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Notes and Comment

A model for realism ofconfidence judgments:
Implications for underconfidence

in sensory discrimination

WILLIAM R. FERRELL
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In a recent issue ofthis journal, Bjorkman, Juslin, and
Winman (1993) presented a model of the calibration of
subjective confidence judgments for sensory discrimina
tion which they called "subjective distance theory." They
proposed that there was a robust underconfidence bias in
such judgments, that the model predicted such a bias, and
that two different models were neededfor the calibration
of subjective confidence for cognitive judgments and for
sensory ones. This paper addresses issues they raised. It
points out that they have not presented a new model, but
rather a portion of a more general one, the "decision
variable partition model" originally proposed in FerreU
and McGoey(1980). This paper explores properties ofthe
model and shows, contrary toBjorkman, Juslin, and Win
man:S hypotheses, that the model does not predict under
confidence, that the "hard-easy effect" can be observed
with sensory discriminations, and that the model fits not
only sensory, but also cognitive judgments.

In a recent issue of this journal, Bjorkman, Juslin, and
Winman (1993) presented a model of the calibration of
subjective confidence judgments for sensory discrimi
nation, which they called "subjective distance theory." In
that paper, they claimed that the model explains or sup
ports their conclusions that there is a robust underconfi
dence bias in such judgments, that the "hard-easy effect"
in calibration does not occur with sensory discrimina
tions, and that different models are needed for the cali
bration ofsubjective confidence for cognitive judgments
and for sensory ones. The model they presented is not new,
and it does not support those conclusions. This paper
seeks to clarify the properties ofthe model and to address
the following issues that Bjorkman et al. have raised:

1. The model of calibration of subjective probability
judgments they present is the same as the paired
comparison part of a more comprehensive model apply
ing to both sensory and cognitive judgments in a variety
of formats, of both full and limited range, proposed by
me (Ferrell, 1994b; Ferrell & McGoey, 1978, 1980; Fer
rell & Rehm, 1980; Smith & Ferrell, 1983). That model
has been cited and described in reviews (Keren, 1991;
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Lichtenstein, Fischhoff, & Phillips, 1982; McClelland &
Bolger, 1994). Originally termed "the decision-variable
partition model," it is also known as "the signal-detection
model" (McClelland & Bolger, 1994).

2. The model does not predict a general underconfi
dence bias. The model is quite consistent with the over
confidence often found in cognitive tasks and, indeed,
was used by Ferrell and McGoey (1980) to explain that
overconfidence as a failure ofrespondents to adjust their
response criteria with changes in task difficulty.

3. The "hard-easy effect" has been observed with sen
sory judgments, and it is predicted by the model in ap
propriate circumstances.

4. The model fits calibration data for both sensory
judgments and cognitive judgments, for example, for the
subjective probability of answering general-knowledge
questions correctly. It provides a framework within which
the principal empirical observations about calibration in
both domains can be explained. This suggests that both
sensory judgments and some types ofcognitive ones share
a common process by which responses are assigned to
the results of neural processing.

Review ofthe Decision-Variable Partition Model
ofCalibration ofSubjective Probabilities

It is widely agreed that for consistency and practical
applicability, numerical judgments of confidence in the
form of subjective probabilities should be well cali
brated, meaning that for all the events assigned a given
probability, the proportion that actually occurs should
equal the assigned probability.Calibration is clearly shown
by a calibration curve, a graph of the proportion of oc
currences as a function of the assigned probability, along
with a graph of the distribution of responses. Statistics
from scoring rules can be useful, but they obscure im
portant features of the data.

Subjective probability questions can be asked in a va
riety of formats that any model of the process should
attempt to take into account. These can often be char
acterized conveniently, though not uniquely, by the im
plied range ofnumerical responses and the nature of the
event judged, the truth of a proposition or the correct
ness of a choice of alternatives, for example, "Is
weight a heavier than weight b? Choose and give your
subjective probability that you are correct." This is a
half-range, probability-correct question. One should not
give a probability less than .5 (otherwise, the other al
ternative should have been chosen), and the correctness
of the choice is being judged. "Indicate which stimulus
(ofmany possibilities) was presented and give your sub
jective probability that you are correct" could be either a

Copyright 1995 Psychonomic Society, Inc. 246



limited-range [1/(number ofpossibilities) to 1]probability
correct question or a full-range (0 to 1) probability-true
question, depending on how the question is treated by
the respondent.

