tools. In computer vision, many models have
been developed to extract and process contours that need
to solve the problem of contour-fragment grouping and
that often use object-level knowledge (see, e.g., Bergevin
& Bubel, 2003; Elder & Goldberg, 2001; Elder, Krupnik,
& Johnston, 2003; Jiang, 2000). These models, and sim-
ilar ones developed for human visual perception (see,
e.g., Feldman, 2001; Kellman, 2003), can now be tested
on a much larger data set. Also in computer vision, many
models have been developed for object or shape segmen-
tation (see, e.g., Bilodeau & Bergevin, 2002; Cronin,
2003; Dhandapani & Kimia, 2002; Rosin, 2000) in ad-
dition to scene segmentation (which is not done with
contour and shape so much as with surface texture sta-
tistics; for an extensive review, see Freixenet, Mufioz,
Raba, Marti, & Cufi, 2002). As far as we know, these
models have not been tested with human benchmark data
of the type we have. In cognitive neuropsychology, pa-
tients with agnosia have been tested with a small number
of stimuli to study the interaction between perceptual
grouping and object perception (see, e.g., Behrmann &
Kimchi, 2003; Delvenne, Seron, Coyette, & Rossion,
2004; Giersch, Humphreys, Boucart, & Kovacs, 2000;
Piccini, Lauro-Grotto, Del Viva, & Burr, 2003). We be-
lieve our stimulus sets have great potential for this type
of studies too. Similarly, in studies of unconscious or
conscious priming of object perception and picture nam-
ing, it might be interesting to make use of a set of primes
with known identifiability rates across the whole range
from 0 to 100%. In sum, we hope that our stimuli, norms
and data, and software tools will be useful to a large
community of researchers from many disciplines work-
ing on a wide variety of research topics.
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NOTE

1. The distinction between norms and data is not always clear. We
think this is a matter of how the results are used rather than of strict cri-
teria such as the number of participants (which is always relatively large
in the studies reported in this paper in comparison with related studies
in the literature). In this article, when the results support a theoretical
point or raise additional theoretical questions, we use the term data.
When we believe our results can be used to select a particular subset of
our stimuli for particular purposes (e.g., with specific levels of identi-
fiability), we will describe them as norms.

ARCHIVED MATERIALS

The following materials and links may be accessed through the Psy-
chonomic Society’s Norms, Stimuli, and Data archive, http://www.
psychonomic.org/archive/. To access these files or links, search the
archive for this article using the journal (Behavior Research Methods,
Instruments, & Computers), the first author’s name (De Winter), and
the publication year (2004).

FiLe: DeWinter-BRMIC-2004-Otl.zip.

DEscrIPTION: The compressed archive file (23M) contains six files:

Silhouettes BMP.zip, containing stimuli developed in the present ar-
ticle, as a 796K compressed archive file containing 260 Windows BMP
files of silhouettes derived from 260 line drawings from Snodgrass and
Vanderwart (1980).

Outlines DIF.zip, containing stimuli developed in the present article,
as a 1,726K compressed archive file containing 260 tab-delimited text
files of outlines derived from the above silhouettes.

Outlines BMP.zip, containing stimuli developed in the present article,
as a 756K compressed archive file containing 260 Windows BMP files
of outlines derived from the above silhouettes.

Outlines Smoothed DIF.zip, containing stimuli developed in the pres-
ent article, as an 18M compressed archive file containing 3 * 260 tab-
delimited text files with Gaussian smoothed outlines. For each point on
the outline; Columns 1 and 2 contain the x,y coordinates, and Column 3,
the curvature value.

Outlines Smoothed BMP.zip, containing stimuli developed in the
present article, as a 1,000K compressed archive file containing 3 * 260
Windows BMP files of Gaussian smoothed outlines.