The model for the calibration ofanswers to such ques
tions that is presented in Ferrell and McGoey (1980) is
based on signal-detection theory (Egan, Schulman, &
Greenberg, 1959; Green & Swets, 1974; Swets,Tanner,
& Birdsall, 1961). It assumes that there are two steps:
(1) the generation of a magnitude of a scalar internal
decision variable that would enable one to decide the
matter, that is, one that is monotone increasing with the
probability of being correct, and (2) the association of
that magnitude with a response. Different question for
mats require different decision variables.

The simplest case is that ofthe full-range, probability
true task, for example, "Give your subjective probabil
ity (on the range 0 to 1) that the stimulus was signal
(rather than just noise)." The basic observation is of the
single stimulus. That stimulus is assumed to produce a
realization of an internal random observation variable
having a greater mean value when it is signal than when
it is noise. That internal variable resulting from the ob
servation is, itself, the decision variable; the larger its
magnitude, the more sure one can be that the stimulus
event was a signal. The model assumes that there is a fi
nite set of responses, that the range of the decision vari
able is partitioned into intervals by cutoffvalues, one in
terval for each response, and that responses are assigned
to those intervals so that the next more extreme interval
gets the next more extreme response. Responses are ar
bitrary and may be numerical probability values, verbal
expressions, or actions. Ifthe form and parameters of the
distributions and the cutoffs are known or assumed, the
calibration curve and the response proportions can be
calculated as in Ferrell and McGoey (1980).

A somewhat more complicated case (and the one cor
responding to the model presented in Bjorkman et al.
(1993) is that of a two-alternative forced-choice task
with the subjective probability response being the prob
ability of correct choice, for example, "Which is heav
ier, weight a or b? Choose and give your subjective prob
ability (from .5 to 1.0) that you are correct." Two
observations are made, one for each alternative, pro
ducing two realizations of the internal variable, and the
magnitude of the absolute difference between them is
the decision variable that is partitioned to provide re
sponse categories. This case is considered in detail.

The basic observation is of a pair of stimuli (e.g.,
lifted weights). It generates two values of an internal
(random) observation variable. The internal observation
variable is assumed, without loss of generality, to be dis
tributed with a higher mean for the larger (i.e., correct)
alternative. In this case, the (optimal) decision variable
is the absolute value of the difference between the two
magnitudes of the observation variable; when that dif
ference is large, one can have more confidence that the
choice of the larger magnitude is correct. It must be the
absolute value, because the respondent doesn't know
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which of the two alternatives is correct. (The distribu
tions of the signed difference will depend upon the task,
but it is frequently found that it may be assumed to be
normal. That is a robust assumption, because the nor
mal approximates other distributions and because the
decision variable need only be determined within a
monotone increasing transformation, so that if any such
transformation can make the distribution normal, the
assumption is satisfied.) Having partitioned the range of
the magnitude of the decision variable, and having as
signed the possible responses, in increasing order, to the
successive intervals on it, the respondent chooses the al
ternative that gave the larger value of the observation
variable. The respondent then considers the resulting
magnitude of the decision variable, the absolute differ
ence between the observations, and gives the response
corresponding to the interval in which that difference
lies, for example, ".7" or "very likely," or whatever the
associated response is.

A calibration experiment consists ofmany suchjudg
ments. It generates distributions of the internal obser
vation variable Yfor correct and for incorrect alternatives,
f(YIC) and j'(Flnot C), as in Figure 1a. The separation
of these two distributions relative to their variances rep
resents the discriminability of the observation process.
The difference Ye-Ynol e between the value of Y for the
correct alternative and that for the incorrect alternative
is the value of the variable Z. The distribution f(Z) is
usually assumed to be normal. It will certainly be so if
the distributions on Yare normal. It is shown in Fig
ure 1b. The area off(Z) to the right of zero is the pro
portion of times the correct alternative produced the
larger value of Y, that is, p(C), the proportion of times
the respondent made the correct choice. Since the actual
scale is unknown, f(Z) may be taken as a unit normal
distribution with a mean that produces the experimen
tally observed value ofp(C) for the area above zero. The
respondent, however, cannot know when Z is negative or
when the incorrect alternative has the larger value of Y;
the respondent sees only positive values ofthe difference
Z. Thus, the decision variable X is the absolute value ofZ.

The distributionf(X), shown in Figure 1c, is the sum
of two parts, the portion of f(Z) below zero, with area
[1-p(C)], rotated about the vertical axis, and the por
tion off(Z) above zero, with area p(C). The respondent
is assumed to partition X into intervals by a set of cutoff
values {Xi}, and to assign higher responses r, to intervals
farther out on X. When the observed value of X =

IYe-Ynol cI falls into the jlh region on X, the response ri
is given.'

The respondent experiences only f(X) and the parti
tion if there is no feedback. The experimenter, however,
knowing which alternatives are correct, can calculate
p(C) and the proportions p(r;) and calibration value
p(C1r;) ofeach response. Hence, the experimenter knows
f(Z) and can determine the corresponding partition
(using various criteria for the fit). Figure 1d represents
an experimenter's view of the model of the response
process shown in Figure 1c. The proportion correct given
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Figure 1. A graphical representation ofthe decision-variable partition modeL (a) Distributions ofthe ob
servations. (b) Distribution of the difference between the observations (generally assumed normal). (c) Dis
tribution of the decision variable X, composed of components of f(Z), as partitioned into response cate
gories by the respondent. (d) Distribution of the difference between the observations Z, with partition, as
inferred by the experimenter,p(r = .7) = (A +B) andp(C1r=.7) =A/(A +B).

a particular response p(C1rJ is just the ratio ofthe frac
tion of judgments that are correct when the decision
variable X falls within the interval corresponding to re
sponse r, to the total fraction of judgments that fall
within that interval. In Figure Id,p(C1ri = ".7") is just
A/(A +B). A is the area in the interval corresponding to
a response of".7" under the component of f(X) attrib
utable to correct responses, and B is the area in that in
terval under the component attributable to incorrect re
sponses. Furthermore, the sum (A+B) is p(ri = ".7"),
the proportion of responses of".7."

Comparison With "Sensory Distance Theory"
The model presented by Bjorkman et al. (1993),

which they call "sensory distance theory," is the same as
this account of the two-alternative forced-choice, half
range, probability-correct task model originally presented
in Ferrell and McGoey (1980); for the same data and cri
teria of fit, it produces precisely the same numerical re
sults. The differences in presentation are due to the fact
that the model discussed here is a special case of a more
general one in Ferrell and McGoey (1980) that applies

to a variety oftask formats, not just to pair comparisons.
Additionally, Bjorkman et al. (1993) approach the model
from the standpoint ofpresignal detection-theory psycho
physics, with appeal to Thurstone's discriminal differ
ence rather than to an internal decision variable. Never
theless, the models are the same and the equivalence is
clearly evident from their description:

Each comparison of the stimuli involves two discriminal
processes [realizations of the internal observation variable]
... and, over trials, a resulting distribution of discriminal
differences [the distribution ofthe (signed) decision vari
able].... Then, the proportion of correct responses is rep
resented by the area to the right of zero, and the propor
tion of wrong responses is represented by the area to the
left [as in Figure Id].

We now add the assumption that confidence is a mo
notonic increasing function ofthe difference between dis
criminal processes [this is a basic property of decision
variables; the authors mean absolute value of the differ-
ence here] Hence, the categories of confidence as-
sessments XI are mapped into the continuum of sensory
differences, with higher values of XI going with larger dif
ferences [the partition]. (Bjorkman et a!., 1993, p. 77)
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Figure 2. Model calibration changes due to: (a) changing p(C) with
fixed cutoffs (.35, .57, .74, .98, 1.2),p(C) shown, and (b) changing cut
offs with fIXedp(C) = .75, multiplicative constant shown.