Outlines KR 1.zip, containing stimuli developed in the present article,
as a 583K compressed archive file containing 260 tab-delimited text
files of silhouette versions of 260 line drawings from Snodgrass and
Vanderwart (1980). Columns 1 and 2 contain the x,y coordinates, and
Column 3, the curvature value for each point on the outline. This set was
used for the segmentation study only (so use this file to interpret the
data contained in Parts.zip) and contains some duplicate points (which
were later removed and resulted in the Outlines DIF.zip file, but both
versions have outlines identical in shape).

FiLE: DeWinter-BRMIC-2004-SL.zip.

DEscrIPTION: The compressed archive file (12M) contains eight
files:

SL E&I 1ELOB DIF.zip, containing stimuli developed in the present
article, as a 294K compressed archive file containing 260 tab-delimited
text files used to form straight-line outlines by connecting selected
points. Here, only one (corner) point per positive/negative curvature
segment (lob) is selected. Columns 1 and 2 contain the x,y coordinates,
Column 3 the curvature value, Column 4 the cumulative outline-
distance, and Column 5 the singularity type.



SL E&I 1ELOB BMPzip, containing stimuli developed in the pres-
ent article, as a 698K compressed archive file containing 260 Windows
BMP files of straight-line outline variants, formed by selecting only one
corner point per positive/negative curvature segment.

SL E&I Count DIF.zip, containing stimuli developed in the present
article, as a 268K compressed archive file containing 260 tab-delimited
text files used to form straight-line outlines, matching the number of
corner points with the number of salient points in the Salient Points
DIF.zip file. Columns 1 and 2 contain the x,y coordinates, Column 3 the
curvature value, Column 4 the cumulative outline-distance, and Col-
umn 5 the singularity type.

SL E&I Count BMP.zip, containing stimuli developed in the present
article, as a 627K compressed archive file containing 260 Windows
BMP files of straight-line outlines, matching the number of corner
points with the number of salient points (SPs) of the Salient Points
DIF.zip file.

SL SP&MP DIF.zip, containing stimuli developed in the present ar-
ticle, as a 1,353K compressed archive file containing 260 tab-delimited
text files of outlines with marked SPs and midpoint (MP). These points
can be used to form straight-line variants. Columns 1 and 2 contain the
x,y coordinates, Column 3 the curvature value for each point on the out-
line, Column 4 the cumulative outline distance, Column 5 the point type
(M+ for SP with positive curvature, m— for SP with negative curvature,
I for MP), and Column 6 the saliency value.

SL SP&MP BMP.zip, containing stimuli developed in the present ar-
ticle, as a 7,896K compressed archive file containing 260 Windows
BMP files of straight-line outline variants using marked SPs and MP as
corner points.

SL MP-Tangent DIF.zip, containing stimuli developed in the present
article, as a 78K compressed archive file containing 260 tab-delimited
text files of outline MP. These points can be used to form straight-line
variants by drawing tangent lines thru the MP. Columns 1 and 2 contain
the x,y coordinates, Column 3 the curvature value, Column 4 the cu-
mulative outline distance, Column 5 the point type, and Column 6 the
saliency value.

SL MP-Tangent BMP.zip, containing stimuli developed in the pres-
ent article, as a 457K compressed archive file containing 260 Windows
BMP files of straight-line outlines formed by drawing tangent lines
through MPs.

FiLE: DeWinter-BRMIC-2004-Fr.zip.

DEscrIPTION: The compressed archive file (75M) contains eight
files:

Fragments DIF.zip, containing stimuli developed in the present arti-
cle, as a 32M compressed archive file containing 260 tab-delimited text
files of outlines with fragments around SPs or MPs. These files can be
used to form fragment variants by drawing only the marked points (x in
Column 7). Columns 1 and 2 contain the x,y coordinates, Column 3 the
curvature, Column 4 the cumulative outline distance, Column 5 the
point type, Column 6 the saliency value, and Column 7 the marked frag-
ment points.