It is clear from the figure that the two model parameters,
the set of cutoffs {Xi} and the proportion correct p(C),
enable the model to span the range from extreme over- to
extreme underconfidence, the calibration curve shifting
from far below to far above the diagonal that represents
perfect calibration. The model predicts extreme over
confidence at very low discriminability, that is, p(C1r)
~ .5 for all r, for any cutoffs when p(C) ~.5.

As an example ofthe calculations implied by the model,
consider the point at r3 = .7 on the curve for which p(C)
= .75 and for which the cutoffs are the basic cutoffs of
{.35, .57, .74, .98, 1.2}. Since p(C) = .75, the unit nor
mal distributionf(Z) in Figure l d has a mean such that
the area above zero is .75, that is, the mean JL is, thus, the
value of the standard normal variate for which the cu
mulative distribution is .75. This is found from tables or
by numerical approximation to be .675. The interval on
Z corresponding to the response of".7" when the choice
is correct is the third interval above zero, since it is the
third response in increasing order. The third interval is
from .57 to .74. When the choice is not correct, the in
terval is the symmetrical one below zero, that is, from
-.74 to -.57. In order to use the standard normal for de
termination of the areas corresponding to A and to B in
Figure l d, one must subtract the value of the mean JL
from the values of Z to get the standard normal variate.
Hence, the area corresponding to A is that between -.1 05
and .065 under the standard normal and the area corre
sponding to B is that between ~1.415 and -1.245. Again

Their Figure 1 illustrating the model, though less de
tailed, is the same as Figure l d here.

The advantages of a signal detection theory approach
are several. There is a great deal of directly relevant re
search and mathematical theory that one can draw upon,
and there are well-defined and important linkages among
sensitivity, decision criteria, and uncertainty. This paper
will be concerned only with the model for two-alternative,
half-range tasks, but other special cases of the decision
variable partition model have been found to fit the data
for other question formats, as well (Ferrell, 1994a; Ferrell
& McGoey, 1980; McClelland, Bolger, & Tonks, 1992).

Underconfidence Hypothesis
Underconfidence in calibration experiments with

half-range tasks is defined as the responses r being less
certain-that is, farther from 1 and closer to .5-than
their corresponding proportion correct p(C1r). Over
confidence is the reverse. Underconfident calibration
curves thus tend to lie above the line of perfect calibra
tion and overconfident ones to lie below it. Figure 1
shows thatp(C IrJ) for the lowest response category must
be greater than .5 if that category width is >0 when
p(C) > .5 because, in that case, the area corresponding
to A is greater than that corresponding to B for a uni
modal symmetric distribution. For this and the 1.0 re
sponse categories, the model predicts underconfidence.

Bjorkman et al. (1993) mistakenly generalize the un
derconfidence at the lowest response value to the entire
calibration curve. They say, "We hypothesize that the
imbalance between correct and wrong responses at x, =.5
[ri = .5 in present notation] extends to the higher cate
gories of confidence with the consequence of an aver
age underconfidence, x< c[average r < p(C) in present
notation]" (p. 77). They also suppose that this under
confidence is independent of the proportion correct,
saying, "The theory predicts underconfidence for all
levels of c[PCC)] (with .5 and 1.0 as trivial exceptions)"
(p. 79). This interpretation of the model is simply
wrong. The "imbalance" in the lowest response category
and the monotone increasing proportion correct of the
model calibration curve do not together imply general
underconfidence. Either under- or overconfidence can
result, depending on the values ofp(C) and of the crite
rion cutoffs {x;}. This is easily seen by exercising the
modeJ.2

Figure 2 gives the results ofsuch an exercise. It shows,
with solid lines, the calibration curves from the model
for a fixed basic set of cutoffs and values ofp(C) rang
ing from .50 to .95. It also shows, with dashed lines, the
curves from the model for a fixed p(C) = .75 and cut
offs that differ from the basic set by a proportional trans
formation, with proportions ranging from .5 (cutoffs
50% closer to zero on the decision axis) to 1.8 (80% far
ther from zero). These show how simple changes in cut
offs can compensate for changes in P( C). The basic cut
offs {.35, .57, .74, .98, 1.2} have been arbitrarily chosen
for illustration, but they fit the data for an actual exper
iment (Experiment 5 ofLichtenstein & Fischhoff, 1977).
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sion of the model that applies to pair comparisons
(Smith & Ferrell, 1983).