Fragments BMP.zip, containing stimuli developed in the present ar-
ticle, as a 1,423K compressed archive file containing 260 Windows
BMP files of fragmented outlines formed by drawing points surround-
ing SPs or MPs.

SL Fragments Around DIF.zip, containing stimuli developed in the
present article, as a 16M compressed archive file containing 260 tab-
delimited text files of straight-line outlines (using SPs as corner points)
with fragments around SPs or MPs. These files can be used to form
straight-line fragment variants by drawing only the marked points (x in
Column 7). Columns 1 and 2 contain the x,y coordinates, Column 3 the
curvature value, Column 4 the cumulative outline distance, Column 5
the point type, Column 6 the saliency value, and Column 7 the marked
fragment points.

SL Fragments Around BMP.zip, containing stimuli developed in the
present article, as a 937K compressed archive file containing 260 Win-
dows BMP files of fragmented straight-line outlines formed by draw-
ing fragments surrounding SPs or MPs.

SL Fragments From DIF.zip, containing stimuli developed in the
present article, as a 16M compressed archive file containing 260 tab-
delimited text files of straight-line outlines (using SPs as corner points)
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with fragments starting from SPs. These files can be used to form
straight-line fragment variants by drawing only the marked points (x in
Column 7). Columns 1 and 2 contain the x,y coordinates, Column 3 the
curvature value, Column 4 the cumulative outline distance, Column 5
the point type, Column 6 the saliency value, and Column 7 the marked
fragment points.

SL Fragments From BMP.zip, containing stimuli developed in the
present article, as a 515K compressed archive file containing 260 Win-
dows BMP files of fragmented straight-line outlines formed by draw-
ing fragments starting from SPs.

SL Fragments To DIF.zip, containing stimuli developed in the present
article, as an 8M compressed archive file containing 260 tab-delimited
text files of straight-line outlines (using SPs as corner points) with frag-
ments ending in SPs. These files can be used to form straight-line frag-
ment variants by drawing only the marked points (x in Column 7).
Columns 1 and 2 contain the x,y coordinates, Column 3 the curvature
value, Column 4 the cumulative outline distance, Column 5 the point
type, Column 6 the saliency value, and Column 7 the marked fragment
points.

SL Fragments To BMP.zip, containing stimuli developed in the pres-
ent article, as a 548K compressed archive file containing 260 Windows
BMP files of fragmented straight-line outlines formed by drawing frag-
ments ending in SPs.

FiLE: DeWinter-BRMIC-2004-Dat.zip.

DEscripTION: The compressed archive file (1.2M) contains 17 files:

Concept Identification.zip, containing norms developed in the present
article, as a 2K compressed archive file containing a comma separated
value (CSV) file. Each row represents one of 260 outlines/silhouettes;
Column 1 represents the object number as used by Snodgrass and Van-
derwart (1980), Column 2 represents the concept identification rate for
outlines, and Column 3 represents the concept identification rate for sil-
houettes.

Salient Points.zip, containing norms developed in the present article,
asa 112K compressed archive file containing a CSV file. Each row rep-
resents a marked point; Column 1 represents the object number as used
by Snodgrass and Vanderwart (1980), Column 2 represents the subject
number, and Column 3 represents the index (starting at zero) in the out-
line file of the point marked by the subject.

SL E&I 1ELOB Rate.zip, containing norms developed in the present
article, as a 2K compressed archive file containing a CSV file. Each
row represents one of 184 straight-line variant outlines; Column 1 rep-
resents the object number as used by Snodgrass and Vanderwart (1980),
Column 2 is the condition (I = straight-line variant starting from se-
lected inflections, E = straight-line variant starting from selected ex-
trema), and Column 3 represents concept identification for the straight-
line variant outlines contained in SL E&I 1IELOB BMP.zip.

SL E&I 1ELOB Data.zip, containing data collected in the present ar-
ticle, as a 49K compressed archive file containing a CSV file. Each row
represents one of 184 straight-line variant outlines; Column 1 repre-
sents the object number as used by Snodgrass and Vanderwart (1980),
Column 2 is the subject number, Column 3 is the condition (I = straight-
line variant starting from selected inflections, E = straight-line variant
starting from selected extrema), Column 4 is the subject’s response
(identification), Column 5 is 0 if the object identification is incorrect
and 1 if the object identification is correct for the straight-line variant
outlines contained in SL E&I 1ELOB BMP.zip.

SL E&I Count Rate.zip, containing norms developed in the present
article, as a 2K compressed archive file containing a CSV file. Each
row represents one of 184 straight-line variant outlines; Column 1 rep-
resents the object number as used by Snodgrass and Vanderwart (1980),
Column 2 is the condition (I = straight-line variant starting from se-
lected inflections, E = straight-line variant starting from selected ex-
trema), and Column 3 represents concept identification for the straight-
line variant outlines contained in SL E&I Count BMP.zip.

SL E&I Count Data.zip, containing data collected in the present ar-
ticle, as a 43K compressed archive file containing a CSV file. Each row
represents one of 184 straight-line variant outlines; Column 1 repre-
sents the object number as used by Snodgrass and Vanderwart (1980),
Column 2 is the subject number, Column 3 is the condition (I = straight-
line variant starting from selected inflections, E = straight-line variant
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starting from selected extrema), Column 4 is the subject’s response
(identification), and Column 5 is 0 if the object identification is incor-
rect and 1 if the object identification is correct for the straight-line vari-
ant outlines contained in SL E&I Count BMP.zip.

SL SP&MP Rate.zip, containing norms developed in the present ar-
ticle, as a 4K compressed archive file containing a CSV file. Each row
represents one of 184 straight-line variant outlines; Column 1 repre-
sents the object number as used by Snodgrass and Vanderwart (1980),
Column 2 represents the used corner point type (SP or MP), Column 3
represents the selected number of SPs (100% or 75%), and Column 4
represents the identification rate for outlines contained in SL SP&MP
BMP.zip.

SL SP&MP Data.zip, containing data collected in the present article,
as a 95K compressed archive file containing a CSV file. Each row rep-
resents one of 184 straight-line variant outlines; Column 1 represents
the object number as used by Snodgrass and Vanderwart (1980), Col-
umn 2 is the subject number, Column 3 is the condition (SP = straight-
line variant starting from SPs, MP = straight-line variant starting from
MPs), Column 5 is the percentage of most salient selected SP, Column 5
is the subject’s response (identification), and Column 6 is 0 if the object
identification is incorrect and 1 if the object identification is correct for
the straight-line variant outlines contained in SL SP&MP BMP.zip.

SL MP Tangent Rate.zip, containing norms developed in the present
article, as a 1K compressed archive file containing a CSV file. Each
row represents one of 142 straight-line variant outlines; Column 1 rep-
resents the object number as used by Snodgrass and Vanderwart (1980),
and Column 2 represents the identification rate for outlines contained
in SL MP-Tangent BMP.zip.

SL MP Tangent Data.zip, containing data collected in the present ar-
ticle, as a 14K compressed archive file containing a CSV file. Each row
represents one of 142 straight-line variant outlines; Column 1 repre-
sents the object number as used by Snodgrass and Vanderwart (1980),
Column 2 is the subject number, Column 3 is the subject’s response
(identification), and Column 4 is 0 if the object identification is incor-
rect and 1 if the object identification is correct for the straight-line vari-
ant outlines contained in SL MP-Tangent BMP.zip.

Fragments Rate.zip, containing norms developed in the present arti-
cle, as a 6K compressed archive file containing a CSV file. Each row
represents one of 188 fragment variant outlines; Column 1 represents
the object number as used by Snodgrass and Vanderwart (1980), Col-
umn 2 represents the used point type (around SP or MP), Column 3 rep-
resents the percentage of the outline visible as fragments (15%, 20%,
25%, or 30%), and Column 4 represents the identification rate for frag-
mented outlines contained in Fragments BMP.zip.