Two gap sizes were used equally often and randomly
intermixed. The small gap produced p(C) = .67 and the
large gap,p(C) = .79. The calibration results are shown
in Figure 3 along with the model fitted independently
to the results for each gap size. The harder task shows a
clear shift toward overconfidence in both the experi
mental results and the fitted model. Since the gap sizes
were randomly intermixed in the experiment and the
stimuli were otherwise the same, it is plausible that the
cutoffs would be the same for each type ofstimulus, that
is, there would be no cue that would enable respondents to
change cutoffs when a stimulus with a different gap size
was presented. The cutoffs obtained from independently
fitting the model in the two cases are {.3, .78, 1.36, 1.92,
2.23} for the large gap and {.36, .89, 1.44, 1.88, 2.20}
for the small. These are not different by a paired t test
(p = .298). Hence, the shift from under- toward over
confidence when the gap is reduced can be attributed to
the cutoffs being held constant when the task is changed
in difficulty on randomly chosen trials. Thus, contrary
to Bjorkman et al. (1993), a hard-easy effect has been
observed with a purely sensory task, and it is explained
by the model rather than prohibited by it, according to

_ Largegapp(C)-.79
._........ Modelfitted ioLarge •••••••••
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Figure 3. Calibration and response proportion curves for Keren's
(1988) Landolt-ring experiment.
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interpolating from tables or by numerical approxima
tion, these areas are found to be A = .0677 and B = .0280,
respectively.Thus,p(Ch =".7") =A/(A +B) = .707. The
proportion of responses of".7" isp(r3 = ".7") = A+B =
.0957. The latter value is not shown in Figure 2, but p(rj)
is needed for a full description and is plotted in subse
quent figures for comparison with data.

Changes in Calibration Due to the Proportion of
Correct Choicesp(C)

The model predicts that calibration can be changed by
changing the proportion of correct choices p(C). Fig
ure 2 shows that if the cutoffs (and distribution type) re
main fixed, changes in p(C) can dramatically affect the
calibration curve. If the task is made harder, the calibra
tion curve shifts in the direction of overconfidence, that is,
downward. Ifthe task is made easier, the curve will shift
in the direction of underconfidence, that is, upward.

Such a shift in the calibration curve with task diffi
culty for half-range tasks has been called the "hard-easy
effect."3 The effect is explained in the context of the
model as the consequence of the respondent's failing to
adjust response criteria appropriately, or doing so insuf
ficiently, when there is a change in task difficulty, pre
sumably because the respondent does not have the nec
essary information or lacks motivation. This explanation
was first presented in Ferrell and McGoey (1980).

Bjorkman et al. (1993) claim that the shift is not ob
served with sensory discrimination judgments, and as
sert that the model supports this claim. They say,
"Psychophysical discrimination does not exhibit any
hard-easy effect, and it shouldn't. The theory predicts
underconfidence for all levels of c [P(C)] (with .5 and
1.0 as trivial exceptions)" (p. 79). They are wrong on
both counts. The model allows such a shift, as can be
seen in Figure 2. Moreover, in an experiment by Keren
(1988), which they cite as supporting a general under
confidence bias for sensory judgment, there is a clear
hard-easy effect, in good agreement with the model, as
demonstrated below.

The task used by Keren (1988) involved visual dis
crimination between left- and right-facing Landolt rings,
annuli with a small gap in the lower left or right quad
rant. Subjects attempted to identify the direction of the
gap in rings presented briefly, one at a time, and indi
cated their confidence that they had identified correctly.
Although there are two alternative responses and confi
dence is on the interval 0.5 to 1.0, it is not a paired-com
parison judgment, since there is only one observation on
each trial. In this case, the decision variable that is par
titioned in the model is the sensory observation variable,
itself. When the alternatives are treated equally in the
experimental design (i.e., presented equally often and
with the same reward/penalty structure, as here), the
partition is assumed to be symmetrical about a point
halfway between the normal distributions for the two
types ofobservation, and the calculations and the model
properties are indistinguishable from those of the ver-



their interpretation. Subsequently, a hard-easy effect has
been clearly demonstrated in experiments on compari
son of linear extent by Baranski and Petrusic (1994).