Fragments Data.zip, containing data collected in the present article,
asa 171K compressed archive file containing a CSV file. Each row rep-
resents one of 188 fragment variant outlines; Column 1 represents the
object number as used by Snodgrass and Vanderwart (1980), Column 2
is the subject number, Column 3 is the condition (SP = around salient
points, MP = around midpoints), Column 4 represents the percentage
of the outline visible as fragments (15%, 20%, 25%, or 30%), Column 5
is the subject’s response (identification), and Column 6 is 0 if the object
identification is incorrect and 1 if the object identification is correct for
the straight-line variant outlines contained in Fragments BMP.zip.

SL Fragments Rate.zip, containing norms developed in the present ar-
ticle, as a 5K compressed archive file containing a CSV file. Each row

represents one of 188 fragmented straight-line variant outlines; Column 1
represents the object number as used by Snodgrass and Vanderwart
(1980), Column 2 represents the used point type (around SP or MP),
Column 3 represents the outline percentage visible as fragments (15%,
20%, or 25%), and Column 4 represents the identification rate for frag-
mented straight-line outlines contained in SL Fragments Around BMP.zip.

SL Fragments Data.zip, containing data collected in the present arti-
cle, as a 99K compressed archive file containing a CSV file. Each row
represents one of 188 fragment straight-line variant outlines; Column 1
represents the object number as used by Snodgrass and Vanderwart (1980),
Column 2 is the subject number, Column 3 is the condition (SP =
around salient points, MP = around MPs), Column 4 represents the per-
centage of the outline visible as fragments (15%, 20%, or 25%), Col-
umn 5 is the subject’s response (identification), and Column 6 is 0 if the
object identification is incorrect and 1 if the object identification is cor-
rect for the straight-line variant outlines contained in SL Fragments
Around BMP.zip.

SL Fragments FT SP Rate.zip, containing norms developed in the
present article, as a 5K compressed archive file containing a CSV file.
Each row represents one of 188 fragmented straight-line variant out-
lines; Column 1 represents the object number as used by Snodgrass and
Vanderwart (1980), Column 2 represents the type of fragment (starting
or ending in SP), Column 3 represents the percentage outline visible
(15%, 20%, or 25%), and Column 4 represents the identification rate for
fragmented outlines contained in SL Fragments From BMP.zip and SL
Fragments To BMP.zip.

SL Fragments FT SP Data.zip, containing data collected in the pres-
ent article, as a 58K compressed archive file containing a CSV file.
Each row represents one of 188 fragment straight-line variant outlines;
Column 1 represents the object number as used by Snodgrass and Van-
derwart (1980), Column 2 is the subject number, Column 3 is the con-
dition (starting or ending in SP), Column 4 represents the percentage of
the outline visible as fragments (15%, 20%, or 25%), Column 5 is the
subject’s response (identification), and Column 6 is 0 if the object iden-
tification is incorrect and 1 if the object identification is correct for the
straight-line variant outlines contained in SL Fragments From BMP.zip
and SL Fragments To BMP.zip.

Parts Data.zip, containing norms developed in the present article, as a
112K compressed archive file containing a CSV file. Each row repre-
sents one of the segmentation lines; Column 1 represents the indepen-
dent variable (easy-to-identify outlines with >70% average identifica-
tion or difficult-to-identify outlines with <30% average identification),
Column 2 represents the object number as used by Snodgrass and Van-
derwart (1980), Column 3 represents the subject number, Column 4 rep-
resents the outline index point of the first segmentation point, Columns
5 and 6 represent the location of the first segmentation point x,y, Col-
umn 7 represents the outline index point of the second segmentation
point, and Columns 8 and 9 represent the location of the second seg-
mentation point x,y. Use the Outlines KR 1.zip outlines to interpret the
data correctly.
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