Bjorkman et al.'s (1993) calibration results from their
Experiment 1 show a shift that might be interpreted as
due to the hard-easy effect for comparison of weights
but not for comparison of rectangles. However, it is im
possible to interpret their results in terms of the model,
because they have defined their hard and easy condi
tions and analyzed their data in a way that would tend to
obscure any hard-easy effect, and they do not report the
details that would permit a different analysis.

Consider their rectangle task. It consisted of presen
tations of a stimulus with a standard. There were four
pairs of stimuli, differing from the standard by progres
sively greater amounts. One stimulus of a pair was less
and one was greater than the standard by the same
amount. The hard condition and the easy condition both
had three of the pairs in common, and differed with re
spect to only one stimulus pair each, a pair very close to
the standard for the hard condition and one very differ
ent for the easy. For each condition, the authors fitted
the model separately to data for each of the stimulus
pairs, and then cumulated the results over response cat
egories across stimulus pairs. They report only the final
results. Thus, each model calibration curve incorporates
data from four realizations of the model, having, pre
sumably, different parameters.

It would have been more in keeping with the model to
treat, within the hard or easy condition, each of the stim
ulus pairs (differing in objective difficulty) as constitut
ing a subtask and to analyze any effect of difficulty at
that subtask level rather than pooling the results over the
rather arbitrarily defined conditions. If this were done,
one might predict a within-task hard-easy effect with
calibration of confidence judgments for the rectangles
that are harder to discriminate, being less underconfi
dent than for those easier to discriminate.

Moreover, the hard and easy conditions might well
have been perceived differently, since the hard part of
the hard condition is quite hard and the easy part of the
easy condition is quite easy. As a result, one might ex
pect subjects to adopt somewhat different criteria for the
two conditions. The analysis fails to make use of the
model to examine such questions.

It should be noted that the model calibration curves in
Figure 3, fitted by the maximum likelihood method, sys
tematically deviate from the data. This suggests that the
distributions on the decision variable are not normal, as
is assumed by the fitting process. It points up the fact
that the normal assumption is really only an approxima
tion adopted because it so often works. But the assump
tion of normality of the conditional distributions on the
decision variable is not invariably appropriate (Egan,
1975)and is not a fundamental feature ofthe model. Hell
strom (1993) shows that sensory data that are usually as
sumed normal for each individual can be significantly
nonnormal when pooled over subjects.
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It should be noted also that when the model is applied
to data sets oftypical size, as above, using the maximum
likelihood method, the results are frequently not statis
tically indistinguishable from the data at the confidence
level of .05. The model with the normal distribution and
p(C) specified is quite demanding. Twelve data points
must be fitted having an elaborate pattern of inter
dependence among them dictated by the distribution form
and by the order of the cutoffs. Bjorkman et al.'s (1993)
statistically significant results may appear to be an ex
ception. However, by fitting the response proportions
p(r;) exactly, they have assumed that the cutoffs esti
mated from the data are specified as part of the "theory."
This substantially improves the possibility offinding no
significant statistical difference between the model and
the data. From a psychological standpoint, however, the
cutoffs are an important dependent variable. Neverthe
less, the quality of fit to any particular data set is ofmuch
less importance than the overall pattern ofcoherent rep
resentation and prediction that the model shows with a
variety of data sets, and the fact that the more general
model extends to and fits full-range judgments.

Confidence in Cognitive as Compared With
Sensory Judgment

Bjorkman et al. (1993) conclude that experimental
evidence "suggests a different nature of confidence in sen
sory judgments, relative to cognitive judgments" (p. 81).
In support of this, they cite (1) the frequent finding of
overconfidence with general-knowledge questions, com
paring it to their findings ofunderconfidence for sensory
comparisons, and (2) the success ofthe model for sensory
judgments discussed here and the success with cognitive
judgments of what has been called (McClelland & Bol
ger, 1994) the "ecological model" (Gigerenzer, Hoff
rage, & Kleinbolting, 1991; Juslin, 1994). It is notable
that they did not cite any particular inability ofthe model
discussed here to deal with cognitive judgments.

This journal is not the appropriate forum for dis
cussing the merits of models of cognitive judgment, but
it must be said that the general model ofcalibration pre
sented in Ferrell and McGoey (1980), and the portion of
it examined here, accurately describes calibration of
subjective probabilities both for sensory and for a vari
ety of cognitive judgments. It fits half- and full-range
judgments and explains or accommodates essentially all
the robust experimental findings for calibration, includ
ing the hard-easy effect described above and the base
rate effect (Ferrell, 1994b; Lichtenstein et al., 1982;
Smith & Ferrell, 1983). (It does not, however, purport to
describe subjective probability judgments that are the re
sult ofmental calculations or operations on numbers, but
only those that can be considered to be based on the par
titioning of an otherwise unsealed internal variable.)

An example of the model's application to cognitive
judgment and its ability to explain observed differences
in calibration in the same manner as with sensory judg
ment is shown in Figure 4. The data are from Juslin
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The "Underconfidence Phenomenon"
Reconsidered in Light ofthe Model

Underconfidence with judgments of correctness of
sensory discrimination is a robust phenomenon, accord
ing to Bjorkman et al. (1993). It may, indeed, be com
mon, but it is certainly not universal. Overconfidence
has been reported by a number of authors for half-range
perceptual tasks that have no evident cognitive content,
for example, identification ofone of five words in noise
(Clarke, 1960, as reported in Lichtenstein et aI., 1982),
discrimination of the area of figures (Lichtenstein &
Fischhoff, 1980), discrimination ofAmerican and Euro
pean handwriting (Lichtenstein & Fischhoff, 1977), and
comparison ofvisual extent (Baranski & Petrusic, 1994).
In all ofthese cases, the hard-easy effect appears to have
been present, so that the overconfidence would be a re
sult of the interaction ofresponse criteria {Xi} and diffi
culty p(C).

In the context of the model, response criteria are cru
cial to whether there will be actual under- or overcon
fidence for a given task. The ability to change response
criteria systematically is well documented in the sig
nal-detection literature (Decker & Pollack, 1958;
Green & Swets, 1974). Indeed, the creation of receiver
operating characteristic (ROC) curves using a series of
yes-no experiments, each of which determines a dif
ferent point on the curve, has routinely been done by
changing the subjects' reward/penalty function or by
changing the proportion of signal trials. Even instruc
tions to adopt a more or a less strict criterion have been
found to be successful.

The ability to appropriately change a whole set ofcri
teria, not just one, might be questioned, but there is good
evidence for it, also, in both the signal-detection litera
ture (Decker & Pollack, 1958) and the calibration liter
ature. Lichtenstein and Fischhoff (1980), using the two
alternative forced-choice paradigm with the sensory
task ofjudging the area of irregular shapes, found "that
a single session of 200 items followed by intensive per
formance feedback [calibration, not outcome] is suffi
cient to teach people who are not initially well calibrated
to be well calibrated. This improvement occurs without
the subjects ever learning the true answers to any items"
(pp. 167-168). Since overconfidence was reduced at the

feet exhibited in Keren's (1988) Landolt-ring experi
ment in Figure 3. Without calibration feedback or cues
to difficulty, subjects would not be expected to be able
to adjust their response criteria to match question diffi
culty. Although the model fits the data for the random
set well, it does not predict their good calibration. Juslin
attributes the good calibration to the unbiased selection
of questions and to subjects knowing the numerical va
lidities of the cues they use to decide the truth ofuncer
tain propositions. However, good calibration is com
monly found for two-alternative forced-choice cognitive
questions when the proportion correct p(C) is about .75
even when they are not randomly selected. Why this is
so is not clear.
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(1994)5 and represent the calibration results from two
alternative forced-choice questions about pairs ofcoun
tries. For the random set, sampling of questions was
such that every pair ofcountries was equally likely to be
included. For the selected set, questions were selected
(by subjects other than those answering the questions) as
iffor a test of knowledge. Juslin (1994) concluded that
the poor calibration and overconfidence of the selected
set were artifacts of the selection process.

The model was fitted to the random set, with results
as shown in the figure. On the assumption that the ex
periments and subjects were sufficiently similar, the re
sulting cutoffs were then used with the value ofp(C) = .63
from the selected set to predict the calibration for it. As
can be seen, the fit to both the calibration values and the
response proportions is quite good, considering that
only one parameter was estimated from the data for the
12 graph points. Consequently, the difference in cali
bration for the two sets ofquestions is well explained by
the model as the result of the greater difficulty ofthe se
lected set. It is an example of the same "hard-easy" ef-



same task without any improvement in p(C), the crite
ria, in terms of the model, must have changed.

Individuals may respond to cues that suggest the de
gree of difficulty of the task by making their response
criteria, the cutoffs, generally somewhatmore strict (mov
ing them outward) for tasks that appear to be harder and
more lax (moving them inward) for those that seem eas
ier. In terms of the model calibration results shown in
Figure 2, this would be an attempt to have the shift of the
calibration curve caused by cutoff change compensate
for the shift caused by a change in task difficulty p(C).
This possibility seems highly likely for two reasons. First,
the cutoffs are, in principle at least, quite arbitrary and
independent of the task. Second, Figure 2 shows that a
very simple one-parameter movement ofcutoffs, that is,
a percentage change, can shift the calibration in a man
ner very similar to that caused by a change in p(C). It
seems unlikely, however, that there would be a very pre
cise or universal relationship between perceived task dif
ficulty and the location of cutoffs. It is more likely that
a movement of cutoffs would be relative to some initial,
perhaps quite inappropriate, default location, possibly
even making calibration worse.

It is plausible, in addition, that cognitive judgment
tasks are reacted to as if they are less difficult than sen
sory ones, whether this is consciously experienced or
not, in view of the evidence for greater certainty in mat
ters over which one seems to have control (Heath &
Tversky, 1991). As a result, one might expect to find de
fault response criteria to be systematically more strict
for sensory tasks than for cognitive tasks, leading more
often to underconfidence.

Conclusions
It has been pointed out that Bjorkman et al. (I993)

have not presented a new model of calibration, but a
portion of the more general decision-variable partition
model that was originally proposed in Ferrell and Me
Goey (I980). More important, analysis shows that they
have misinterpreted that model. Contrary to Bjorkman
et al. (I 993), (I) the model does not predict general
underconfidence, (2) the hard-easy effect is quite pos
sible, according to the model, and has, in fact, been ob
served with sensory discriminations, and (3) the model
fits not only sensory judgments, but cognitive ones as
well. Moreover, the frequent, but not universal, obser
vation of overconfidence with cognitive judgments and
underconfidence with sensory judgments does not need
two models to explain it; it can be accommodated as the
result of a common causal mechanism within the con
text of the decision-variable partition model.
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NOTES

I. These components off(X), representing correct and incorrect
responses, are more formally described by the conditional distrib
utions on X, f(XIC) and f(XlnotC), as in Ferrell and McGoey
(1980). This leads to additional mathematical terms, but has the ad
vantage of making it easier to express the general model which
does not depend upon the decision variable's being a difference of
two values.

2. A HyperCard stack for Macintosh computers that implements the
model for two-alternative forced-choice tasks is available from the au
thor (please send a diskette). It allows input ofthe cutoffs, graphically
shows them in the manner of Figure Ic, and plots the resulting cali
bration curve and response proportions.

3. This effect is also observed with full-range tasks and is predicted
by the decision-variable partition model in that case as well (Ferrell,
1994; Ferrell & McGoey, 1980).

4. The fitting was done by the maximum-likelihood technique using
the program ROCFIT with input modified to accommodate the 2AFC
model. The program was obtained by courtesy of Charles Metz, De
partment of Radiology, University of Chicago, in whose laboratory it
was developed.

5. P. Juslin has very kindly supplied the response proportions, en
abling the model to be fitted.
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